Permission-Based Abnormal Application
Detection for Android

Jiawei Zhu''?3, Zhi Guan!?3*, Yang Yang!?3, Liangwen Yu':?:3,
Huiping Sun!'?3, and Zhong Chen!+?:3

! Institute of Software, School of EECS, Peking University, China
2 MoE Key Lab of High Confidence Software Technologies (PKU)
3 MoE Key Lab of Network and Software Security Assurance (PKU)
{zhujw,guan}@infosec.pku.edu.cn

Abstract. Android has become one of the most popular mobile operat-
ing system because of numerous applications it provides. Android Market
is the official application store which allows users to search and install
applications to their Android devices. However, with the increasingly
number of applications, malware is also beginning to turn up in app
stores. To mitigate the security problem brought by malware, we put
forward a novel permission-based abnormal application detection frame-
work which identifies potentially dangerous apps by the reliability of their
permission lists. To judge the reliability of app’s permissions, we make
use of the relation between app’s description text and its permission list.
In detail, we use Naive Bayes with Multinomial Event Model algorithm
to build the relation between the description and the permission list of
an application. We evaluate this framework with 5,685 applications in
Android Market and find it effective in identifying abnormal application
in Android Market.

Keywords: Android, Abnormal Application, Permission Reliability.

1 Introduction

Nowadays, smartphones occupy an important position in people’s daily life. They
allow users to communicate, surf the Internet or have all kinds of entertainments
at any place. The most common mobile operating systems used by modern smart-
phones include Android, iOS and Symbian. Android, which is an open source
Linux-based mobile operating system distributed by Google, is one of the most
popular mobile operating systems today. Because of its open architecture which
is convenient to develop and debug the applications, more and more developers
turn to pay attention to this rising system.

With the arising of numerous Android applications, there exists lots of app
stores providing more convenient platforms for users to search and install the free
and paid applications. Among all these Android app stores, Google Play Store
1] (named as Android Market originally) is the official app store for Android

* Corresponding author.

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 228-F39] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



Permission-Based Abnormal Application Detection for Android 229

smartphone users. A research report released by AppBrain showed that the total
number of apps in Android Market was over 450,000 at the beginning of June,
2012 [2]. In Android Market, users can browse the description, application’s
information and the permission list in the application’s main interface. For most
users searching applications in the market, they usually make a decision on
selecting which applications to install based on three aspects: the introductions
of applications (including descriptions and application screenshots), ratings and
other users’ reviews.

Unlike Apple’s App Store, Google has minimal involvement in Android Mar-
ket. Android Market provides diverse applications not only developed by famous
corporations, but also by some small companies or amateur individual develop-
ers. Once published, apps from the Android Market can only be removed by
Google because of being reported malicious or their content violating terms of
use. So without Google’s restrict check on applications, Android Market may
contain some malicious applications. For this reason, some measures should be
taken to ensure the security of Android devices.

In this paper, we propose a method to analyze the potential security problem
of an application in app stores. In detail, we put forward a permission-based
abnormal application detection framework to mitigate the security problem in
Android Market by the reliability of app’s permissions. We design a detailed
predicting model which is the most important part in the framework to reflect the
relation between the description and the permission list of an application. With
this model, we can predict the actually needed permission list of an application
in Android Market based on its description.

We use 5,685 free applications in the Android Market to evaluate our per-
mission predicting models and find that this model is effective in predicting the
permission list of an application in Android Market. Besides, we apply our se-
curity framework in the detection of reliability of applications’ permissions and
give out a test on real malware announced by Google.

The following sections of this paper proceeds as follows. Section 2 describes
the related work about Android malware detection. Section 3 overviews our
framework. Section 4 describes the process of our experiment. Section 5 evaluates
this model on 5,685 apps in Android Market. Section 6 applies our method on
detecting the reliability of permissions and few malicious apps announced by
Google and section 7 concludes.

2 Related Work

Smartphone security is a growing concern in recent year. Static analysis and dy-
namic analysis are two main approaches for the detection of malware. In Android
platform, Enck et al. [3] present a dynamic tainting analysis to protect the secu-
rity of users’ sensitive data. They labeled the information with different types.
At last, the system made a result based on the policies. They also tested this
tool on 30 applications and found that 20 of these applications taking suspicious
actions on users’ data.



