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Abstract. Linear or Gaussian scale space is a well known multi-scale represen-
tation for continuous signals. However, implementational issues arise, caused by
discretization and quantization errors. In order to develop more robust scale space
based algorithms, the discrete nature of computer processed signals has to be
taken into account. Aiming at a computationally practicable implementation of
the discrete scale space framework we used suitable neighborhoods, boundary
conditions and sampling methods. In analogy to prevalent approaches, a dis-
cretized diffusion equation is derived from the continuous scale space axioms
adapted to discrete two-dimensional images or signals, including requirements
imposed by the chosen neighborhood and boundary condition. The resulting dis-
crete scale space respects important topological invariants such as the Euler num-
ber, a key criterion for the successful implementation of algorithms operating on
its deep structure. In this paper, relevant and promising properties of the discrete
diffusion equation and the eigenvalue decomposition of its Laplacian kernel are
discussed and a fast and robust sampling method is proposed. One of the proper-
ties leads to Laplacian eigenimages in scale space: Taking a reduced set of images
can be considered as a way of applying a discrete Gaussian scale space.

1 Introduction

In the field of computer vision, deriving information from observed images or signals
is a central problem. Various strategies have been invented to do so in a performant
manner, usually by applying some kind of operator. These operators often detect or rely
on the presence of image structure or features such as edges or stationary points and are
of fixed size. Their performance then depends on the inner scale, the sampling density
or resolution of the image they operate on.

To overcome this dependence between operator and inner scale, various strategies
such as integral images used by the Viola-Jones Framework [1] or a whole range of
multi-scale representations have been proposed [2]. Almost all those strategies consist
of transforming the given images into a scale independent representation first before
applying an operator on this representation. A common requirement for such prelim-
inary transformations is to mask as little information present in the original image as
possible, that is, not to rely on prior information not present in the image data itself and
therefore not unnecessarily limiting the range of tasks they can be applied to.

Various scale-invariant or multi-scale signal representations satisfying these require-
ments exist, such as the lowpass pyramid, wavelet and scale space representations, how-
ever there are qualitative differences. A pyramid representation consists of several fixed
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images or scales with preselected resolution, each computed by smoothing and sub-
sampling a finer scale with the first and finest scale being the initial image. A sliding
window approach is then used to evaluate a fixed-size operator at every position and on
every scale of the pyramid. Because of its fixed number and decreasing size of scales,
the pyramid representation can be efficiently computed and stored. The subsampling
operator however, primarily implemented for performance reasons, introduces often
undesired subsampling artifacts. It also complicates and sometimes prevents tracing of
image features over multiple scales. The Gaussian scale space is used to overcome these
drawbacks and can be thought of as the natural generalization of the lowpass pyramid.
It is also popular for its theoretical foundation. A Gaussian scale space representation
of a given signal is a family of derived signals, progressively smoothed with a Gaussian
filter.

The focus of this paper is on the linear or Gaussian scale space representation of
discrete images or signals and the various implementational issues that have to be ad-
dressed in order for this representation to be useful and applicable to real world data.

The discrete scale space proposed by Lindeberg [3] takes the discrete nature of com-
puter processed signals into account. It is based on equivalent assumptions and axioms
that have been used to derive the continuous Gaussian scale space adapted to discrete
signals. It is our belief that porting scale space algorithms from a discretized continu-
ous to the discrete scale space will eventually lead to more accurate, robust and possibly
faster implementations. The discrete scale space formalized by Lindeberg however does
not respect important topological invariants such as the Euler number [4]. Since most
algorithms that operate on the deep structure of the Gaussian scale space require this
topological invariant to hold [5, 6], we had to give a modified definition of the discrete
scale space respecting the Euler number [7]. In this paper we investigate and discuss
relevant and promising properties of the discrete diffusion equation and the eigenvalue
decomposition of its Laplacian kernel. We propose a fast and robust sampling method.
One of the properties leads to what we coined as Laplacian eigenimages in scale space,
where taking a reduced set of images can be considered as a way of applying a discrete
Gaussian scale space.

