On Constant-Round Precise Zero-Knowledge

Ning Ding and Dawu Gu

Department of Computer Science and Engineering
Shanghai Jiao Tong University, China
{dingning,dwgu}@sjtu.edu.cn

Abstract. Precise zero-knowledge, introduced by Micali and Pass
[STOC’06], captures the idea that a view of any verifier can be indif-
ferently reconstructed. Though there are some constructions of precise
zero-knowledge, constant-round constructions are unknown to exist. This
paper is towards constant-round constructions of precise zero-knowledge.
The results of this paper are as follows.

— We propose a relaxation of precise zero-knowledge that captures the
idea that with a probability arbitrarily polynomially close to 1 a view
of any verifier can be indifferently reconstructed, i.e., there exists a
simulator (without having g(n),p(n,t) as input) such that for any
polynomial g(n), there is a polynomial p(n,t) satisfying with prob-
ability at least 1 — q(1n>, the view of any verifier in every interaction
can be reconstructed in p(n,T’) time by the simulator whenever the
verifier’s running-time on this view is 7. Then we show the impossi-
bility of constructing constant-round protocols satisfying our relaxed
definition with all the known techniques.

— We present a constant-round precise zero-knowledge argument for
any language in NP with respect to our definition, assuming the
existence of collision-resistant hash function families (against all
nCUesloe) _gize circuits).

1 Introduction

(Question.) Zero-knowledge proofs were introduced by Goldwasser, Micali and
Rackoff [6]. Their definition essentially states that an interactive proof of x € L
provides zero (additional) knowledge if, for any efficient verifier V, the view of
V in the interaction can be “indistinguishably reconstructed” by an efficient
simulator S-interacting with no one- on just input x. Since efficiency is formal-
ized as polynomial-time, a worst-case notion, zero-knowledge too automatically
becomes a worst-case notion. Micali and Pass [7] argued that this worst-case
definition of zero-knowledge may not suffice to characterize that the view can be
reconstructed indifferently. For instance, taking part in an interaction to gain a
view only requires n steps while the simulator may need n'? steps to reconstruct
this view. It is hard to say n and n'® are indifferent.

Hence [7] put forward a notion of precise zero-knowledge, which augments the
definition of zero-knowledge by presenting an additional precision requirement

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 178-[[00] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

On Constant-Round Precise Zero-Knowledge 179

that a prover provides a zero-knowledge proof of x € L if the view v of any
verifier in an interaction with the prover about x can be reconstructed in the
same time within a constant/polynomial factor.

To construct precise zero-knowledge protocols [7] developed a method, called
the “cut-off” technique. A simulator with the “cut-off” technique still adopts
the rewind strategy, but in the first run it records the verifier’s running-time
and then in the second run if the verifier cannot output the message within
this recorded time then the simulator cancels this rewind. Though its success
probability (in extracting secret) in each rewind becomes smaller, after w(1)
or w(logn) rewinds the simulator can succeed with overwhelming probability,
achieving polynomial or linear precision respectively. Recently, [3] proposed a
notion of precise time and space simulatable zero-knowledge which strengthes
the notion of precise zero-knowledge by requiring that a view of any verifier in
each interaction with a prover can be reconstructed in the same time and space
simultaneously. Then it adopted an improved “cut-off” technique to construct
some precise time and space simulatable zero-knowledge protocols.

Also, [8] presented a slightly relaxed notion of weak-precise zero-knowledge
that requires the precision requirement holds with overwhelming probability.
This paper does not distinguish the two notions for concision of statement.

There are also some negative results. [7] showed there don’t exist black-box
precise zero-knowledge protocols for any non-trivial language, and [8] showed
Barak’s non-black-box zero-knowledge argument [I] are imprecise due to the
imprecise simulation strategy.

As the known precise zero-knowledge protocols use at least w(1) rounds, a
natural question arose at that time if there exist constant-round precise zero-
knowledge proofs or arqguments. As we will point out later, it seems unhopeful to
adopt the known simulation strategies to realize precise simulation in constant-
round constructions. So a feasible way towards this question is to present a
slight but meaningful relaxation and then construct constant-round precise zero-
knowledge protocols with respect to this relaxation. In this paper we will inves-
tigate the question in this way and attempt to present an answer to it.