230 J. Zhu et al.

Enck et al. [4] also designed a tool to decompiled the Android executable file
into Java source code to make a static analysis to identify malicious Android
applications. They studied 1,100 Android applications with this method and
obtained 27 finds including the leakage of phone identifiers, location information
sent to advertisement servers and some specific attacks on Android OS.

Same authors [5] designed and implemented a framework to identify the dan-
gerous applications based on their certain combinations of permissions. They
designed Kirin which modified the application installer with this method to pre-
vent the malicious applications.

Portokalidis et al. [6] utilize virtualization method to detect the security of
Android applications. In detail, they put forward a method to analyze the secu-
rity of applications in the remote servers which held the mirror of smartphone in
the virtual environment. They implemented this system and took some analysis
on the parameters of this system such as battery level and CPU utilization.

Zhou et al. [7] proposed a permission-based behavioral footprinting scheme
and heuristics-based filtering scheme to detect the malware. The former com-
pared the application with the known Android malware based on their permis-
sions to detect the new sample of them. The latter was used to identify the
unknown malicious families. The experiment was taken with 204,040 apps col-
lected from 5 different app stores.

Burguera et al. [8] made use of k-means method with the time of system call
as the features to identify the malware. The experiment was tested on two known
Android malware.

3 Security Framework

3.1 Permission-Based Abnormal Application Detection Framework
Overview

In this paper, we put forward a novel permission-based abnormal application
detection framework in Android Market. The main point of our framework is
that the description of an application is closely related to its permission list in
Android platform. Here, the description of an application, which can be found in
Android Market, describes the features and the functions of this application. In
other word, the description information concretes the functions of the application
implementing. Permission-based security model is one of the most important
security measures of Android devices. Permission model is used to restrict to
access to some special resources. It can also be said to restrict to take some
potentially dangerous actions. If an application wants to accomplish some specific
actions, it has to request the corresponding permissions. So the permission list
of an application reflects the actions, or even functions of this application. For
example, if an app defines the function of sharing files in its description text,
this sharing files function should contain two-step actions. The first one is to
find the users to be shared with the file from contact. The other is transferring
the file to the selected users via network. Based on these two-step actions, this
application should request READ_CONTACT and INTERNET permissions to realize



Permission-Based Abnormal Application Detection for Android 231

its function. Therefore, we believe that the description and the permission list
of an application are closely related. However, for the malicious applications,
they usually hide some potentially dangerous actions which lead to their actions
being not accord to the described functions.

Based on this intuitive conclusion, we provide a permission-based abnormal
application detection framework to analyze the potential dangers of an app in
Android Market. The detailed framework is shown in Figure [l In this frame-
work, the most crucial part is the model which reflects the relation between the
description and the permission list. With this model, we can predict an app’s
normal permission list. Furthermore, after the analysis of the permission com-
parator, if the permission list of an app is not accord to its predicted normal
permission list, we think this app is with hidden danger.

[ Perdicted ] N
Deseription Permission 1

\ J
Model i -

[ Funetions ( Predicted
- N Permission m
App Permission i \
3 —)[ Repart
Comparator 3 J

'

Permission List
5
I Permission 1 |

| Permission k
S

Fig. 1. permission-based abnormal application detection framework

In this platform, we can model the description and the permission list of an
application to have a research on our security framework. In this concrete envi-
ronment, we define the description and the permission list of an application as
the following signs. Formally, let p = [p1,p2,...pr]T be the output permission
list, in which px € {0,1} denotes whether permission indexed as k should be
requested by an application. Let d = (21,22, ...2|y|) denotes the description of
an application, in which z; is the index of a word in the dictionary, V is the
number of words in the dictionary. Thus, our work in the next several sections
is to analyze the usability of our framework in Android. More specifically, we
utilize this security framework to predict the hidden dangers of an application
based on its description. In our paper, we only detect the reliability of the ap-
plication’s permission list and view this as the criterion of the hidden dangers
of the application.

3.2 Model Selection

Based on our research problem, we should model the relation between the de-
scription and the permission list of an application well in Android platform. In
detail, we use machine learning techniques to predict the permissions of an app



232 J. Zhu et al.

based on the description of this app. Here, the description which is requested to
be provided by developer of this application can be found in Android Market.
The basic structure diagram is shown in Figure 2l Because we use supervised
learning method to model this relationship, we should collect enough training
examples at first. After learning the training examples’ relation between the
description and permission list, the model can be used in predicting the really
needed permission list of an arbitrary application.

