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Abstract. At ACNS 2011, Wu and Zhang proposed a new lightweight block
cipher which is named LBlock. The design rationale of LBlock considers the
trade-offs between security against cryptanalyses and performance in
low-resource implementations. In this paper, we present new attacks on reduced-
round LBlock using related-key differential cryptanalysis. Firstly, we construct a
new related-key boomerang distinguishing attack on 16-round LBlock.
Secondly, we construct a key recovery attack on 22-round LBlock based on a
16-round related-key truncated differential. In contrast to the published crypt-
analysis results of reduced-round LBlock, our attacks have advantages on data
and computational complexities.
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1 Introduction

Due to a growing requirement of ciphers suited for constrained environment, the de-
sign and analysis of lightweight block cipher have received a lot of attention. Many
lightweight block ciphers have been proposed such as PRESENT [4], KLEIN [6], LED
[7], LBlock [14], Piccolo [11] and KATAN & KTANTAN [5].

LBlock is a lightweight block cipher with the Feistel structure, which is proposed by
Wu and Zhang at ACNS 2011 [14,15]. The components of LBlock represent the trade-
off between fast diffusion and performance in resource-constrained environment. For
the differential analysis, The authors of LBlock proved that the probability of 15-round
characteristic can be lower than 2−64 [14]. For the impossible differential analysis, a
14-round impossible differential is used to mount a key recovery attack on 20-round
LBlock [14]. For the integral attack, a 15-round integral distinguisher is used to mount
a key recovery attack on 20-round LBlock [14]. Although Shibutani et al.’s paper men-
tioned they can break 22-round LBlock using integral analysis [12], the details of the
attack has not been publicly verifiable yet. Thus the complexities of Shibutani et al.’s
attack are described as “?” in Table 1. Recently, a key recovery attack on 22-round
LBlock is presented in [9], which takes advantage of a 14-round related-key impossible
differential. Table 1 includes the existing attacks of LBlock.
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In this paper, we present new related-key differential attacks on reduced-round LBlock.
We first propose a 16-round related-key boomerang distinguishing attack, which has a
successful probability of 2−60. The distinguisher exploits two 8-round related-key char-
acteristics. Then we present a key recovery attack on 22-round LBlock, which uses a
16-round related-key truncated differential. The time and data complexities of our key
recovery attack are 267 and 264.1 respectively, which are better than the previous attacks
on 22-round LBlock.

Table 1. Summary of the existing attacks on LBlock

Rounds Time Data Type Reference
13 253 - related-key differential distinguisher [14]
16 260 - related-key boomerang distinguisher this paper
20 263.7 263.7 integral key recovery [14]
22 ? ? integral attack [12]
22 270 268 related-key impossible key recovery [9]
22 267 264.1 related-key differential key recovery this paper

2 Preliminary

In this section, we first list some notions and notation which will be used in the follow-
ing analysis. Next, a brief description of LBlock is presented. Finally, the method of the
related-key boomerang attack is recalled in short.

2.1 Notations

1. Vi is a 64-bit word, which denotes the input of round i. Moreover, Vi,l and Vi,r are
32-bit words, where Vi = Vi,l‖Vi,r.

2. K denotes the 80-bit master key and subkeyi is 32-bit subkey of round i. Further-
more, subkey j

i is the j-th nibble of subkeyi and subkey j,k
i is the k-th bit of subkey j

i .
3. For 0 ≤ i ≤ 9, si denotes a 4-bit input-output S-box, and s−1

i is its inverse.
4. Δx denotes the difference between two values of x. X denotes an active nibble with

an uncertain difference.
5. ≪ 8 denotes an 8-bit cyclic left rotation, ⊕ denotes the bitwise exclusive-or (XOR)

operation, and ‖ is the concatenation of two binary strings.

