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Abstract. This article adresses the problem of assessing how close two
strict and/or fuzzy partitions are. A new index based on a measurement
of the sparsity of the contingency matrix crossing the partitions is pro-
posed that satisfies the required properties formulated within the paper
and presents a low complexity. It is compared to well-known existing
indices of the literature, such as the Rand and the Jaccard indices, the
transfert distance and some of their recent fuzzy counterparts.
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1 Introduction

A partition of a set X = {x1,...,Xn } of n objects is a set of ¢ non-empty subsets of
X, called clusters, that group objects along common attributes they share. Parti-
tions are usually characterized by a (¢ x n) partition matriz U = (Uik)i=1,c;k=1,n,
identified with a c-partition of X for the sake of simplicity. Each u;; represents
the degree with which the k" datum is associated to the i*" cluster, each column
uy gathers the degrees for the k' object and each row U* defines the i** cluster.
In this paper, we focus on fuzzy/probabilistic partitions such that u;; € [0, 1] and
Zle u;r, = 1, and on strict partitions such that w;; are binary and sum up to
unity, e.g.:

U Ug U3z Uy u; U2 us Uy
(1 101\ U _(0.6080.309)\ U;
Uh(o 0 10>U,§ and Ur=104020701) U2

Since clustering algorithms always produce a partition U even if there is no clus-
ter structure in the data, assessing the quality of U is a problem of great interest.
It can be tackled using the data itself, by mean of an internal index as in cluster
validity [1l 2] or by assessing how close U is to a ground truth/ expert assessed
(mostly strict) partition or a set of ordinary partitions, respectively by mean
of an external and a relative index, both refered as comparison indices [3| [].
This approach have been largely explored for both strict and fuzzy domains,
see section 2. We propose to use sparsity measures [5] and fuzzy residual im-
plications [6] to define a new fuzzy index in section 3. In section 4, numerical
experiments show its good properties as compared to other indices.
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2 Necessary Tools for the Index Construction

2.1 Comparing Partitions

Plenty of indices have been proposed in the literature for comparing partitions.
Depending on the nature of the latter, i.e. strict or fuzzy, these indices rely on
multiple and different techniques or theoretical frameworks. For the strict case,
let us cite the well-known Rand and Jaccard indices [7] based on a set-theoretical
approach and repectively denoted RI and JI hereafter, and the transfert dis-
tance T'D based on graph theory [8]. Among fuzzy comparison indices, let us
cite the recent Anderson et al. [9] and the Quéré and Frélicot’s [10] extensions,
both relying on fuzzy logics and denoted respectively RIa, JI1a, Rlgr, JIgF,
the Huellermeier and Rifqi extension of the Rand index HR based on a ge-
ometrical approach [I1], and the Campello’s fuzzy extension of the transfert
distance F'T'D [12]. The ideal index I'*, no matter the nature of the partitions
U and V it is meant to compare, must satisfy the following properties (see
Table [l for mentioned indices): (I1) I*(U,V) = 1 & U = V (identity), (I12)
I*(U,V) > 0 (non-negativity), (I3) I*(U, V) = I*(V,U) (symmetry). Moreover,
we consider that such an index should satisfy an additional informal property:
(I4) I*(U, V) >> I*(U,W) it V is known to be much more closer to U than W
(dynamics). If a practitioner decides whether or not two partitions are compati-
ble by thresholding the index value, such an informal property ensures him that
the index is known to present very different values while comparing close and
distant partitions. Because of lack of space, we do not go further into the details
of each index. It is not the purpose of this paper and we invite the interested
reader to refer to surveys of quality [7, [9]. Yet, let us describe a well-known
construction to go one step further in our proposition.

Table 1. Properties satisfied by some indices of the literature

Property RI JITD RIa JIa Rlgr JIgr HR FTD
(11) Identity e o o
(I2) Non-negativity o e e
(I3) Symmetry e o o

Crossing a c-partition U and a r-partition V' results in a (¢ X r) contingency
matrix N (U, V) = (ni;)i=1,e;j=1,r whose general term n;; represents the number
of data being in the i*" cluster of U and in the j** cluster of V.. If both U and V'
are strict, the cardinal of the intersection between each pair (U?,V7) of clusters
is given by [13]:

NU,V)=U". (1)
where 'V stands for the transpose of V. This is the basis of some set-theoretical
indices such as the strict Rand and Jaccard indices, or the fuzzy Anderson et
al. extension [9] where a new computation of N is proposed, whose elements n;;
are replaced by:

n;;(U, V)= ZT(uik,vjk) (2)
k=1
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where T is t-normll, see [I4]. Basic t-norms are the minimum T/ (a,b) =
min(a, b) and the product T p(a,b) = ab. There also exist parametrized families
of t-norms, e.g. the Hamacher’s one T g, (a,b) = ,y+(1_7)a(l;+b_ab), v € [0, 400).
Note that n;; induced by (I is strictly equivalent to () computed with T p.