I
App 1 Description Permission
Training
Examples
s . —h
App m Description Permission
—

Test Data

/ b N
o / \ e Predicted
Deseription [ MODEL 1 ——/| Permission

—~

Fig. 2. Model Structure Diagram

We use Naive Bayes algorithm with multinomial event model [9] to classify the
description of an application based on different permissions. This algorithm is a
specialized version of Naive Bayes algorithm. Multinomial Naive Bayes algorithm
models the words according to multinomial distribution. That is to say, it not
only considers whether a word occurred or not, but also take the times of a word
occurs into consideration. This algorithm is proved to have a better result than
Naive Bayes algorithm in most occasions [10].

Formally, we have defined p(¥) = [p(z) pg), .. .p,(f)]T be the " application’s

output permission list, in which p() € {0,1} denotes whether permission in-
dexed as k should be requested by the i*" application. Besides, we denote

dicy, dics, . .., dicg to be the dictionary of the k different permissions. let d,(:) =

(xgz), xgz), . xl(f/)k‘) denotes the description corresponding to the i*" application’s
k" permission, in which x;i) is the index of a word x; occurring in dic, and Vj
denotes the number of words in dici. Multinomial Naive Bayes model will label
the k' permission as 0 or 1 based on the equation:
p;j)* = arg max Plp (J) HP (J)‘p(])
yepy

At last, the model will output a predicted real permission list of an application.



Permission-Based Abnormal Application Detection for Android 233

4 Experiment

After overviewing our framework, we will model the relation between the de-
scription and the permission list of an application in Android platform. In our
work, we aim to analyze the really needed permissions of an application from
the perspective of its functions. To evaluate our model built in Section 3.3, we
have an experiment on the most influential application store - Android Market
- to do our experiment.

4.1 Selection of Permissions to Be Predicted

We crawled 8,050 applications (top 350 apps in 23 categories) in April, 2011
in Android Market to get the statistics of permissions. Here, we calculate the
number of 122 different kinds of permissions [I1] occurring in these 8,050 appli-
cations. From this statistics, INTERNET was the most frequently requested per-
mission. The number of this permission occurring in 8,050 apps was nearly 7,000.
That is to say, most of these apps requested this permission to access internet,
which shows the spread of mobile internet. There were also other permissions re-
quested a lot by applications, such as ACCESS_COARSE_LOCATION (requested 2115
times), ACCESS_FINE_LOCATION (requested 2127 times), ACCESS_NETWORK_STATE
(requested 3755 times). Except these frequently occurring permissions, nearly
100 of 122 permissions occurred only few times in these apps, which agrees with
the opinion in [12]. Because many of the Google defined Android permissions are
not common occurring in our dataset, we omit these uncommon permissions. In
this paper, we will only focus on the permissions frequently occurring.

Based on the times occurring of different permissions in our statistics, we se-
lect the permissions which are valuable to be researched. The rule we select the
permissions is as follows: we will pick up the permissions based on their occurring
times (we define the times as more than 200 in this paper) in these 8,050 appli-
cations. For these permissions, we can use enough training examples to give a
prediction on this kind of permissions. At last, we choose 23 common permissions
to make a prediction, including ACCESS_COARSE_LOCATION, READ_CONTACTS and
CALL_PHONE.

4.2 Dataset

Because we use a supervised learning method to make a prediction on the real
permission list of an application in Android Market, we have to obtain enough
training examples whose permission list is trusted to do this experiment. We
crawled 8,050 applications (top 350 apps in 23 categories, including their de-
scriptions and permission list) in Android Market in April, 2011, as discussed
before. Here, we assume that these apps are all well-written and not malicious
because of the top rank of these apps. So we can use these high-quality apps



234 J. Zhu et al.

as training and testing examples to evaluate our model. However, some of these
applications’ descriptions are not written in English, so we will not use these
apps to train our model. Finally, we use 5,685 apps to do this experiment. The
process of the experiment is as follows.

— Step 1: Put all the words occurring in applications’ descriptions into the
dictionary.

— Step 2: For each different permission, we use mutual information filter to pick
up the words with high mutual information to this permission to generate a
new dictionary which owns words have a great influence on this permission.

— Step 3: Model to predict all 23 permissions in Multinomial Naive Bayes
algorithm. Using 10-fold cross validation to test the quality of the models
for different permissions.