2.2 A Brief Description of LBlock

The first introduction of the LBlock proposal was described by Wu and Zhang at ACNS
2011 [14]. In [15], some literal flaws of the initial proposal were fixed. Here we briefly
recall the illustration of LBlock. The i-th round of the LBlock is shown in the left of
Fig. 1, and the F function is shown in the right of Fig. 1. The block length of LBlock
is 64-bit, and the key length is 80-bit. Where Vi = Vi,l‖Vi,r is the input of round i. The
round function F first computes Vi,l⊕ subkeyi, then applies eight different 4-bit S-boxes.
The round function F finally applies a permutation P, which exchanges the places of
the eight nibbles.
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Fig. 1. Left of the figure is the i-th round of LBlock and right of the figure is the F function

The key schedule stores an 80-bit master key K in key register, which is denoted by
K = k79k78k77k76 · · · · · · k1k0. It repeats the following operations for i = 1 to 32:

1. Output the leftmost 32 bits of current register K as subkeyi.
2. K ≪ 29
3. [k79k78k77k76] = s9[k79k78k77k76], [k75k74k73k72] = s8[k75k74k73k72]
4. [k50k49k48k47k46] = [k50k49k48k47k46] ⊕ [i]2

where s8 and s9 are two 4-bits S-boxes and [i]2 is a binary counter.

2.3 The Related-Key Boomerang Attack

The related-key attack was first introduced by Biham in [1]. The attack allows adversary
to encrypt plaintexts and decrypt ciphertexts under multiple secret keys, but the relation
between the secret keys is known to (or even chosen by) the adversary. The boomerang
attack was introduced by Wagner in [13]. By extending the boomerang attack in the
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related-key model [2], Biham et al. proposed the related-key boomerang attack. As
shown in Fig. 2, the related-key boomerang attack views a cipher E as a decomposition
into two sub-ciphers, such that E = Eα ◦ Eβ. In each of two sub-ciphers, there exists
a high probability related-key differential for constructing a boomerang attack. Based
on the boomerang technique, algorithms can be built to distinguishing a “weak” block
cipher from an ideal cipher. The examples of boomerang distinguishing attacks can be
found in [3,8].

If the probability of the Eα differential (Δin
α , Δ

out
α , Δ

key
α ) is p and the probability of the

Eβ differential (Δin
β , Δ

out
β , Δ

key
β ) is q, it was proven that the probability of the correspond-

ing related-key boomerang attack is close to (p · q)2.

3 Related-Key Boomerang Attack on 16-Round LBlock

In [9], Minier and Naya-Plasencia found that ones are able to construct subkey differ-
ences with a very low general weight. Thus, here we consider a related-key boomerang
distinguisher, which exploits the weakness of key scheduling.

Let E denote the 16 rounds of LBlock and Eα denote the first eight rounds (1 to 8)
of E. Eβ is viewed as the sub-cipher of the following 8 rounds (9 to 16). In this section,
we first introduce the subkey differences that are used in our boomerang attack. Then
we present an 8-round related-key characteristic of Eα and Eβ, separately. Finally, we
propose the related-key boomerang distinguishing attack on 16-round LBlock.

3.1 The Subkey Differences

The following differencesΔkey
α and Δkey

β are selected for constructing the 8-round related-
key differential of Eα and Eβ, respectively.

Δ
key
α = 0x00000200000000000000, Δkey

β = 0x0000c000000000000000

According to the key schedule of LBlock, the subkey differences of Eα, which can be
obtained from Δkey

α , have probability 1. The subkey differences of Eα are given in the
left of Table 2. According to the key schedule of LBlock, the equation s9(0x3) = 0x8
in subkey7 is satisfied with a probability of 2−2. Thus, the subkey differences of Eβ,
which are obtained from Δkey

β , have a probability of 2−2. The subkey differences of Eβ
are given in the right of Table 2.

Table 2. The subkey differentials for the related-key boomerang distinguishing attack