1.1 Owur Results

Recall that precise zero-knowledge requires that with probability 1 — neg(n) a
view of any verifier can be reconstructed in p(n,T’) time whenever the verifier’s
running-time on this view is 7. We consider a relaxation that for a protocol to be
precise zero-knowledge, there is a strict polynomial-time simulator (without hav-
ing g(n),p(n,t) as input) such that for any polynomial g(n), there is a precision
p(n,t) satisfying with probability 1 — q(ln) the simulator’s running-time in out-
putting a view is bounded by p(n,T) whenever a verifier’s running-time on this
view is T. Namely, we slightly relax the satisfiable probability from 1 — neg(n)
to 1 — q(ln) where ¢g(n) can be an arbitrarily large polynomial.

Though a precise zero-knowledge protocol w.r.t. the standard definition in
[7U8] of course satisfies our relaxation, our focus in this work is constant-round
constructions. As we will show later, all known constant-round zero-knowledge

180 N. Ding and D. Gu

protocols do not satisfy the relaxation. We will also point out that it seems still
unhopeful to adopt the known simulation techniques to construct constant-round
zero-knowledge protocols satisfying the relaxation.

Our main contribution in this paper is a constant-round construction of pre-
cise zero-knowledge protocols for any language in NP satisfying the relaxation.
Formally, we achieve the following result.

Theorem 1. Assume the existence of hash function families which collision-
resistance hold against all n®1°81°8 ™) _size circuits. Then there exists a constant-
round precise zero-knowledge argument for each language in NP with respect to
our relazation.

Our Technique. Notice that using the “cut-off” technique, we can achieve the
following result that for any ¢(n), a simulator with the “cut-off” technique can
extract secret information (in one rewind interval) with probability 1 — q(ln) and
thus the simulation satisfies a precision related to p(n,t). Note that g(n) should
be known to the simulator in advanced. However, for any other polynomial ¢’(n)
this simulator may not achieve a precision (related to ¢'(n)) with probability
1= %n)'

Our idea for going beyond this barrier is to rewind the verifier sufficiently
large polynomial (less than n'°81°8™/%) times such that for any polynomial ¢(n),
we can always be ensured that the extraction can succeed with probability at
least 1 — q(ln), while on the same time the whole simulation is still of strict
polynomial-time (not super-polynomial-time).

To realize this idea, we combine the constructions of Barak’s protocol [I] and
ordinary zero-knowledge protocols to propose a desired protocol. The protocol
consists of two phases. Phase 1 adopts a mixed structure of Barak’s protocol and
ordinary zero-knowledge protocols. Phase 2 is a constant-round zero-knowledge
universal argument (ZKUA) of the statement that z € L or the transcript 7
of phase 1 is in a language A. Basically, 7 consists of the verifier’s description
and those messages generated in the ordinary run of one rewind interval. The
language A consists of those 7’s, in which if we perform at most n'oglogn/5
rewinding runs with “cut-off” techniques at the verifier, it can output a correct
secret information. (This actually means that we relegate all rewinds to the
verification of 7 € A.)

Our simulator for this protocol is an extension of Barak’s simulator. That is,
our simulator commits to (the oblivious machine of) the verifier’s code and the
auxiliary input bits really accessed by the verifier (not the entire auxiliary input)
as well as performs other computation in phase 1. We remark that it is due to
this strategy of committing only to accessed auxiliary bits that we can bypass the
imprecision of Barak’s simulator shown in [§]. In phase 2, the simulator employs
a parallel simulation strategy which adopts the honest prover with the witness
to interact with the verifier and in parallel calls the simulator of ZKUA. S finally
adopts the output generated in that one of the two parallel simulation which
first finishes as the simulated view of phase 2. We will show the simulator can
achieve our definition indeed.

On Constant-Round Precise Zero-Knowledge 181

1.2 Organizations

The rest of the paper is arranged as follows. We assume familiarity with the
notations and notions used throughout this paper. Section P2l analyzes the barri-
ers for constructing constant-round precise zero-knowledge protocols. Section [3]
formalizes our relaxation and demonstrates the impossibility of constructing
constant-round protocols satisfying the relaxation with the known techniques.
Section [presents our constant-round protocol and shows it is an argument for
any language in NP. Section [i] presents a novel precise simulator for the proto-
col and proves that the protocol is precise zero-knowledge with respect to this
relaxation. Section [0 concludes the paper.