5 Results

In this section, we evaluate the model with 5,685 apps in Android Market. The
prediction of permissions of these apps is made by the model of different per-
missions. To analyze the quality of the model, we compare the real permissions
requested by the applications with the predicted permissions. We analyze the
result of the prediction of permissions from 2 aspects:

1. We measure the area under the ROC curve (AUC) of different permissions’
models to estimate how well our method does to build the relation between
the description and the permission list of an application in this problem.

2. We pick up few words which have great influence on the prediction of cor-
responding permissions to analyze the influence of different words on these
permissions.

5.1 Evaluation of Model

We use 10-fold cross validation to have a test on this dataset to evaluate the
proposed model’s quality. At first, we get the Receiver Operating Character-
istic (ROC) curves and the Area Under roc Curve (AUC) [13] form the test
applications. AUC is metric to evaluate the accuracy of classifying.

Then, we list the value of AUC of 23 permissions in Table 1. From this ta-
ble, we find the quality of the models predicting different permissions is fine.
All of these models’ AUC are above 0.8. So for the models of 23 permissions,
they reasonably predict the result of permission list. What’s more, 12 of 23 per-
missions have the AUC value greater than 0.9 such as INTERNET, RECEIVE_SMS,
READ_CONTACTS. For these excellent predicted permissions, it indicates that some
certain functions of an application can obviously reflect the existence of these
permissions. For example, the function of making a call or sending messages
can definitely correspond to the permission about call or message. For some
permissions, we guess the reason why the model on these permissions does not



Permission-Based Abnormal Application Detection for Android 235

Table 1. AUC value of the model on 23 permissions

Permission AUC Permission AUC
ACCESS_COARSE_LOCATION 0.864 SET_WALLPAPER 0.922
ACCESS_FINE_LOCATION 0.851 WRITE_EXTERNAL_STORAGE 0.913
ACCESS_NETWORK_STATE 0.806 GET_ACCOUNTS 0.902
ACCESS_WIFI_STATE 0.845 GET_TASKS 0.853
CHANGE_WIFI_STATE 0.867 KILL_BACKGROUND_PROCESSES 0.934
INTERNET 0.904 WRITE_SETTINGS 0.910
READ_PHONE_STATE 0.880 CALL_PHONE 0.928
RECEIVE_SMS 0.924 SEND_SMS 0.964
READ_CONTACTS 0.915 WAKE_LOCK 0.877
WRITE_CONTACTS 0.944 VIBRATE 0.843
CAMERA 0.909 RECEIVE_BOOT_COMPLETED 0.872
RECORD_AUDIO 0.898

predict so well is that some certain functions may be mapped into few possible
permissions. For instance, function about connecting to the internet may relates
to the internet permission or WiFi permission. We can use either of these two
permissions or both of these to realize our functions. This factor may influence
the accuracy of the model on these permissions to some degree. In general, this
result shows that it is effective to predict the real permission list of an applica-
tion based on its description. So we believe that our model is an effective model
to build the relation between the description and the permission list.

5.2 Pick Up Influential Words

Next, we will pick up some influential words based on the parameters of the
models of each permission. Here, we define the influential words with two
features.

— The words should occur frequently in the description of applications. In this
paper, we define the frequency as 100 according to 5,685 apps.

— The words should have dominant impact (the dominant impact in this pa-
per is defined as that the positive/negative impact on the occurrence of a
permission is as five times as the negative/positive impact on the occurrence
of this permission) on positive or negative side to some certain permissions
as well.

After selecting influential words based on these two features, we list the result
of some of these words in Table 2.

From the words we list in Table 2, we find the result of these influential words is
basically fit in with our common sense. For example, in the permissions about loca-
tion, word “weather” is positive to the occurrence of ACCESS_COARSE_LOCATION,
but is not positive to ACCESS_FINE_LOCATION. In contrast, word “GPS” is positive
to ACCESS_FINE_LOCATION but not COARSE. For most applications, we think that



