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Abstract. In this paper, we aim at learning the colour matching func-
tions making use of hyperspectral and trichromatic imagery. The method
presented here is quite general in nature, being data driven and devoid of
constrained setups. Here, we adopt a probabilistic formulation so as to re-
cover the colour matching functions directly from trichromatic and hyper-
spectral pixel pairs. To do this, we derive a log-likelihood function which
is governed by both, the spectra-to-colour equivalence and a generative
model for the colour matching functions. Cast into a probabilistic setting,
we employ the EM algorithm for purposes of maximum a posteriori in-
ference, where the M-step is effected making use of Levenberg-Marquardt
optimisation. We present results on real-world data and provide a quan-
titative analysis based upon a colour calibration chart.

1 Introduction

The accurate capture and reproduction of colours as acquired by digital camera
sensors is an active area of research. This is not a straightforward task since
digital cameras are comprised by three spectral broad-band color sensors which
are not colorimetric. This implies that the RGB values yielded by the camera
are not a linear combination of the device-independent CIE color matching func-
tions [1]. Further, colours, as acquired by digital cameras, are, in general, device
dependent.

Whereas colorimetry focuses on the accuracy of the colours acquired by the
camera, spectroscopy has as object of study the spectrum of light absorbed,
transmitted, reflected or emitted by objects and illuminants in the scene. In
contrast with trichromatic sensors, multispectral and hyperspectral sensing de-
vices can acquire wavelength-indexed reflectance and radiance data in tens of
hundreds of bands across a broad spectral range. Recently, there has been re-
newed interest in multispectral imaging as related to color constancy [2], the
analysis of the spectral properties of objects in the scene [3] and the optimal
multiplexing of bandpass filtered illumination [4,5].

Moreover, making use of photogrammetry and spectroscopy techniques based
upon monochromatic narrow-band illuminants, it is possible to recover the spec-
tral response of the camera under study [6]. Methods which employ calibration
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targets and charts have also been proposed. These methods employ quadratic
programming [7], monochromators [8] or spectrophotometers [9].

The methods above require calibration charts and, in many cases, compli-
cated setups and constrained environments. Here we present a method which
employs two sets of images, one trichromatic and another one hyperspectral so
as to learn the colour matching functions. The method presented here hinges
in an inference process based upon a maximum-likelihood formulation which
leads to the application of the EM (Expectation-Maximisation) algorithm. In
the following section, we provide some background on the relationship between
the colour output of the camera, the colour matching functions and the spectral
image radiance.

2 Background

To better understand the relation between the spectra in hyperspectral imagery
and the color output of trichromatic cameras, we commence by providing some
background on the expression of the image radiance at pixel v as given in [10].
Let the image radiance be given by

I(λ, v) = L(λ)P (ϕi, φi, ϕs, φs)S(v, λ) (1)

where P (·) is the mean scattered power in the direction (ϕs, φs), L(λ) is the
power spectrum of the light impinging on the object surface in the direction
(ϕi, φi) and S(v, λ) is the surface reflectance at wavelength λ.

The expression above is important since it allows the use of the shorthand
R(λ, v) = P (ϕi, φi, ϕs, φs)S(v, λ) so as to write the image radiance as follows

I(λ, v) = L(λ)R(λ, v) (2)

This expression has been used widely in the literature [11] and is consistent with
reflectance models in the computer vision literature, such as that in [12].

Recall that in a trichromatic camera, a fraction of the light incident on the
surface of the object being observed is reflected towards the camera. The light
then pases through the camera lens, which focuses the incoming light beam
onto the image plane of the camera. After reaching the image plane, the colour
channel values for each pixel in the image are determined by the responses to
the incoming light of the R, G, B receptors of the camera.

This is important since it permits us to consider two sample-sets. We denote
the first of these, which corresponds to trichromatic pixels, as ARGB. The sec-
ond sample-set, AHS , corresponds to the spectra at hyperspectral pixels. If the
trichromatic pixel u is a match to the hyperspectral pixel v, i.e. u ∼ v, then,
using the notation above we can write

Ik(u) = κk

∑

λ∈Λ

Qk(λ)L(λ)R(λ, v) (3)

where κk is a constant that depends on the sensor geometry, Ik(u) is the colour
value for the channel k = {R,G,B}, Λ is the visible spectral range,
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i.e. Λ = [400nm, 700nm], and the colour matching functions for the three colour
channels are denoted by Qk(λ), k = {R,G,B}.