2 Continuous and Discrete Scale Space

Linear or Gaussian scale space was introduced in western literature by Witkin [8] and
extended into two dimensions by Koenderink [9] and has become a useful framework
for multi-scale signal representation. However, Gaussian scale space was first described
in Japan as of 1959 [10]. In 1962, Taizo Iijima proposed convolution with the Gaussian
kernel as the canonical way to construct the Gaussian scale space [11]. Other, more
general scale spaces exist besides the Gaussian scale space. Hereafter, scale space will
refer to the two-dimensional linear Gaussian scale space.

2.1 Continuous Scale Space

The scale space representation of a continuous two-dimensional signal f : R2 → R is
a one-parameter family of derived signals L : R2 ×R+ defined by one of the following
equivalent definitions.
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Convolution with a Scale Space Kernel: L (·, ·; t) = g (·, ·; t) ∗ f (·, ·) where

g (x, y; t) = 1
4πte

−x2+y2

4t . Commonly, the factor 4t is taken instead of 2σ2. The
Gaussian g is also called the canonical scale space kernel.

Scale Space Axioms: A common definition of the scale space is by a limited set of
scale space axioms derived from real world requirements. Koenderink [9] formulated
the axioms of causality, homogeneity and isotropy. Another equivalent set of axioms
states that L (·, ·, t) = Ltf (·, ·) where Lt is a linear shift invariant operator and
thus representable as a convolution. Together with non-enhancement of local extrema
stating that ∂tL < 0 for maxima and ∂tL > 0 for minima and some other additional
requirements, these axioms all lead to the Gaussian kernel as a unique choice as the
scale space kernel. An overview of a wide range of continuous Gaussian scale-space
axiomatics used by different authors can be found in [10].

Diffusion Equation: The scale space representation L of a signal f is the solution of
the diffusion equation

∂tL = ΔL = ∂xxL+ ∂yyL

with L (·; 0) = f (·) as initial condition. Δ denotes the Laplacian operator.

2.2 Discrete Scale Space

In this section, we will give a concise definition of the Gaussian scale space for
two-dimensional discrete signals comprising a continuous scale parameter. The scale
space representation of a discrete signal f : Z

2 → R is a one-parameter family of
derived signals L : Z2 × R

+ defined by one of the following equivalent definitions:

Convolution with a Scale Space Kernel: L (·, ·; t) = k (·, ·; t) ∗ f (·, ·) where k :
Z
2 × R+ → R is the discrete version of the Gaussian scale space kernel.

L (x, y; t) =

∞∑

m=−∞
k (m; t)

∞∑

n=−∞
k(n; t)f(x−m, y − n)

Scale Space Axioms: For a complete set of axioms describing the discrete scale space,
we refer to those chosen by Lindeberg [3].

Diffusion Equation: The scale space representation L of a signal f is the solution of
the diffusion equation

∂tL = α∇5
2L+ β∇2

×L (1)

with L (·, ·; 0) = f (·, ·) as initial condition and some α, β ≥ 0. The five-point operator
∇5

2 and the cross operator ∇2
× approximate the continuous Laplacian operator. They

correspond to convolution of L (·, ·; t) with kernel

⎡

⎣
1

1 −4 1
1

⎤

⎦ respectively

⎡

⎣
1
2 0 1

2
0 −2 0
1
2 0 1

2

⎤

⎦

for fixed scale t. For α = 1 and β = 0 (1) simplifies to ∂tL = ∇5
2L and results in k

being separable.
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3 Eigenbasis Decomposition of the Laplacian

The discrete scale space representation L of signal f holds various useful properties.
Sampling of the scale space for example requires the ability to efficiently compute a
scale L(·, ·; t0) for fixed t0 and relies on certain characteristics of the Laplacian operator.