Δ
key
α :00000200000000000000 Δ

key
β :0000c000000000000000

Δsubkey1 : 0 0 0 0 0 2 0 0 Δsubkey1 : 0 0 0 0 c 0 0 0 Δsubkey9 : 0 0 0 0 0 2 0 0
Δsubkey2 : 0 0 0 0 0 0 0 0 Δsubkey2 : 0 0 0 0 0 0 0 0 Δsubkey10 : 0 0 0 0 0 0 0 0
Δsubkey3 : 0 0 0 0 0 0 0 0 Δsubkey3 : 0 0 0 0 0 0 0 0 Δsubkey11 : 0 0 0 0 0 0 0 0
Δsubkey4 : 0 0 0 1 0 0 0 0 Δsubkey4 : 0 0 6 0 0 0 0 0 Δsubkey12 : 0 0 0 1 0 0 0 0
Δsubkey5 : 0 0 0 0 0 0 0 0 Δsubkey5 : 0 0 0 0 0 0 0 0 Δsubkey13 : 0 0 0 0 0 0 0 0
Δsubkey6 : 0 0 0 0 0 0 0 0 Δsubkey6 : 0 0 0 0 0 0 0 1 Δsubkey14 : 0 0 0 0 0 0 0 0
Δsubkey7 : 0 0 8 0 0 0 0 0 Δsubkey7 : 8 0 0 0 0 0 0 0 Δsubkey15 : 0 0 8 0 0 0 0 0
Δsubkey8 : 0 0 0 0 0 0 0 0 Δsubkey8 : 0 0 0 0 0 0 0 0 Δsubkey16 : 0 0 0 0 0 0 0 0
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Fig. 3. An 8-round related-key characteristic of Eα. The 8-round related-key characteristic of
Eβ is the same as Eα. In other words, the difference Δsubkeyi of Eβ is equal to the difference
Δsubkeyi−8 of Eα and the difference of round i of Eβ is equal to the difference of round i-8 of Eα,
for 9 ≤ i ≤ 16.

3.2 The 16-Round Related-Key Boomerang Distinguisher

The 8-round related-key characteristic of Eα shown in Fig. 3 works for the subkey
differences of Δkey

α . It contains seven active S-boxes, and the probability of the seven
active S-boxes are equal to 2−2. Therefore the 8-round related-key characteristic of Eα
has probability 2−14.

We choose Δkey
β to ensure the Δsubkeyi of Δkey

β equals the Δsubkeyi−8 of Δkey
α , for 9 ≤

i ≤ 16. Thus, we can reuse the 8-round related-key characteristic of Eα as the related-
key characteristic of Eβ. As a result, we obtain an 8-round related-key characteristic of
Eβ, which has a probability of 2−16.

Based on the related-key differential of Eα and Eβ, the corresponding differences in
Fig. 2 are derived as follows.

Δin
α = 0x0000000000000020 Δout

α = 0x8000150800000490
Δin
β = 0x0000000000000020 Δout

β = 0x8000150800000490
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The related-key differential of Eα (Δin
α , Δ

out
α , Δ

key
α ) has a probability of 2−14, and the one

of Eβ (Δin
β , Δ

out
β , Δ

key
β ) has a probability of 2−16. Thus, the related-key boomerang distin-

guisher of 16-round LBlock succeeds with a probability of (2−14 × 2−16)2 = 2−60. As a
result, the boomerang distinguisher works as follows.

1. Chooses a random message P and calculates Q = P ⊕ Δin
α .

2. Encrypts P and Q, obtain C = Ek(P) and D = Ek⊕Δkey
α

(Q).
3. Selects C

′
= C ⊕ Δout

β and D
′
= D ⊕ Δout

β .
4. Decrypts C

′
and D

′
, obtains P

′
= E−1

k⊕Δkey
β

(C
′
) and Q

′
= E−1

k⊕Δkey
α ⊕Δkey

β

(D
′
).

5. Checks if P
′ ⊕ Q

′
= Δin

α .

For ideal ciphers with 64-bit block size, the probability of the final equation P
′⊕Q

′
= Δin

α

must be 2−64. On the other hand, the final equation is expected to hold with a probability
of (2−14×2−16)2 = 2−60 in the related-key boomerang distinguisher, which is apparently
lower than exhaustive search. Therefore, an adversary can distinguish 16-round LBlock
and an ideal cipher by executing the above boomerang attack.

4 Related-Key Differential Attack on 22-Round LBlock

In [9], a related-key impossible attack, which exploits the weakness of the key sched-
ule, was presented on reduced-round LBlock. Since the key schedule of LBlock does
not provide a fast diffusion [9], it is possible to construct a 16-round related-key trun-
cated differential. In this section, a new key-recovery attack on 22-round is proposed by
exploiting a 16-round related-key truncated differential.

