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Abstract. While relational representations have been popular in early work on
syntactic and structural pattern recognition, they are rarely used in contempo-
rary approaches to computer vision due to their pure symbolic nature. The recent
progress and successes in combining statistical learning principles with relational
representations motivates us to reinvestigate the use of such representations. More
specifically, we show that statistical relational learning can be successfully used
for hierarchical image understanding. We employ kLog, a new logical and rela-
tional language for learning with kernels to detect objects at different levels in the
hierarchy. The key advantage of kLog is that both appearance features and rich,
contextual dependencies between parts in a scene can be integrated in a princi-
pled and interpretable way to obtain a qualitative representation of the problem.
At each layer, qualitative spatial structures of parts in images are detected, classi-
fied and then employed one layer up the hierarchy to obtain higher-level semantic
structures. We apply a four-layer hierarchy to street view images and successfully
detect corners, windows, doors, and individual houses.

1 Introduction

Understanding images by recognizing its constituent objects is a challenging task and
it could be solved, in principle, using computer vision techniques that employ low- to
medium-level features, such as geometric primitives, patches, or invariant features [1].
Although helpful for the recognition process, these features do not suffice for higher-
level tasks dealing with more complex patterns. In this case, it is more intuitive to de-
scribe visual scenes in terms of structural hierarchical (or graph-like) representations
that build on visual image parts. They reflect the natural composition of scenes into
objects and parts of objects. In particular, man-made (vs. natural) scenes exhibit con-
siderable structure that can be captured using qualitative spatial relations. For example,
a typical house consists of aligned elements such as: a roof, some windows, one or more
doors and possibly a chimney. A hierarchical aspect is that a window itself is composed
of rectangular-like corner configurations with a certain appearance.

This view on hierarchical image representation was embraced by early ideas that
hierarchical structure and relations are key components of an image understanding sys-
tem [2]. A key advantage of using relational representations [3] is their capability of
exploiting contextual knowledge in images via symbolic relations. In addition, they ab-
stract spatial information away from exact locations making it independent of metric de-
tails. Although popular in early work on syntactic or structural pattern recognition [4],
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relational approaches have been rarely used to solve computer vision problems (ex-
cept [5, 6]). One reason is that low-and mid-level vision features were not always as
mature as today to support such ambitious representations. Another reason is the lim-
itation of pure relational approaches in handling noisy data. Yet, when combined with
statistical techniques, they show robustness to noise [3, 7]. Motivated by our previous
results on using distances between logical interpretations to hierarchically detect struc-
tures in images [5], we solve the same problem using kLog, a general purpose relational
language for kernel-based learning. The resulting approach is more principled, as it is
grounded in a statistical learning framework, is computationally more tractable and pro-
vides improved results. Our earlier approach relied on more expensive logical matching
and generalization operations and was more tailored towards this particular application.

kLog [8] is a new statistical relational learning framework, which builds on ideas
from statistics to address uncertainty, while incorporating a relational representation of
the domain. Images are described in terms of automatically extracted semantic parts
and relationships between them, thus as relational databases or (hyper)-graphs. Domain
knowledge can easily be incorporated using logical rules. The novelty of kLog is that,
starting from existing visual features, it can take relational contextual features into ac-
count in a principled and natural way. Furthermore, its declarative approach offers a
flexible and interpretable way to consider both appearance and spatial information in
an image. Finally, kLog transforms the relational databases into graph-based represen-
tations and uses graph kernels to extract the feature space. Thus, our contribution is a
new approach to hierarchical image understanding, in which spatial configurations of
scenes are combined with kernel-based learning for structured data to recognize objects
throughout all layers of a hierarchy, in a unified way.

The goal of this paper is to understand images by recognizing objects at different
layers of a hierarchy. The base layer relies on local interest points and their descriptors.
A subsequent layer consists of objects, while higher layers consist of configurations
of objects. We focus on the recognition of structures in street view images, yet, our
approach can be used for other domains as well. We learn to recognize objects from a
set of manually labeled examples of object categories, i.e., houses, windows and doors.
Each house is annotated with the locations and shapes of its constituent windows and
doors. The approach is evaluated on a dataset of 60 street view images.