The discrete scale space representation L of f is continuous in scale t. A compu-
tational investigation of L however must rely on a finite number of sampled scales.
There are multiple approaches to sampling L differing in accuracy, runtime complexity
and memory usage. One apparent approach is given by the definition of L via discrete
convolution with a scale space kernel. The scale space kernel is of infinite domain and
must be truncated in order to compute an individual scale, thus introducing truncation
errors. A periodic boundary condition for f further complicates the computation. In this
case, circular convolution with a Laplacian kernel provides for a more elegant but still
computationally complex solution. Applied in its eigenspace however, the circular con-
volution operator reduces to a simple and much less complex scaling transformation.
This section details how to efficiently decompose a scale of L and its derivative ∂tL into
a sum of eigenimages of the Laplacian circular convolution operator. The next section
then provides a simple solution of the discretized diffusion equation, enabling for fast
and accurate sampling of L.

For periodic discrete signals f with discrete domain D (f) = [1,M ] × [1, N ], the
diffusion equation ∂tL = ∇2

5L can be written as a circular convolution with finite
Laplacian kernel

∂tL = ∇2
5L =

⎡

⎣
1

1 −4 1
1

⎤

⎦� L,

where � denotes the circular convolution operator.
The discrete circular convolution is a linear operator and can be expressed in matrix

form if we consider L (·, ·; t) to designate a vector. Scale L (·, ·; t) of the scale space
representation L can be represented as a vector L (t) ∈ R

MN with f= L (0).

L (t) =

⎡

⎢⎢⎢⎣

L (1, 1; t)
L (1, 2; t)

...
L(M,N ; t)

⎤

⎥⎥⎥⎦ ∈ R
MN

For periodic f , the diffusion equation can be written in matrix form as ∂tL = ∇2
5L =

ΔM,NL where ΔM,N ∈ R
MN×MN denotes a circulant block matrix corresponding to

the Laplacian operator ∇2
5. For M,N ≥ 3 it takes the form

ΔM,N =

⎡

⎢⎢⎢⎢⎣

AN IN IN

IN
. . .

. . .
. . .

. . . IN
IN IN AN

⎤

⎥⎥⎥⎥⎦
∈ R

MN×MN ,AN =

⎡

⎢⎢⎢⎢⎣

−4 1 1

1
. . .

. . .
. . .

. . . 1
1 1 −4

⎤

⎥⎥⎥⎥⎦
∈ R

N×N ,
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where IN is the identity of R
N×N . Let the normalized eigenvectors and eigenval-

ues of ΔMN be ui,j and λi,j . Since ΔMN is a real, symmetric and therefore diag-
onalizable matrix, its M · N orthonormal eigenvectors ui,j form an eigenbasis U =[
u1,1, u2,1, · · · ,uM,N

]
and ΔMN = UΛUT with Λ = diag(λ1,1, λ2,1, · · · , λM,N )

and λi,j ≤ 0 since ΔMN is a negative-semidefinite matrix.
The scale L (t) of the scale space representation L can be written as a weighted sum

of eigenimages of the Laplacian operator, i.e. as a scalar product of the orthonormal
eigenvectors ui,j of ΔM,N and the scalar coefficients ci,j (t) = 〈L (t) ,ui,j〉 resulting
from the projection of L (t) to ui,j :

L (t) =
∑

i,j

ci,j (t)ui,j

Its partial derivative ∂tL (t) can then be computed from scaling each projected compo-
nent separately by the corresponding eigenvalue.

∂tL (t) = UΛUTL (t) =
∑

i,j

ci,j (t)λi,jui,j .