236 J. Zhu et al.

Table 2. Influential words according to different permissions

Permission Positive Words Negative Words
ACCESS_COARSE_LOCATION location, map, weather bible, wallpaper, word
ACCESS_FINE_LOCATION GPS, location, map bible, dictionary, wallpaper
ACCESS_NETWORK_STATE ringtone dictionary, phrases
ACCESS_WIFI_STATE dictionary, word calculator, jokes, ringtone
CHANGE_WIFI_STATE Wi-Fi book, dictionary, joke
INTERNET news, online, vedio, keyboard, plugin
READ_PHONE_STATE radio, ringtone, word locate
RECEIVE_SMS family, message, SMS dictionary, image, joke
READ_CONTACTS call, contact, message dictionary, English, game
WRITE_CONTACTS contact, group, message calculator, dictionary, game
CAMERA photo, picture, camera sound, joke, dictionary
RECORD_AUDIO call, record, voice wallpaper, game, weather
SET_WALLPAPER animated, wallpaper, film calculator, call, GPS
WRITE_EXTERNAL_STORAGE file, video, reader task, widget
GET_ACCOUNTS contact, registry, expense audio, word, sports
GET_TASKS lock, security, ringtone calculator, word
KILL_BACKGROUND_PROCESSES kill, running, task dictionary, word, weather
WRITE_SETTINGS alarm, lock, ringtone book, calculator
CALL_PHONE call, contact, group file, joke, game
SEND_SMS SMS, message dictionary, sound
WAKE_LOCK chat, player, radio bible, dictionary, calculator
VIBRATE alarm, battery, chat bible, joke, word

RECEIVE_BOOT_COMPLETED battery, backup, notification  calculator, dictionary

coarse location permission is used in occasions like weather report and restaurant
recommendation. So the influential words in this model are corresponding with
practice. Besides this example, words such as “picture” and “photo” are positive
to the CAMERA permission, which also fit in with our expectation. So the extraction
of influential words from models is also basically correct from empirical analysis.
From this result, we also conclude the description of an application has a strong
relation with the permission list of this application. Therefore, it is a good way to
make a model predicting an app’s different permissions based on its description.

In addition, some words occur several times no matter as a positive word
or a negative word, such as dictionary, calculator, message and location. This
indicates that if this kind of words occurs in the description of an application,
the model can predict the permissions correctly to a great extent. Here, we
take the word “dictionary” as an instance. The word “dictionary” is positive to
ACCESS_WIFI_STATE permission, but is negative to permissions about location
and permissions about call and SMS. So if there is a word “dictionary” in an
application, we will have a quite high probability to make a correct prediction
on different permissions of this application. Therefore, the occurrence of these
words greatly contributes to the quality of models. As for these influential words,
most of these words, such as map, wallpaper, camera and keyboard, are directly



Permission-Based Abnormal Application Detection for Android 237

represent one of an application’s functions. It can be said the word “map” indi-
cates that one of the application’s functions is map. The similar case goes with
word “wallpaper” and “keyboard”. This also demonstrates the functions of an
application closely relate to the actions.

6 Permission Comparator

6.1 Method to Detect Reliability of Permissions

For an application in Android Market, we define the reliability of its permissions
as whether this application should request this permission from the perspective
of its functions. If an app really needs a permission to accomplish its actual
function, we think that the request of this permission is reliable. On the other
hand, if an app requests a permission which has no relation with its description,
we guess this permission is unreliable.

We can use the model mentioned in Section 3 to detect the reliability of an
application’s permissions. In detail, if the model which makes a prediction on the
real permission list of an application predicts one of the permissions requested
by an application should not occur, we believe this permission of this applica-
tion is not reliable. To apply our model better in detecting the reliability of an
application, we should choose a fine threshold of our model to get a higher True
Positive Rate without influencing False Positive Rate too much when predicting
the reliability of permissions. So from the ROC curves, we find that we can tune
the thresholds of different permissions to fulfill the requirement of greater than
90% True Positive Rate and less than 30% False Positive Rate. That is to say,
we can use some suitable thresholds to automatically detect the reliability of
the permissions of an application. Therefore, our security framework is effective
in finding the application with wrongly requested permission list in install-time
permission system.

6.2 Test on Real Malware

After choosing a fine threshold of our model, we use this model to predict the
reliability of malicious apps’ permissions. Here we test this method on a real
malware announced by Google.

The malware is Steamy Window, which was announced to carry Android.Pjapps
code in February, 2011. A report on this malicious application by Symantec shows
that this malware adds several bookmarks to the browser and sends users personal
information to some certain server. Besides, it can also send some text messages
and block some messages with the number of service provider [14].

In Android Market, there was a legitimate application whose name, descrip-
tion and screenshot were all similar with this malware but behaviors were dif-
ferent. The permission list of the legitimate version application is INTERNET and
RECORD_AUDIO. However, the malicious application’s permission list is INTERNET,
RECORD_AUDIO, RECEIVE_SMS and READ_HISTORY_BOOKMARKS.