Here, we note that the illuminant power spectrum may be recovered making
use of methods elsewhere in the literature such as that in [13]. We can assume
it to be in hand. Also, in the following section, we assume that the matches
between pixels are available. We will ellaborate further on this in Section 4.

3 Maximum Likelihood Formulation

Note that the treatment above permits us to view each pixel value as a product
of a per-pixel, per-wavelength factor which applies equally to all the pixels in the
sample sets ARGB and AHS . This in turn allows a statistical treatment of the
problem. In this section, we cast the problem into an Expectation-Maximization
setting.

3.1 Log-Likelihood Function

The idea underpinning the EM algorithm is to recover maximum likelihood so-
lutions to problems involving missing or hidden data. To do this, we view the
colour matching functions as a set of hidden variables to be estimated. Thus, we
cast the problem as a maximum a posteriori (MAP) one which aims at maximiz-
ing the probability of the colour matching function given the input trichromatic
and hyperspectral image pixels. This can be expressed as follows

P (Qk(λ) | Ω,Θk) = P (Qk(λ) | Ω)P (Qk(λ) | Θk)

where Ω is the set of matching spectra-colour pixel tuples and Θk is the set of
hyperparameters for the colour matching function Qk(λ).

Note that, in the expression above, the first term of the right-hand side is
the conditional probability governed by the hyperspectral image radiance value
and the corresponding colour value. Thus, the maximization of the probability
P (Qk(λ) | Ω) implies that the colour matching function Qk(λ) should satisfy the
relationship between the spectral radiance and the trichromatic colour values.
The second term accounts for the dependency of the colour matching function
Qk(λ) upon the hyperparameters in Θk. Note that these hyperparameters can be
viewed as a means to enforcing a cumulative distribution function in a manner
akin to histogram equalization methods [14].

We can take our analysis further by considering a probability distribution
function for P (Qk(λ) | Ω) of the form

P (Qk(·) | Ω) =
1

γk
√
2π

∏

u∈ARGB

v∈AHS

u∼v

exp

{
− 1

2γ2
k

∣∣∣∣Ik(u)−κk

∑

λ∈Λ

Qk(λ)I(λ, v)

∣∣∣∣
2}

(4)

where γk is the variance variable and the second term in the argument of the
exponential function arises from Equations 2 and 3.
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In a similar fashion, we can consider the colour matching function values
to be distributed in accordance to a mixture of N Gaussians. This is a good
approximation for the colour matching functions used in practice by camera
manufacturers [15]. As a result, we can write

P (Qk(·) | Θk) =
∏

λ∈Λ

N∑

q=1

αq,k
1

σq,k

√
2π

exp

{
−

(
μq,k − λ

)2

2σ2
q,k

}

where, Θk = {θq,k}Nq=1 and, as usual, θq,k = {μq,k, σq,k} are the mean and the

covariance for the kth colour response and the qth Gaussian in the mixture and
αq,k is the mixture weight.

With these ingredients, the log-likelihood function becomes

L(Qk(·) | Ω,Θk) = − 1

2γ2
k

∑

u∈ARGB

v∈AHS

u∼v

∣∣∣∣Ik(u)− κk

∑

λ∈Λ

Qk(λ)I(λ, v)

∣∣∣∣
2

+

∑

λ∈Λ

log

{ N∑

q=1

αq,k
1

σq,k

√
2π

exp
{−

(
μq,k − λ

)2

2σ2
q,k

}}
(5)

where we have removed the term log
{

1
γk

√
2π

}
from further consideration since it

does not depend on the colour matching function Qk(·) or the hyperparameter
set and, hence, does not affect the inference process.

3.2 Expectation-Maximization

Note that, in the equation above, only the last term in the right-hand side
depends on the hyperparameter-set Θk. This is an important observation, since
it suggests an iterative update scheme in which the hyperparameters and the
colour matching functions Qk(λ) can be recovered using the EM algorithm [16],
which we describe in the following.

Expected Log-Likelihood Function. In Equation 5, the two terms on the
right-hand side are log-likelihoods in their own right. That is, the first of these is
the log-likelihood of Qk(λ) given the colour responses and spectral values. The
second term corresponds to the likelihood of Qk(λ) given the hyperparameters
Θk.