2.2 Sparsity Measures

A fundamental problem in many data analysis problems is to find a suitable
representation of the data, say y = {y1,...,yc} € R®. A sparsity (or spareness)
measure aims at assessing to which extend most values in y are close to zero
while only few ones are non-zero so that they can be used to represent the
data. Many sparsity measures are found in the literature, mainly coming from
fields such as signal analysis, e.g. in [I5]. For a comparison of fifteen well-known
sparsity measures, the reader should refer to [5]. With no loss of generality, we
restrict ourselves to sparsity measures S : R® — [0,1]. Among the properties
such measures may have, let us cite the two that are required for the comparison
index we propose: (S1) adding a constant to each value decreases sparsity, (52)
as one value becomes infinite, as sparse as possible is the distribution. Two of
the sparsity measures reviewed in [5] have these properties. The first one is the
Hoyer’s sparsity measure which is based on the relationship between the L; norm
and the L, norms. It is defined as:

25=1Yi
c—
Ve Usi
ve—1
It varies from 0, i.e. y is not sparse, if all components are equal (up to signs)
to unity if y contains a single non-zero element. The second one is called kurto-

sis sparsity measure by analogy to the well-known measure of peakedness of a
probability distribution. It is defined as:

chzl YEI

(Zia)”

H(y) = 3)

ra(y) = (4)

In order to show how these two measures behave, we have driven a short exper-
iment inspired by the work in [5]. Consider a vector y of 500 values in {0, 1}
drawn from a Bernoulli distribution, so that 1 and 0 have a respective probabil-
ity of occurence of p and ¢ = 1 — p. When ¢ is barely null, y is then composed
of very few zeros while only a small number of values are 1 when ¢ is close to
1. Thus as ¢ increase so should the sparsity measure as exhibited in Fig.[Il One
can observe that H presents more granularity than x4 which only gives a strong
response for ¢ > 0.9.

! A t-norm is binary operation on the unit interval T : [0,1]*> — [0, 1] which is com-
mutative, associative, non decreasing and has 1 for neutral element.
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Fig. 1. Sparsity measures of 500 data drawn from a Bernoulli distribution

2.3 Fuzzy Implications

A fuzzy residual implication is an application Z : [0,1]2 — [0,1] , (a,b) = Z(a,b),
such that:
T(a,b) = supft € [0,1] : T(a,) < b} (5)
t

where T is t-norm. We speak about an implication function if Z is non-increasing
in the first variable, non-decreasing in the second variable and 1(0,0) = I(1,1) =
1,and I(1,0) = 0, see [6] for a large survey on fuzzy implication functions. Within
theses implications, the well-known Gédel is obtained with T j; and given by:

lifb>a
IM(a’b)_{bisza ©)

As well, parametrical fuzzy implications are defined, e.g. the Hamacher’s ones,
defined by [16]:

Ty (a.b) 1 ifb>a )
H,\Q,0) = b(y+a—vya) :
b (v+a—va)+a—>b if b <a

3 The New Index

Let us consider, for pedagogical purpose, the following two strict partitions :

V1 Vo V3 V
U us us Uy 1 V2 V3 V4

010 1 A
1 h
Uh_(éé?é)g% and V=1 00 0 | V2.

h 001 0

Both share in common the information that elements x5 and x4 belong to the
same cluster, while x3 belongs to another one. Actually, the only difference
between U, and V}, is about x7, which is grouped with x2 and x4 in U, while
it is put aside in its own cluster in V}, because it probably differs in some subtle
ways of x2 and x4. The idea here is that V}, can be seen as a refinement of Uy, so
that V;! is included in U}, as pointed out by the contingency matrix crossing the
two partitions N (Up, V3,) = ((2) (1) (1)) by (). Indeed, the 1* row ny = (21 0) and

the 1% column *ny = (2 0) of N(Up, Vi) show that the only two elements of V;}
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also belong to U,}, leading thus to conclude that Vh1 cU ﬁ Moreover, let us have
30 200
a look at the matrices N (U, Up) = (0 1) and N(V,,V,) =1 010 | crossing
001
each partition with itself. Both logically present only one non-zero element on
each of their rows and columns, so that it can be directly connected with the
concept of sparsity. This is the main idea of our proposition : the closest the
partitions, the more sparse the rows and columns of their contingency matrix.
This idea is also valid when crossing two fuzzy partitions Uy and V. The inner
product between U} and Vj? induced by () will be high if and only if both clusters
are similar and are not too fuzzy, i.e. they have a certain amount n, < n of same
components close to 1, so that U} tV; tends to ng. Follows that considering the
whole set of clusters of Uy and Vy, the elements of IV will be large for crossed
fuzzy clusters having a lot of values in common, and will be small for frankly
different ones, so that the idea of sparsity as defined in section is preserved.
The same reasoning holds while N is computed with (), whatever the t-norm
T. The t-norm only slightly emphasizes or reduces the gaps between high and
low values, in the same manner as exhibited in [10].