238 J. Zhu et al.

After testing this application with our model, the result is that the mali-
cious application should not request RECEIVE_SMS permission (we didn’t have
a test on the permission READ_HISTORY_BOOKMARKS for the reason discussed in
section 4.1). This result corresponds with the analysis report by Symantec. The
RECEIVE_SMS permission in the malicious app is used to drop some messages
without users’ attention. So in this example, RECEIVE_SMS permission should
not be added in manifest file and is disobey with the ordinary description of this
application.

Besides this application, among all the applications announced malicious by
Google, many of these malware conceal themselves as an existed trusted appli-
cation in Android Market. However, these malware change the permission list
and add some malicious functions to the ordinary applications.

After testing this malicious application with our model, we think the method
predicting the reliability of permissions can also be used in mitigating the secu-
rity problem of apps in some extent, especially the apps that conceal themselves
as some trusted apps. For these malicious applications, some of their permis-
sions are usually additionally added to realize the malicious activity. So we can
analyze the reliability of their permission lists based on the relation between the
description and the permission list.

7 Conclusion

In this paper, we provide a permission-based abnormal application detection
framework which identify an abnormal Android app based on its description and
its permission list. This novel framework consists two parts: the model which
reflects the relation between the description and the permission list and the
permission comparator. In detail, we use machine learning method (Naive Bayes
with Multinomial Event Model) to predict the occurrence of different permissions
of an application based on its description.

We evaluate our model with 5,685 applications collected from 23 different cat-
egories in official application store. The result shows that our model is able to
have an accurate prediction on different permissions. Besides, we extract some
words that have great influence on different permissions. Furthermore, we define
the permission comparator to detect the reliability of the permission list of an
application and view the permission list’s reliability as the criterion of detecting
application with hidden danger. After using this model to test a real malware,
we find this method is effective in mitigating the security problem of Android
applications, especially the malware that conceals themselves as a legitimate app.

Acknowledgment. This work is partially supported by the HGJ National
Significant Science and Technology Projects under Grant No. 2012ZX01039-004-
009, Key Lab of Information Network Security, Ministry of Public Security un-
der Grant No.C11606, the National Natural Science Foundation of China under
Grant No. 61170263.



Permission-Based Abnormal Application Detection for Android 239

References

N =

10.

11.

12.

13.

14.

. G. Inc., https://play.google.com/store

. (June 5, 2012), http://www.appbrain.com/stats/number-of-android-apps/
Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, pp. 1-6. USENIX Association (2010)

Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: Proceedings of the 20th USENIX Security Symposium (August 2011)
Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security, pp. 235-245. ACM (2009)

Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid android: ver-
satile protection for smartphones. In: Proc. 26th Annual Computer Security Ap-
plications Conference (2010)

Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets. In: Proceedings of the
19th Annual Network and Distributed System Security Symposium (2012)
Burguera, 1., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for android. In: Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices, pp. 15-26. ACM (2011)

Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. In: Pro-
ceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 3-12. Springer-Verlag New York,
Inc. (1994)

McCallum, A., Nigam, K.: A comparison of event models for naive bayes text clas-
sification. In: AAAT 1998 Workshop on Learning for Text Categorization, vol. 752,
pp. 41-48 (1998)

G. Inc., http://developer.android.com/reference/android/Manifest.
permission.html

Barrera, D., Kayacik, H., van Oorschot, P., Somayaji, A.: A methodology for em-
pirical analysis of permission-based security models and its application to android.
In: Proceedings of the 17th ACM Conference on Computer and Communications
Security, pp. 73-84. ACM (2010)

Bradley, A.: The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern Recognition 30(7), 1145-1159 (1997)

Symantec (Februbary 28, 2011),
http://www.symantec.com/connect/blogs/android-threats-getting-steamy


https://play.google.com/store
http://www.appbrain.com/stats/number-of-android-apps/
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://www.symantec.com/connect/blogs/android-threats-getting-steamy

	Permission-Based Abnormal Application Detection for Android

	Introduction
	Related Work
	Security Framework
	Permission-Based Abnormal Application Detection Framework Overview
	Model Selection

	Experiment
	Selection of Permissions to Be Predicted
	Dataset

	Results
	Evaluation of Model
	Pick Up Influential Words

	Permission Comparator
	Method to Detect Reliability of Permissions
	Test on Real Malware

	Conclusion
	References