Thus, we can index the expected log-likelihood to iteration number n and
write

Q(Qn+1
k (·) | Ω,Θn

k ) = −τ
∑

u∈ARGB

v∈AHS

u∼v

∣∣∣∣Ik(u)− κk

∑

λ∈Λ

Qn+1
k (·)I(λ, v)

∣∣∣∣
2

+

∑

λ∈Λ

log

{ N∑

q=1

αn
q,k

1

σn
q,k

√
2π

exp
{−

(
μn
q,k − λ

)2

2(σn
q,k)

2

}}
(6)
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where we have used the shorthand τ = 1
2γ2

k
.

M-Step. In the M-step, we aim at maximising the expected log-likelihood with
respect to the colour matching functions. Note that the maximisation of the
log-likelihood can also be cast as a minimisation of the form

argmin
Qn+1

k (·)

{
τ

∑

u∈ARGB

v∈AHS

u∼v

∣∣∣∣Ik(u)− κk

∑

λ∈Λ

Qn+1
k (·)I(λ, v)

∣∣∣∣
2

−

∑

λ∈Λ

log

{ N∑

q=1

αn
q,k

1

σn
q,k

√
2π

exp
{−

(
μn
q,k − λ

)2

2(σn
q,k)

2

}}
(7)

This observation is important since it allows the M-step to be viewed as a reg-
ularised nonlinear least-squares minimsation which can be tackled using the
Levenberg-Marquardt algorithm (LMA), which is an iterative trust region pro-
cedure [17] aimed at recovering a numerical solution to the problem of minimising
a function over a space of parameters.

E-Step. To estimate the hyperparameter set θn+1
q,k , we introduce the posterior

probability

P (θnq,k | Qn+1
k (λ)) =

P
(
θnq,k | Qn+1

k (λ)
)
P
(
Qn+1

k (λ)
)

P (θnq,k)
(8)

so as to write the gradient of the log-likelihood function as follows

∇Θn
k
L(Qn+1

k (·) | Θn
k ) =

∑

λ∈Λ

P (Θn
k | Qn+1

k (λ))∇Θn
k
log

{
P (Θn

k | Qn+1
k (λ))

}
(9)

Recall that the maximum likelihood corresponds to the values of Θn+1
k for

which ∇Θn+1
k

L(Qn+1
k (·) | Θn

k ) = 0. Since we have assumed P (Qn+1
k (λ) | Θn

k ) to

be a mixture of Gaussians, we can recover the maximum likelihood estimates of
Θn

k by differentiating Equation 5 with respect to Θn
k , substitute the results into

Equation 9 and solve ∇Θn
k
L(Qn+1

k (λ) | Θn
k ) = 0.

This is a well-known estimation problem [18], which after some algebraic ma-
nipulation, yields the following update rules

μn+1
q,k =

∑
λ∈Λ λ hn

q,k(λ)∑
λ∈Λ hn

q,k(λ)

σn+1
q,k =

∑
λ∈Λ

(
μn+1
q,k − λ

)2
hn
q,k(λ)∑

λ∈Λ hn
q,k(λ)

(10)

αn+1
q,k =

1

| Λ |
∑

λ∈Λ

hn
q,k(λ) (11)
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where P (Qn+1
k (λ) | θnq,k) can be computed, in a straightforward manner, making

use of Equation 5 and

hn
q,k(λ) =

P (Qn+1
k (λ) | θnq,k)∑N

r=1 P (Qn+1
k (λ) | θnr,k)

(12)

where we have followed [19] and set

P (Qn+1
k (λ) | θnq,k) =

1

Ψ

N∑

q=1

αn
q,k

Qn+1
k (λ)

σn
q,k

√
2π

exp
{−

(
μn
q,k − λ

)2

2(σn
q,k)

2

}

and Ψ is a normalisation constant.

4 Implementation Issues

Having presented the theoretical background of our approach, we now turn to
the implementation of the method. Note that our method is not limited to a par-
ticular number of bands and applies equally to each of the three colour channels.
Moreover, so far, we have assumed that the colour-spectra matches, i.e. Ik(u)
and I(·, v) with u ∼ v are available. In practice, this is not the case. Moreover,
acquiring spectro-colourimetric image pairs is impractical in many cases due the
error that may be introduced by registering the two views, i.e. that captured by
a trichromatic camera and that acquired using the hyperspectral imager.

Thus, we opt for a discriminative approach based upon two code books [20]
with sufficient amount of samples so as to have statistical relevance. We com-
mence by building two pixel sets. The first of these from images taken using the
colour camera for which we aim at learning the colour matching functions and
the other one from imagery captured using the hyperspectral imager. Then, we
build the two codebooks, one for each of these pixel-sets. We do this making use
of k-means clustering [18].