4.1 The Subkey Differences

The difference ΔK = 0x00000010000000000000 is selected for constructing the 16-
round related-key truncated differential, which will be described in the next subsection.
According to the key schedule, we obtain a subkey differences in the first 22 round
from ΔK, which is shown in Table 3. Since the equation s8(0x2) = 0x2 in subkey10 is
satisfied with probability 2−2, the subkey differences has probability 2−2 as well.

Table 3. The subkey differences in the first 22 round of LBlock

ΔK : 00000010000000000000
Δsubkey1 : 0 0 0 0 0 0 1 0 Δsubkey8 : 0 0 0 0 0 0 0 0 Δsubkey15 : 0 0 0 0 0 4 0 0
Δsubkey2 : 0 0 0 0 0 0 0 0 Δsubkey9 : 0 0 0 0 0 0 0 0 Δsubkey16 : 0 0 0 0 0 0 0 0
Δsubkey3 : 0 0 0 0 0 0 0 0 Δsubkey10 : 0 2 0 0 0 0 0 0 Δsubkey17 : 0 0 0 0 0 0 0 0
Δsubkey4 : 0 0 0 0 0 8 0 0 Δsubkey11 : 0 0 0 0 0 0 0 0 Δsubkey18 : 0 0 0 2 0 0 0 0
Δsubkey5 : 0 0 0 0 0 0 0 0 Δsubkey12 : 0 0 0 0 0 0 0 8 Δsubkey19 : 0 0 0 0 0 0 0 0
Δsubkey6 : 0 0 0 0 0 0 0 0 Δsubkey13 : 0 0 0 0 0 0 0 0 Δsubkey20 : 0 0 0 0 0 0 0 0
Δsubkey7 : 0 0 0 4 0 0 0 0 Δsubkey14 : 0 0 0 0 0 0 0 0 Δsubkey21 : 0 X 0 0 0 0 0 0

Δsubkey22 : 0 0 0 0 0 0 0 0
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4.2 The 16-Round Related-Key Truncated Differential

The detail of the 16-round related-key truncated differential is depicted in Fig. 4, which
is used for our 22-round key recovery attack. In Fig. 4, numeral represents a nibble with
this specific difference. Such as, a numeral 1 in the subkey1 denotes that this nibble has
difference 1. Zero-difference nibbles are represented by 0. The active nibbles (X, X,̂4)
represent three different conditions on their differences, which are described as follows.

– One active nibble X xor the other active nibble X produces difference 0 with prob-
ability 1/15 ≈ 2−3.9. We call it vanished condition.

– One active nibble X xor the other active nibble X produces a non-zero difference
with probability 14/15 ≈ 2−0.1. We call it unvanished condition.

– A specific difference 4 marked by ̂4 in Fig. 4 is a input difference of S-box. The
equation s2(4) = 1 satisfies with probability 2−2. We call it S-box condition.

The 16-round related-key truncated differential in Fig. 4 has 14 vanished conditions, 1
S-box condition and 3 unvanished conditions. Based on the probabilities of the subkey
differences, the 16-round related-key truncated differential has a probability of about
((1/15)14 × 2−2 × (14/15)3 × 2−2) > 2−59.

4.3 The Key Recovery Attack for 22 Rounds

Combing our 16-round related-key truncated differential, we can mount a key recovery
attack for 22 rounds. Our key recovery attack is based on the following observation. In
the round function of LBlock, every 4-bit nibble in the underlying subkey only affects
itself. In key-recovery procedure, one can guess one nibble of subkey each time, and
then partially decrypts the corresponding nibble of ciphertext pairs. By checking the
difference of the decrypted nibble, we rule out some ciphertext pairs. Therefore, the
time complexity of the key recovery attack can be reduced.