2 Related Work

Thus far, most work in computer vision has focused on fixed compositional structures [9]
or constellation models [10]. Recently, more attention was devoted to using high-level
relational representations for image understanding or object recognition [11–13]. Yet,
most of this work is restricted to a model-based approach and perform interpretation
through image grammars. These have been well-studied [14], but need considerably
more input from the user in terms of a set of grammar rules. This in contrast to our
approach, which is based on learning from annotated examples and which uses domain
knowledge to specify only basic qualitative spatial relations between image parts.

Several papers have addressed the problem of understanding images of house fa-
cades. In [15], structure models of meaningful facade concepts are learned from ex-
amples, while in [16], the authors tackle the house delineation problem by generating
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x = {part(p1, botL, door),part(p2, topL, door),
part(p5, botL,win), part(p6, botR,win),
part(p7, topR,win), cUp(p2, p1, d3, edge),
cRight(p3, p1, d2, edge),cRight(p6, p5, d3, edge),
cRight(p4, p2, d5, noedge), . . . ,
cand(o1, thin, size3, h1), cand(o5, thin, size2, h1),
cand(o3, squared, size2, h2), . . . , partOf(p5, o2),
partOf(p6, o2), partOf(p2, o1), . . .
inside(o7, o2), touch(o6, o2), . . . }.
y = {class(o1, door), class(o5, window),
class(o3, none), . . . }.

Fig. 1. A hierarchical description of a house image. Parts are squares (purple, yellow, red); rela-
tions are diamonds (green/blue – spatial/functional constraints, grey –memberships); properties
are circles (pink). Parts not belonging to a class of interest are empty squares. A visual interpre-
tation i = (x, y) is on the right; x specifies the input features, while y is the learning target.

vertical separating lines on the facade and using a dissimilarity measure between these
features. Finally, the works in [17, 18] assume having the structure or grammar of a
building facade and estimate the parameters of the model. Closely related are graph
matching and other kernel-based techniques for image understanding [19]. Different
from these, our work combines the best of both worlds by using a kernel-based ap-
proach to learn from logical interpretations. The paper extends our recent results in [20]
with more complex relationships and, thus, a richer feature space.

3 Hierarchical Image Understanding

In our hierarchical framework an image is described at several layers (0), . . . , (k) in
a hierarchy, with 0 the base layer and k the top layer. Figure 1 shows the hierarchical
structure of a partial house facade. At each layer, the image consists of a set of parts,
their properties and (spatial) relationships among them. The task then is to use this
information at layer i to generate and classify candidate parts at the next higher layer
i + 1 in the hierarchy. Thus, at each layer, parts belonging to classes of interest are
detected and employed at the next layer to detect higher-level concepts. As training
data, annotated images are available at all layers.

In the house facade problem, the base layer consists of the image itself, with the
pixels as parts. In the primitive layer the parts are local patterns, e.g., a corner or an
edge. The object layer is built from spatial configurations of such local patterns, form-
ing higher-level parts that are doors and windows. These are then used at the next layer,
i.e., the house layer, to find even higher-level parts representing houses. Each layer
consists of parts and classes they belong to, and it is formed by making use of spatial
configurations of parts from the previous lower-level layer. The hierarchical framework
propagates the detected parts using a pipeline through each layer.
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4 Object Detection at One Layer

Next, we describe how an image is relationally represented at one layer in the hierarchy
and how our object detection problem is formalized and modeled with kLog. It is a
domain specific language embedded in Prolog which allows to specify, in a declarative
way, logical and relational learning problems. Figure 2 illustrates the information flow
in kLog. We use the object layer as running example. Here, image parts are extracted
from raw images via the primitive layer and using low-to medium-level features detec-
tors, as described below. At the house layer the relational representation is built in a
similar way using as parts the detections from the object layer.

Raw data 
(image)

Ground atoms 
(image "parts") Graph Feature 

vector
Ground 
atoms

Image preprocessing 
(object layer: kAS, edges) Extensionalization Graphicalization Feature 

generation

kLog
Declarative 
knowledge 

Graph kernel 
(NSPDK)

Statistical
learner

Fig. 2. From images to feature vectors in kLog

4.1 From Images to Primitive Parts

The primitive layer takes as input image pixels and groups them in corner-like fea-
tures representing image parts at the object layer together with their properties. We em-
ploy the KAS detector [21] to detect corners formed by chains of 2 connected, roughly
straight contour segments. Because we can get many detections we only keep square-
like corners with an angle of ≈ 90◦. Also, we train a binary classifier to discard ir-
relevant corners found on other structures than buildings (e.g., car), using the HOG
descriptor [22] on the corners. We use the training annotations of windows and doors.