Fig. 1. Eigenimages and eigenvalues of the Laplacian ΔMN ∈ R
6×6 and ΔMN ∈ R

10×10

4 Efficient Computation of the Eigenimages

The size and values of the Laplacian matrix ΔM,N depend uniquely on the dimension
of f equal to the cardinality of D (f). They are easily computed following the speci-
fication given in the previous section. Unfortunately, even for images of moderate size
of e.g. 128× 128 pixel, f would have 27·2 dimensions, resulting in a Laplacian matrix
of 228 entries taking up to 2GB memory. Even under consideration of less computa-
tionally and memory intensive sparse matrix formats, such matrices are too large to be
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handled efficiently. Therefore, in order to reduce the overall complexity of e.g. comput-
ing the eigenbasis U, we have to exploit the symmetric structure of the Laplacian. The
Laplacian kernel is of rank > 1, thus not separable. However, using the distributivity
of the circular convolution, it can be rewritten as a summation of two one dimensional
kernels.

∂tL =

⎡

⎣
1

1 −4 1
1

⎤

⎦� L =

⎡

⎣
1
−2
1

⎤

⎦� L+
[
1 −2 1

]
� L

In matrix form, this translates to a direct summation of two substantially smaller matri-
ces. The Laplacian matrix ΔM,N ∈ R

MN×MN can be written as the direct sum of two
∇2

3 operators ΔM ∈ R
M×M and ΔN ∈ R

N×N

ΔM,N = ΔM ⊕ΔN = (ΔM ⊗ IN ) + (IM ⊗ΔN )

whereΔM and ΔN are the matrix representations of the row wise applied central dif-
ference operator of second order. They differ only in their dimensions. ⊗ denotes the
Kronecker product. For M ≥ 3, ΔM has the form of a Toeplitz matrix.

ΔM =

⎡

⎢⎢⎢⎣

−2 1 1
1 −2 1

. . .
. . .

. . .
1 1 −2

⎤

⎥⎥⎥⎦ ∈ R
M×M

Each eigenvector ui,j of ΔM,N can be expressed as the outer product of two eigenvec-
tors vi and wj of ΔM and ΔN . The corresponding eigenvalue λi,j is then the sum of
the corresponding eigenvalues υi and ωj of ΔM and ΔN .

ΔM,Nui,j = λi,jui,j

⇔ (ΔM ⊕ΔN ) (vi ⊗wj) = (υi + ωj) (vi ⊗wj)

Omitting all details that can be found in [12], we finally have an analytic formula ex-
pressing the eigenvalues λi,j and eigenvectors ui,j of the Laplacian matrix ΔM,N with
i = 0 . . .M − 1, j = 0 . . .N − 1.

λi,j = υi + ωj =

(
λF
M,i

)2
(
λF
M,i + 1

) +

(
λF
N,j

)2
(
λF
N,j + 1

) =

(
e(

2πι
M i) − 1

)2

e(
2πι
M i)

+

(
e(

2πι
N j) − 1

)2

e(
2πι
N j)

ui,j = vi ⊗ wj = dFM,i ⊗ dFN,j = dFM,i =[
exp

(
2πι

M
i

)0

, . . . , exp

(
2πι

M
i

)M−1
]
⊗
[
exp

(
2πι

N
j

)0

, . . . , exp

(
2πι

N
j

)N−1
]

These eigenvectors are not guaranteed to be real, although ΔM,N always possesses a
real eigenbase. Exploiting further symmetries of the eigenvectors vi and wj , we can
derive a real eigenbase Ũ given by ũi,j = ṽi ⊗ w̃j with ṽi = 
 (vi) + � (vi) and
w̃j = 
 (wj) + � (wj).
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5 Discrete Scale Space Eigenbasis Decomposition

As shown in a previous section, scale L (t) and its partial derivative ∂tL (t) of the scale
space representation L can be written written as a weighted sum of the eigenimages
u1,1, . . . ,uM,N of the Laplacian operator. This implicit change of base allows us to
give a simple solution for the discretized diffusion equation.