Our key recovery attack is derived from the related-key truncated differential shown
in Fig. 5. The key-recovery differential requests one vanished and two unvanished con-
ditions. Thus a difference Δ1 = (000X0000, 00000000) from round 17 to round 22 veri-
fies the key-recovery differential with a probability of (1/15) × (14/15)2 ≈ 2−4.1. Since
the 16-round related-key truncated differential has a probability of 2−59. After the 22-th
round, the output difference is Δ2 = (V22,l,V22,r) = (XXXXXXX0, XX00XX0X) with a
probability 2−59×2−4.1 = 2−63.1. Therefore, there exist one pair of plaintexts verifies the
16-round related-key truncated differential and the key-recovery differential, when 263.1

pairs of plaintexts with difference Δ3 = (00000010, 00000004) are encrypted.
Without loss of generality, a pair satisfies the truncated difference Δ2 with a probabil-

ity of about (15/16)12 × (1/16)4 ≈ 2−17.1. Therefore, there exist about 246 pairs satisfy
the truncated difference Δ2 after 22 rounds, when 263.1 pairs of plaintexts with difference
Δ3 are encrypted. One pair of 22-round ciphertexts, which has a difference Δ2, satisfies
the key-recovery differential whit a probability of ((1/15)12 × (14/15)2 ≈ 2−47, when
decrypted from round 22 to round 17. If the subkeys are wrong, there exist one pair
of 22-round ciphertexts satisfies the key-recovery differential with a probability of 2−1,
when the 246 pairs of 22-round ciphertexts are decrypted from round 22 to round 17.
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Fig. 4. A 16-round truncated differential path for the key recovery attack. The active nibbles (X,
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Table 4. The relations among the subkey bits in the partial decryptions

The underline bits of subkeyi can be obtained from the underline bits of subkey22, where 17 ≤ i ≤ 21
subkey17 k15k14k13k12 k11k10k9k8 k7k6k5k4 k3k2k1k0 k79k78k77k76 k75k74k73k72 k71k70k69k68 k67k66k65k64

subkey18 k66k65k64k63 k62k61k60k59 k58k57k56k55 k54k53k52k51 k50k49k48k47 k46k45k44k43 k42k41k40k39 k38k37k36k35

subkey19 k37k36k35k34 k33k32k31k30 k29k28k27k26 k25k24k23k22 k21k20k19k18 k17k16k15k14 k13k12k11k10 k9k8k7k6

subkey20 k8k7k6k5 k4k3k2k1 k0k79k78k77 k76k75k74k73 k72k71k70k69 k68k67k66k65 k64k63k62k61 k60k59k58k57

subkey21 k59k58k57k56 k55k54k53k52 k51k50k49k48 k47k46k45k44 k43k42k41k40 k39k38k37k36 k35k34k33k32 k31k30k29k28

subkey22 k30k29k28k27 k26k25k24k23 k22k21k20k19 k18k17k16k15 k14k13k12k11 k10k9k8k7 k6k5k4k3 k2k1k0k79

The underline bits of subkeyi can be obtained from the underline bits of subkey21, where 17 ≤ i ≤ 20
subkey17 k15k14k13k12 k11k10k9k8 k7k6k5k4 k3k2k1k0 k79k78k77k76 k75k74k73k72 k71k70k69k68 k67k66k65k64

subkey18 k66k65k64k63 k62k61k60k59 k58k57k56k55 k54k53k52k51 k50k49k48k47 k46k45k44k43 k42k41k40k39 k38k37k36k35

subkey19 k37k36k35k34 k33k32k31k30 k29k28k27k26 k25k24k23k22 k21k20k19k18 k17k16k15k14 k13k12k11k10 k9k8k7k6

subkey20 k8k7k6k5 k4k3k2k1 k0k79k78k77 k76k75k74k73 k72k71k70k69 k68k67k66k65 k64k63k62k61 k60k59k58k57

subkey21 k59k58k57k56 k55k54k53k52 k51k50k49k48 k47k46k45k44 k43k42k41k40 k39k38k37k36 k35k34k33k32 k31k30k29k28

subkey22 k30k29k28k27 k26k25k24k23 k22k21k20k19 k18k17k16k15 k14k13k12k11 k10k9k8k7 k6k5k4k3 k2k1k0k79

The underline bits of subkeyi can be obtained from the underline bits of subkey20, where 17 ≤ i ≤ 19
Round 17 k15k14k13k12 k11k10k9k8 k7k6k5k4 k3k2k1k0 k79k78k77k76 k75k74k73k72 k71k70k69k68 k67k66k65k64