Each corner-like part can be one of the types in the set {topR, topL, botR, botL}
representing top-right, top-left, bottom-right and bottom-left corners, respectively. The
corner type is given by the orientation of the segments composing the 2AS. We use the
HOG descriptor1 to characterize the appearance of each corner. Yet, instead of the raw
descriptor we train another classifier to map each HOG to a discrete attribute, either a
window or a door label. A final characteristic of a part is its estimated bounding box.

4.2 Data and Problem Modeling

We represent this information at a higher level using the classic entity/relationship (E/R)
data model, a paradigm frequently used in database theory [23]. The E/R model for our
problem, with some further assumptions required by kLog, is shown in Figure 3(a). It
provides an abstract representation of the examples, i.e. class of interest candidate in-
stance in this case. The elements of an E/R model are entity sets (in Figure 3(a) depicted

1 A variation of the HOG descriptor with 16 orientation bins, window size of 128x128 pixels
and a block size of 8x8 cells showed improved results.



A Relational Kernel-Based Framework for Hierarchical Image Understanding 175

as rectangles), relationships linking entity sets (depicted as diamonds) and attributes
that describe objects and relationships (depicted as ovals). In kLog, the database scheme
is directly derived from the E/R model, and contains two kinds of relations: those intro-
ducing entity sets (E-relations) and those introducing relationships (R-relations). As in
database theory, they correspond to tuples (or facts) in the database.

In our problem, E-relations are parts of the image and candidate objects of interest.
Each entity has properties and a unique identifier (underlined ovals). They can be visu-
alized as relational facts, in Figure 1 (right). The tuple part(p1, botL, door) specifies
a part entity, where p1 is the identifier and the other arguments are properties extracted
by the previous layer in the hierarchy. As already indicated, they are the corner type
and category. The tuple cand(o1, thin, size3) represents a possible object of interest.
It has identifier o1 and properties describing its discretized aspect ratio and size. These
are estimated from the extracted bounding box of the candidate. R-relations are linked
to the entities that participate in the relationships. In our problem, we have spatial rela-
tionships amongst parts and, respectively, amongst candidates, as well as membership
relations between parts and candidates. Spatial R-relations are derived from the spa-
tial localization of the entities, i.e., bounding boxes, and extension. An example is the
relationship cRight(p3, p1, d2, edge), which indicates that part entities p3 and p1 are
spatially close to each other and aligned on the X axis with p3 to the right of p1. It
has as properties the discretized Euclidian distance between the bounding boxes and a
property indicating if the two part entities are linked by a detected contour segment.

A key advantage of kLog is that it supports extensional as well as intensional rela-
tions. Extensional relations are explicitly listed sets of given relations, whereas inten-
sional relations are defined implicitly using logical rules. In other words, intensional
relations are derived from other intensional or extensional relations given a set of rules
and they represent domain-related feature construction.

Declarative Feature Construction. Intensional relations are cUp/4, cRight/4,
inside/2 and touch/2, derived using notions of spatial theory, cand/4 and
partOf/2. As an example, the spatial relation cRight/4 is defined as a logical rule
in the following way:

cRight(A,B,D,Edge)← part(A, , ), part(B, , ), edge(Edge,A),
edge(Edge,A), right(A,B), close(A,B,D).
where close(A,B,D)← bb(A,BB1), bb(B,BB2), dist(BB1, BB2, D), D < th.
and right(A,B) is similarly defined based the bounding boxes BBi of the part en-
tities. In words, A is to the right of B if the min and max X coordinates of BB1 are
smaller than the minimum and the maximum X coordinates of BB2, respectively, and
if A is not too much above or below (in a fuzzy way) of B. The R-relation cUp/2 is
defined in a similar way. The atom edge(Edge,A) is true if the entity A belongs to a
contour segment Edge.