Concretely, the new index is constructed as follows. Given a sparsity measure
S, it is easy to compute Rs = {S(n1), ...,S(n,)} and Cs = {S(*ny1),...,S(*nc)}
from the contigency matrix N crossing two partitions U and V. For each set, we
propose to combine the sparsities using a suitable aggregation function A, e.g.
the arithmetic means Rs and Cs, to get two representative values. Many families
of aggregation functions exist, see [17] for a recent monograph. In our proposi-
tion, we restrict to functions A taking values in [0, 1] while computed for Rs
and Cg, so that the resulting two representatives of the sparsities in row/column
of N can be inputs of a fuzzy residual implication to assess wether partitions U
and V are compatible or not. Therefore, we propose a new comparison index of
strict/fuzzy partitions as follows:

QF\s.4)(U. V) = min (z(Ams), A(Cs)), T(A(Cs). A(m))) .®

This index is in [0, 1] by construction, and it is required that Z satisfies the so-
called ordering propertyﬁ, so that QF(s, 4,7)(U,V) = 1 whenever U = V. Finally,
it is worthy on note that the asymptotic complexity of this new index is O(n),
as Anderson et al. and Campello’s ones, while the other considered indices are
in O(n?). To sum up, the proposed comparison index satisfies properties (I1),
(I2), (I3) and (I4), and has a triple of user-defined parameters (S, A, 7):
— a sparsity measure S : R x ... x R — [0, 1], e.g. the Hoyer H and the kurtosis
k4 ones given by (@) and (@),
— an aggregation function A : [0,1] x ... x [0,1] — [0, 1], e.g. the arithmetic
mean M(R) = car;(’R) ZSER )
— a fuzzy residual implication Z : [0, 1] — [0, 1], e.g. the Gddel Zp; and the
Hamacher Ty ones respectively given by (@) and ().

2 Va,b € [0,1], a < biff Z(a,b) = 1.
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4 Numerical Experiments

Some of the tested comparison indices require to choose a t-norm for their com-
putation, some others use the product. For sake of simplicity and fairness, we
choose T p whenever a t-norm is required.

Fig. 2. From top to bottom and from left to right : ground truth clustering U+ and
clusterings V, (k = 2, ...,12) obtained with the standard k — means algorithm

4.1 Strict Partitions

First, we compare strict partitions of a 2-dimensional synthetic dataset composed
of k* = 5 Gaussian clusters centered at (—1,6), (1,1), (—1,2), (5,4) and (3,5)
with the same standard deviation X = %I d, so that two pairs of them present a
slight overlap, see Fig. 2 (top-left). Remaining subfigures present the clusterings
Vi obtained with the standard k — means algorithm for & = 2,...,12. Each
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partition Vj is compared to the ground truth partition Ug+ using different strict
indices, resulting in the curves plotted in Fig. Bl (left). The tested indices are
the Rand Index RI, the Jaccard Index JI, the Transfert Distance T'D, and
the new sparsity based index QF(s 47) with different triples of parameters:
(kay M, Zpnr), (H,M,Zyr), (kay M, Zy,) and (H,M,Zg,). As expected, all the
indices exhibit their maximum value when k = k* = 5, but they do not have the
same dynamics. In particular, the Rand index presents the smallest dynamics,
so that we will stop using it and prefer the Jaccard indices in the remaining
experiments. For QF(s 4,7, this property clearly depends on S. The difference
of sparsity between the contingency matrices crossing U with each Vj is less
marked with H because the Hoyer’s sparsity measure presents more granularity
than the kurtosis k4 in its measurement of the sparsity, as previously exhibited
in Fig. [ Another interesting point is that the proposed index better exhibit
compatibility of partitions with respect to cluster refinements. Indeed, one can
see that QF(s 4 1) considers that Vj is closer to Uy« more than the other indices
do. We think it represents a slight improvement since Vj differs with Uy« about
only one cluster, so that the clusters should be considered as being quite close,
see cluster refinements in Fig. 2l Moreover, this behaviour is clearly reinforced
with the Hamacher fuzzy implication Z,, as shown for instance for V5 and V7.
This is because Zp, > Tp by construction. However, since QF(s ar,z,,) and
QFs, M.Zn.) mostly give analogous results for both sparsities measures H and
k4, the influence of the chosen fuzzy residual implication is no more studied.