The codebook for the hyperspectral sample is then converted into RGB values
making use of the current estimate of the colour matching functions. This permits
matches between the two codebooks to be recovered making use of nearest-
neighbours in the RGB chromaticity colour space. These codebooks are, hence,
used as an alternative to ARGB and AHS , where the elements indexed u and v
in the respective sets are a match to each other if they are the nearest neighbour
to one another.

5 Experiments

Here we show results on real-world multispectral and trichromatic imagery. To
this end, we have used two trichromatic commercial cameras, i.e. Nikon D80 and
Nikon D5100, so as to acquire 210 pictures, 105 images with each camera. For
each of the color cameras, we have used approximately 5.2 Mega pixels sampled
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(a) CIE [1] (b) Nikon D80 (c) Nikon D5100

Fig. 1. Colour matching functions for the CIE 1955 standard and those recovered by
our algorithm for the Nikon D80 and Nikon D5100 camera models

Fig. 2. From left-to-right: imagery rendered with the CIE colour matching functions
and those recovered by our algorithm for the Nikon D80 and Nikon D5100 camera
models

over the 105 images in a grid like fashion. All our trichromatic imagery has been
acquired in raw output mode with manual exposure calibration.

For our hyperspectral data, we have used 1 Mpixel taken from 131 images.
Similarly to our trichromatic data, these have been sampled in a grid like fashion
with 7.6 Kpixels selected from each image using 16× 16 pixel tiles. All our hy-
perspectral imagery was acquired with a Liquid Crystal Tunable Filter (LCTF)
at 2 Mpixel resolution and 33 spectral bands in the visible range in 10nm steps.
In all our experiments, the number of mixtures N is set to two and initialised
the colour matching functions and hyperparameters making use of the CIE1955
standard [1]. Here we have used τ = 1 and iterated until the L2-norm between
the hyperparameter set Θn and Θn+1 is below a user-provided threshold, which
we set to 1e−15. In average, the algorithm converged in 10 iterations.

In Figure 1, we show the colour matching functions for the CIE 1955 standard
[1] and those recovered using our approach. Note that the CIE standard does
contain negative values, whereas the colour matching functions for commercial
cameras, by definition, should be positive. In Figure 2, we show example results
for one of our input images. In the figure, we show the image rendered with the
CIE colour matching functions and those recovered by our algorithm. Note the
differences between the images. In particular, with respect to the CIE colour
matching functions.

To provide a more quantitative result, we have acquired imagery, hyper-
spectral and trichromatic, for the XRite Color Checker chart. This is a tiled
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Table 1.Mean and standard deviation for the error when using the CIE color matching
functions and those learnt by our method

Nikon Nikon Nikon Nikon
D80 D5100 D80 D5100

CIE Matching 0.048 ± 0.025 0.040 ± 0.019 Our 0.032 ± 0.017 0.036 ± 0.0215
Functions [1] Method

colorimetric calibration board containing 12 colours and 6 shades of gray. We
have rendered the hyperspectral image of the colour chequer with the CIE colour
matching functions and those learnt by our method. Once the RGB images are
generated, we compare the colours on the chart with those on the imagery ac-
quired with the trichromatic cameras. To do this, we have performed white
balancing using the shades of gray and computed the mean-squared differences
between the trichromatic imagery and that yielded by the colour matching func-
tions applied to the hyperspectral image.

In Table 1, we show the mean and standard deviation for the CIE colour
matching functions and those learnt by our method. In the table, the mean
and standard deviation have been normalised to be between zero and unity.
This is so as to allow scale variations between the two sets of colour matching
functions. This also permits comparison with colour difference measures often
used in colorimetry. Note that our learning method outperforms the CIE color
matching functions for both cameras.

6 Conclusions

In this paper, we have introduced an approach aimed at learning the colour
matching functions from hyperspectral and trichromatic imagery. We do this
based upon a probabilistic formulation where the EM algorithm is employed
so as to recover the colour matching functions directly from trichromatic and
hyperspectral pixel pairs. We have derived a log-likelihood function which is
governed by both, the accordance of the spectra-to-colour equivalence and a
generative model for the colour matching functions. The method is quite general
in nature, being data driven and devoid of constrained setups. Our results on
real-world data show that our method is capable of learning colour matching
functions which deliver colours in close accordance to those acquired by sample
trichromatic cameras.

References

1. Stiles, W.S., Burch, J.M.: Interim report to the Commission Internationale de
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