Round 18 k66k65k64k63 k62k61k60k59 k58k57k56k55 k54k53k52k51 k50k49k48k47 k46k45k44k43 k42k41k40k39 k38k37k36k35

Round 19 k37k36k35k34 k33k32k31k30 k29k28k27k26 k25k24k23k22 k21k20k19k18 k17k16k15k14 k13k12k11k10 k9k8k7k6

Round 20 k8k7k6k5 k4k3k2k1 k0k79k78k77 k76k75k74k73 k72k71k70k69 k68k67k66k65 k64k63k62k61 k60k59k58k57

Round 21 k59k58k57k56 k55k54k53k52 k51k50k49k48 k47k46k45k44 k43k42k41k40 k39k38k37k36 k35k34k33k32 k31k30k29k28

Round 22 k30k29k28k27 k26k25k24k23 k22k21k20k19 k18k17k16k15 k14k13k12k11 k10k9k8k7 k6k5k4k3 k2k1k0k79
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If the subkeys are guessed correctly, there exist one pair of 22-round ciphertexts
satisfies the key-recovery differential, when the 246 pairs of 22-round ciphertexts are
decrypted from round 22 to round 17.

In the procedure of our key recovery, the adversary can partially decrypt one nibble
each time. For better understanding, the relations among the subkey bits in the partial
decryptions are described in Table 4. The procedure of the attack is described as follows.

1. encrypt 263.1 pairs of plaintexts with a difference of Δ3.
2. For the 263.1 pairs of output, the adversary chooses the pairs that satisfy difference
Δ2. Without loss of generality, one pair satisfies Δ2 with a probability of (15/16)12×
(1/16)4 ≈ 2−17.1. Thus, there remain 246 pairs satisfy difference Δ2.

3. The partial decryption of round 22 involves subkey0
22, subkey2

22, subkey3
22, subkey4

22,
subkey5

22, subkey6
22, subkey7

22.
(a) For every guess of subkey0

22, the adversary partially decrypts the 2-th nibble
of V23,l of the 246 pairs of 22-round ciphertexts and verifies if the difference
of the decrypted nibbles equal to zero. Since this verification has one vanished
condition, there remain 246 × 2−3.9 = 242.1 pairs.

(b) In similar, the partial decryption of the 1,5,7-th nibble of V23,l require three
vanished condition. Consequently, there remain 242.1 × 2−3.9×3 = 230.4 pairs.

(c) For every guess of 12 bits (subkey2
22, subkey4

22, subkey5
22), the adversary par-

tially decrypts the 3,4,6-th nibbles of V23,l of the 230.4 pairs and verify whether
the differences of the decrypted nibbles not equal to zero. Since this verification
has one unvanished condition, there remain 230.4 × 2−0.1 = 230.3 pairs.

After the partial decryption of round 22, there remain about 230.3 pairs of 21-round
ciphertexts, which satisfy (ΔV22,l, ΔV22,r) =(XX00XX0X 000X00XX0).

4. The partial decryption of round 21 involves subkey0
21, subkey1

21, subkey2
21, subkey4

21,
subkey6

21. As shown in Table 4, the three subkey bits (subkey0,0
21 , subkey0,1

21 , subkey0,2
21 )

can be obtained from subkey7
22. Thus, the adversary needs to guess 17 bits in subkey21.

Similar to the decryption of round 22, the decryption of round 21 partially decrypt
the 0,3,6-th nibbles of V22,l. It requires three vanished condition. Then the adver-
sary partially decrypts other nibbles in the decryption of round 21. Since this step
has three vanished conditions and one unvanished condition, there remain about
230.3 × 2−11.8 = 218.5 pairs of 20-round outputs after this verification, which satisfy
(ΔV21,l, ΔV21,r)=(000X0XX0 00X0000X).

5. The partial decryption of round 20 involves subkey0
20, subkey3

20, subkey5
20. As shown

in Table 4, the two subkey bits (subkey5,3
20 , subkey5,2

20 ) can be obtained from subkey0,1
22 ,

subkey0,0
22 . Thus, the adversary needs to guess 10 bits in subkey20.