∂tL (t) = Δ2
5L (t)

⇔
∑

i,j

∂tci,j (t)ui,j =
∑

i,j

ci,j (t)λijui,j

Multiplying both sides with uk,l and exploiting the orthonormality 〈ui,j ,uk,l〉 =
δi,kδj,l where δ represents the Kronecker symbol gives us the partial derivate ∂tL pro-
jected onto eigenvector uk,l. This differential equation can be easily solved for c (t).

〈
uk,l,

∑

i,j

∂tci,j (t)ui,j

〉
=

〈
uk,l,

∑

i,j

ci,j (t) λi,jui,j

〉

⇔ ∂tck,l (t) = ck,l (t)λk,l

⇔ ck,l (t) = exp (λk,lt) ck,l (0)

We finally get an explicit formula for L (t): The scale space representation L is the
solution of the discretized diffusion equation and has the form

L (t) =
∑

i,j

ci,j (t)ui,j =
∑

i,j

exp (λi,jt) ci,j (0)ui,j

with scalar coefficients ci,j (t) = 〈L (t) ,ui,j〉. In matrix representation, the solution
simplifies to L (t) = U exp (Λt)UTL (0). Partial derivatives of any order ∂tnL (t)
can be easily computed using

∂tnL (t) =
∑

i,j

∂tn exp (λi,jt) ci,j (0)ui,j =
∑

i,j

λn
i,j exp (λi,jt) ci,j (0)ui,j

which, in matrix representation, simplifies to L (t) = UΛn exp (Λt)UTL (0).

5.1 Reduced Eigenimages

Analyzing the time evolution L (t) =
∑

i,j exp (λi,jt) ci,j (0)ui,j , which is merely a
weighted sum of eigenimages, it becomes obvious that eigenimages with smaller eigen-
values have less influence on scales for t > 0 than those with eigenvalues near 0.

Omitting less influential eigenimages allows us to reduce memory and time complex-
ity with only moderate changes in the scale space representation. The sum of squared
differences SSD between the L (t) and L̃ (t) with

L̃ (t) =
∑

i,j,λi,j>λmin

exp (λi,jt) ci,j (0)ui,j

converges rapidly to 0.
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Fig. 2. Lossy compression of signal f . Each image is a reconstruction of f from a reduced set of
eigenimages. The number of eigenimages is shown above each image.

Fig. 3. Sampled scale space representation L (left top), sampled scale space representation L̃
with reduced eigenimages (left bottom) and the sum of squared differences from low scale to
high scale images (right)

This confirms the intuitive expectation that eigenimages with lower eigenvalues cor-
respond to those high frequency components that vanishing very fast with increasing
scale. The low frequency components or eigenimages with bigger eigenvalues are more
robust against smoothing. Therefore, eliminating eigenimages with small eigenvalues
roughly compares to smoothing.

The aforementioned method is comparable to a dimensionality reduction in
eigenspace of the Laplacian operator. It is independent of prior information of the con-
tent of L. Taking the initial image L (0) and thus ci,j (0) into account would allow for
further error reduction.
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6 Conclusion and Future Work

The discrete scale space as an equivalent to the two-dimensional Gaussian scale space
has been discussed and important properties have been derived. A computationally prac-
ticable implementation of the discrete scale space framework has been outlined. Our
regular 6-neighborhood, a periodic boundary condition and a suitable critical point defi-
nition respecting the Euler number [7] have led to discrete scale space axioms that differ
from those proposed by Lindeberg. A computationally efficient sampling method, based
on properties of the Laplacian kernel. A first investigation of the deep structure of the
discrete scale space was illustrated with Laplacian eigenimage in scale space. However,
further and more formal investigation of the deep structure (structural changes under
the influence of changes) of the discrete scale space is necessary. We note that the de-
composition can borrow useful insights from the area of heat kernels on graphs [13].
Since our grid can be considered as a well-structured graph on which we apply a heat
kernel-like approach, exploiting such properties [14,15] under changing scale may give
new insights.
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