The intensional E-relation cand/4 defines possible objects of a class of interest at
one layer, i.e., doors/windows at the object layer. It is defined using the rule:

cand(Id,Ar,A,H)← sprl(A,B), sprl(B,C), edge(Eab, A), edge(Eab, B, ),
edge(Ebc, B), edge(Ebc, C), getid([A,B,C], Id), getprop([A,B,C], Ar,A,H).
where sprl/2 brings the pairs of parts that satisfy any of the spatial relations {cRight,
cUp, cDown, cLeft}; getid/2 associates a unique identifier to the newly generated
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(a) (b)

Fig. 3. a) E/R modeling of the object detection problem. Rectangles denote entity vertices, dia-
monds denote relationships, and circles denote properties. b) Part of the graphicalized interpreta-
tion of the image.

candidate (based on the combination of parts) and getprop calculates the discretized
properties of the candidate relation, i.e., aspect ratio, area and height, based on the
bounding box of the candidate, given the set of parts. Each candidate relation groups
the three parts that satisfy a square-like spatial constraint. The membership relation
partOf/2 indicates that a part belongs to a candidate.

Other intensional relations are touch/2, indicating if two candidate entities are
spatially touching and inside/2, which holds if one candidate is spatially inside the
other. The grounding of intensional relations is computed using Prolog’s deduction
mechanism and represents the extensionalization step in kLog’s information flow. In
the setting established above, each image is an instance of a relational database or an in-
terpretation. An interpretation of an image at the object layer is exemplified in Figure 1.

Problem Definition. kLog learns from interpretations, a well-established setting in
relational learning [3]. We are given a training set of n independent interpretations
D = {(x1, y1), (x2, y2), . . . , (xn, yn)} sampled identically from some unknown but
fixed distribution; xi is a set of input ground atoms and yi a set of output target ground
atoms. In our problem and in Figure 1 the target is the unary relation category/1. The
goal is to learn a mapping h : X → Y , from the inputs X to the outputs Y . During
prediction, we are given a partial interpretation of an image consisting of ground atoms
x, and are required to complete the interpretation using h to predict the output atoms y.

4.3 Graphicalization and Feature Generation

Next, each interpretation x is converted into a bipartite graph G that has a vertex for
each ground relation. Vertices correspond to grounded atoms, either E-relations or R-
relations, but identifiers are removed. Edges connect E-relations and R-relations: there
is an undirected edge {e, r} if the entity identifier in e appears as an argument in r (see
Figure 3(b)). Thus, edges connect vertices that share identifiers in the tuples. Role infor-
mation (i.e., the position of an entity in a relationship) is retained as an edge annotation.
The graph can be seen as the result of unrolling (or grounding) the E/R diagram for a
particular image. There is no loss of information associated with this step.

Once interpretations are represented as graphs, any graph kernel in conjunction with
a statistical learner can be used to solve the classification problem in the supervised
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setting. The kLog implementation uses a variant of the fast neighborhood subgraph
pairwise distance kernel (NSPDK) [24]. It has two advantages: i) it allows fast compu-
tations with respect to the graph size, as the graphicalization step can yield large graphs;
ii) it is a general purpose kernel with a flexible bias, allowing us to integrate multiple
heterogeneous features and context knowledge through the way it is defined.

NSPDK belongs to the large family of decomposition kernels [25] that count the
number of common parts between two objects. Parts in this case are pairs of subgraphs
defined as follows. Given a graph G = (V,E) and a radius r ∈ N, we denote by
Nv

r (G) the subgraph of G rooted in v and induced by the set of vertices V v
r

.
= {x ∈

V : d�(x, v) ≤ r}, where d�(x, v) is the shortest-path distance between x and v. For
a given distance d ∈ N, the neighborhood-pair relation is then defined as Rr,d =
{(Nv

r (G), Nu
r (G), G) : d�(u, v) = d}. The kernel between two graphs is then the

decomposition kernel defined by relations Rr,d for r = 0, . . . , R and d = 0, . . . , D:,

K(G,G′) =
R∑

r=0

D∑

d=0

∑

A,B : Rr,d(A,B,G)
A′, B′ : Rr,d(A

′, B′, G′)

κ((A,B), (A′, B′)). (1)

Several choices are possible for κ. In our experiments we used an exact matching kernel
where κ((A,B), (A′, B′)) = 1 iff (A,B) and (A′, B′) are pairs of isomorphic graphs,
but also a soft matching kernel (see [8] for details). The maximum radius R and the
maximum distance D are kernel hyperparameters. kLog provides a flexible architecture
in which only the specification language is fixed. The actual features are determined by
the choice of the graph kernel but also by the definition of intensional relations.