Similar to the decryption of round 22, the adversary partially decrypts the 2,4-
th nibble of V21,l. It requires two vanished condition, and then the decryption of
round 20 partially decrypts the 1-th nibble of V21,l. Since this step has two vanished
conditions, there remain 218.5 × (2−3.9)2 = 210.7 pairs of 19-round outputs after this
verification, which satisfy (ΔV20,l, ΔV20,r) = (00X0000X X0000000).

6. The partial decryption of round 19 involves subkey1
19 and subkey7

19. As shown in
Table 4, subkey1

19 can be obtained from (subkey3,2
22 , subkey3,1

22 , subkey3,0
22 , subkey2,3

22 )
and subkey7

19 can be obtained from (subkey2,1
21 , subkey2,0

21 , subkey1,3
21 , subkey1,2

21 ) di-
rectly. Thus, no subkey nibbles need to be guessed.
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After the partial decryption of round 19, the adversary verifies if the pairs of 18-
round outputs satisfy (ΔV19,l, ΔV19,r) = (X0000000, 0X000000). Since this step re-
quires one vanished conditions, there remain 210.7 × 2−3.9 = 26.8 pairs of 18-round
outputs after this verification.

7. The partial decryption of round 18 involves subkey4
18 and subkey6

18. As shown in
Table 4, subkey6,1

18 can be obtained from subkey0,3
20 and subkey6,0

18 can be obtained
from subkey0,2

20 directly. Thus, the adversary needs to guess 6 bits of subkey18.
Similar to the decryption of round 22, the decryption of round 18 partially decrypt
the 7-th nibble of V19,l. It requires one vanished condition and the decryption of
round 18 partially decrypt the 6-th nibble of V19,l. Since this step requires one van-
ished conditions, there remain 26.8×2−3.9 = 22.9 pairs of 17-round outputs after this
verification, which satisfy (ΔV18,l, ΔV18,r) = (0X000000, 000X0000).

8. the partial decryption of round 17 involves subkey4
17. As shown in Table 4, (subkey4,2

17 ,
subkey4,1

17 and subkey4,0
17 ) can be obtained from (subkey0,3

22 , subkey0,2
22 , subkey0,1

22 ). Thus,
the adversary needs to guess 1 bit of subkey17.
For every guess of the 1-bit subkey partially decrypt round 17 to verify if the pairs
of 16-round outputs satisfy Δ1 = (ΔV17,l, ΔV17,r) = (000X0000, 00000000). Since
this step has one vanished conditions, there exists one pair of 16-round outputs that
satisfies difference Δ1 with a probability of 22.9 × 2−3.9 = 2−1.

9. After the decryption of round 17, if there exists one pairs of 16-round outputs satisfy
Δ1, the adversary knows he has successfully recovered 62 subkey bits. The left 18
bits of the master key can be recovered by exhaustive searches.

Considering the equation of s8(0x2) = 0x2 in subkey10 has been satisfied, the adversary
just needs to guess 22 pairs of subkey4

18. According to the key schedule of LBlock, the
22 pairs of subkey4

18 are obtained from the equation of s8(0x2) = 0x2. In similar, the
adversary only needs to guess 23 pairs of subkey6

21.
The time complexity of the above partial decryption is about 267. Therefore, the 80-

bit master key can be recovered with the time complexity of about 267+264+218 ≈ 267.
Since 263.1 pairs of ciphertexts need to be stored during the attack, the data complexity
of our key recovery attack is about 264.1. Although the whole codebook is 264 for a
64-bit cipher, the related-key pairs allow the attacker access 2 ∗ 264 pairs of plaintext
and ciphertext. After the partial decryption of round 17, there exists one pair with a
probability of 2−1. Thus the success probability of our key recovery attack is 2−1.

5 Conclusions

In this paper, we have proposed new related-key differential attacks on the reduced-
round LBlock. First we constructed a boomerang distinguishing attack on 16-round
LBlock, which exploits the slow diffusion of the key schedule. Then we presented a
key recovery attack on 22-round LBlock by using the 16-round related-key truncated
differential. Compares to the known results, the time and data complexities of our key
recovery attack are both reduced. Although our attacks do not threaten the practical
security of LBlock, future work may seek to extend the existing attacks to more rounds
LBlock based on our related-key differentials.
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