1 T——
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0.3 7QF<1€/1-,]\'1-,I;M) 0.3*7§%D —
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0.1 QF(k4=]"[=I“5) 0.1 JIQF
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Fig. 3. Comparison of the ground truth strict partition Ugx to the 11 strict partitions
Vi shown in Fig. [ (left). Comparison of the ground truth strict partition Wi« to the
10 fuzzy 3-partitions V,, with increasing overlap (right).

4.2 Strict vs. Fuzzy Partitions

Inspired by the work in [18], this second experiment aims at comparing a strict
reference partition to a collection of fuzzy ones. Ten 3-dimensional datasets com-
posed of k* = 3 isotropic Gaussian clusters centered at (1,0,0), (0,0,0) and
(—1,0,0) are generated for increasing standard deviations o = {} }x=10,9,...,1, SO
that they evolve from no overlap to a strong one. The Fuzzy C-Means (FCM)
algorithm is run for each dataset to produce 10 fuzzy 3-partitions V,, with a
fuzzifier exponent and a termination parameter respectively set to 2 and 1073,
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Fig. B (right) shows the resulting curves of comparison of those 10 partitions to
the strict ground truth partition Wy« for different indices. As expected, all in-
dices achieve their maximum value for the smaller o and decrease as ¢ increases.
However, four of them present a higher dynamics so that their value for the most
overlapping dataset is significantly lower: our fuzzy QF(y i 7,,), the Anderson
et al. J14, the strict] JI, and the Quéré and Frélicot’s JIgr. Hoyer’s H spar-
sity measure gives a better result than x4 because increasing ¢ can be seen as
increasing a kind of amount of noise within the data, and Hoyer’s measure is
known to overperform k4 in such cases, see [15].

4.3 Fuzzy Partitions : Real Datasets

The last experiment is driven for several datasets from the UCI Machine Learn-
ing Repository [19], presenting various characteristics in terms of: number n of
observations, number p of attributes, true number ¢* of classes/clusters and de-
gree of overlap between clusters. Since it has lead to convergent outcomes, we
only give the results obtained on the following three well-known ones:

— Fisher iris (n = 150,p = 4, ¢* = 3, slight overlap between two classes),
— Pima diabetes (n = 768, p = 8, ¢* = 2, strong overlap between both classes),
— Italian wine (n = 178,p = 13, ¢* = 3, (slight overlap between 3 classes).

For each dataset, the FCM algorithm is run under the same parametrization as
in the previous experiment to produce a reference fuzzy c*-partition U.« and a
collection of 14 fuzzy c-partitions U, ¢ varying from 2 to 15. Each partition U,
is compared to U~ using the same indices than in the previous experiment. The
resulting curves are plotted in Fig. M as a function of c¢. Unsurprisingly, each
index reaches its maximum value at ¢ = ¢* for each dataset and drops from its
maximum toward an asymptotic value, with different dynamics. According to
this criterion, our QF(., a,z,,) outperforms the others (since even if HR and
FT D exhibit higher values, they also present a poor dynamics). The performance
of QF (i, m,1,,) is not as good as in the previous experiment. The reason is that
the number of clusters was not changing while it increases here, so that the
partitions V. frankly differ from one to another and lead QF(., arr,z,,) to be
more discriminant thanks to the drastic behaviour of x4, see Figlll

1 1 1
09 09 osf /)
\ /
osf / \ o8 o8/ /
07 \\ 07 07/ . \
o8, \ 06\\ \ o6/ \\\/ ]
osp s ost O\ 05} - BT
N\ e \ PN B
04 —Q\F" . — ST o4 7Q\~ — 0.4 7(2\1; T~
NI NAAM\ Ok, M, Tar) ~__
03t ---QF (1 AN 1y) — 030 - -QF (g ) ™o oo 03 -—-QF (H Ay —
s FTD — T FTDT ol —FTD
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o1t —J1a o1 —J1a T oaf—J1a
TIor TIor TIor

12 14 2 4 12 14
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Fig. 4. Indices values obtained for the Iris, Pima and Wine datasets (from left to right)

3 For the strict Jaccard Index JI, hardened partitions obtained from fuzzy partitions
V, are considered.
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Conclusion

In this article, we propose a new index for comparing strict and fuzzy partitions,
lying on the original idea of measuring the sparsity of the contingency matrix
crossing two partitions. Its construction, involving sparsity measures and fuzzy
residual implications, is simple but efficient, so that as shown by numerous ex-
perimental results, this index outperforms the existing ones, in particular with
respect to the dynamics property. Moreover, by its low computational complex-
ity, the proposed index could become a privilegied tool for many practitioners.
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