5 Summary of Experiments

We experimented on a dataset containing 60 street view images of rows of houses [5].
They commonly display a rich structure (and variety), yet, same row houses are quite
consistent in terms of structure. All images show near-frontal views of the houses and
no further rectification was performed. On these images, windows, doors and houses
were manually annotated. We used three layers in the hierarchy: primitive, object
and house layers. We experimented with kLog at the object and house layers, since
these provide the most structure. The primitive layer serves as a preprocessing step.
We measure performance in terms of precision P, recall R and F1 score and use the
PASCAL VOC criterion2 to compare the positive predicted candidate’s bounding box
to the ground-truth. If the overlap is larger than 50%, it is a true positive, otherwise a
false positive.

Primitive Layer. To asses the accuracy of the parts categories the object layer
builds on, we also report results at the primitive layer. For the first classification step
establishing whether a corner is relevant or not we obtain F1 = 0.85. For the second
classification steps distinguishing between window and door corners, F1 = 0.64.

2 Available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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Method R P F1

RD hierarchy [5] 0.61 0.65 0.63
Boosting60 0.54 0.49 0.51
Boosting120 0.57 0.48 0.52
kLog 0.74 0.64 0.68

Method R P F1

RD window 0.61 0.35 0.44
RD door 0.42 0.47 0.44
kLog window 0.60 0.55 0.57
kLog door 0.51 0.42 0.50

Fig. 4. kLog performance compared to baselines; classes house (left), door and window (right).
For the feature boosting detector we use a different number of weak classifiers (Boosting60/120).

Object Layer. The experiments at the object layer are performed starting from sparse,
previously detected, 2AS at the primitive layer that belong to windows or doors. We
used the following features: part entity relation part, spatial relationships between
parts cRight, cUp, candidate entity relation cand, membership relationship partOf

and other spatial/functional relationships between candidate entities (such as inside
and touch). At this layer, similarly, we solve the problem in two steps. First, we
establish whether a candidate is relevant or not and then we distinguish between
windows and doors. We vary the parameters of the kernel r and d to assess the impact
of contextual features on the performance of detecting windows and doors. We obtain
the best result, F1 = 0.57 for class window and F1 = 0.50 for class door, when
r = 2, d = 4.

House Layer. Candidates classified as window or door become parts at the house
layer. We used a variation of the same relations (e.g., the absence of property edge).
Again, we vary the parameters r and d to assess the impact of contextual features on
the performance of detecting houses and obtain P = 0.64, R = 0.74, F1 = 0.68.

Many alternative statistical learners can be used on the feature vectors created by
kLog. In our experiments, we used a standard implementation of support vector ma-
chines [26], which was integrated via a wrapper in kLog, together with a linear kernel.
We performed 5-fold cross-validation on the dataset with fixed folds. The cost c of the
SVM was chosen via internal 5-fold cross-validation on the training set, for each split.

Comparison to Baselines. Our aim is not to compete with strong detectors using
dense features, but to evaluate how structure and contextual knowledge can be flexibly
exploited in our problem. We show that even if we start from sparse cues, the detection
problem is solvable with good results thanks to the use of relational representations
and kLog’s flexible language and kernel. One baseline is the feature boosting approach
with template matching [27]. We train an ensemble of weak detectors for the class
house. Individual houses can be more effectively detected using a template matching
approach than a texture-based one, since houses in the same row have the same tex-
ture and street scenes greatly vary in texture across the dataset. A second baseline is
our relational distance-based approach (RD) [5]. It uses the same sparse features and
data splits. Figure 4 shows results for comparison. The baselines perform well for our
detection problem, however, by incorporating more structural context, kLog improves
results. Also, in [5] we employed an extra candidate selection step, which resulted in
higher precision. This step is not performed in the experiments with kLog.
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6 Conclusions

We presented a new statistical relational learning approach to hierarchically understand
images of houses. To this end, we employ kLog, a framework for logical and relational
learning with kernels. The declarative, relational representation used by kLog allows
a flexible exploitation of the structural and contextual knowledge in visual scenes. We
show that even if we start from sparse cues, our problem is solvable with good results
thanks to the use of relational representations and kLog’s flexible language and kernel.
This work explores a new relational scheme for solving computer vision problems. This
result can be improved using a collective classification setting, in which target predic-
tions are also considered during training and testing. Additionally, hierarchical features
could be used as top-down feedback. For example, a detected house can constraint the
number of doors composing the house, and thus, improve door detection results.

Acknowledgements. Laura Antanas is supported by the grant agreement First-MM-
248258.
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