2 Barriers for Constructing Constant-Round Precise
Zero-Knowledge

In this section we introduce the notion of precise zero-knowledge in [78] and
review the know constructions and lastly point out the barriers that all the
known constructions and simulation strategies cannot realize constant-round
precise zero-knowledge protocols.

2.1 Precise Zero-Knowledge

Counting Steps. If M is a probabilistic machine, denote by M,. the determinis-
tic one obtained by fixing the content of M’s random tape to 7, by STEPSy;, ()
the number of computational steps taken by M, on input x.

Assume (P, V') uses u-round prover’s messages. In an execution of (P, V), for
any V* with an auxiliary input aux, denote by v = (z, aux, (m1, ma, ..., m,,)) the
view of V*, where m; is the ith prover’s message (w.l.0.g, assume V* is determin-
istic). Then denote by STEPSy«(v) the number of computational steps taken
by V* running on view v, i.e. V*’s running-time on input = and auxiliary input
aux and letting the ith message received be m;. In counting steps, we assume
that an algorithm A, given the code of a second algorithm B and an input z,
can simulate the computation of B on input = with linear-time slowdown [7].
(This assumption is inessential and we can use the logarithmic slowdown in-
stead. Actually, for Turing machines and Random Access Machines, logarithmic
slowdown is achieved.)

Definition 1. (Precise Zero-Knowledge [7[8]) Let (P, V') be an interactive
proof or arqgument system for a language L, p: N x N — N be a monotonically
increasing 2-variate polynomial. We say that (P, V') is a zero-knowledge proof or
argument with precision p if there exists a probabilistic algorithm S such that for
every polynomial-time V* and every auziliary input aux € {0,1}* for V*:

1. The view of V* in an interaction with P, where the public input is x and
P has a witness w for x € L, is computationally indistinguishable from the
output of S(x,V*, aux).

182 N. Ding and D. Gu

2. For sufficiently long random coins r € {0,1}*, let v be the view generated
by Sy(x,V*,aux). Then Pr[STEPSg, (5,v+ aux) < p(n,STEPSy-(v))] = 1 —
neg(n).

We refer to S as above as a precise simulator. We say that (P, V) has polynomial
precision or linear precision if p(n,t) is a polynomial or linear function in t.

Remark 1. The original definition in [7I8] requires it holds with probability 1 that
STEPSs, (z,v+,aux) < p(n, STEPSy-(v)). Definition [l is actually the definition
of weak precise zero-knowledge in [§]. As said before, we don’t distinguish the
two notions in this paper.

2.2 Barriers for Achieving Constant-Round Constructions

Though there exist some constructions of precise zero-knowledge, constant-round
constructions are unknown to exist. We now review the reasons that the known
constructions cannot achieve the constant-round property and polynomial pre-
cision simultaneously.

Confliction Between “Cut-off” Simulation and Constant-Round Re-
quirements. The known constructions of precise zero-knowledge in [7I8I3] em-
ploy “cut-off” simulation techniques. One such simulator counts the verifier’s
running-time in the first run and then in each rewinding run it uses the counted
time to bound the verifier’s computation, which finally ensures the simulation
time is no more than a polynomial of the verifier’s running-time. As shown in e.g.
[8], the simulator’s successful probability in extracting the secret information is
at most 1 —1/poly(n) in a rewind interval. Thus to make the success probability
overwhelming, a precise zero-knowledge protocol should use at least w(1) rewind
intervals. Thus it seems impossible to construct constant-round protocols with
the “cut-off” techniques.

Imprecision of Barak’s Non-black-box Simulator. One may ask if we can
modify the known constant-round non-black-box zero-knowledge protocols to
obtain precise zero-knowledge. However, the current situation is that the only
known construction paradigm of constant-round non-black-box zero-knowledge
is Barak’s protocol [I]. However, as shown in [§], Barak’s protocol is also im-
precise. Recall that Barak’s protocol consists of two phases. In phase 1, the
verifier sends a random hash function h to the prover, which then responds
with a commitment ¢ to the O-string. Then the verifier sends back a random
string r. Let 7 denote (h, ¢, 7). In phase 2, the prover proves to the verifier via
a WI universal argument that either x € L or 7 € A for a well-defined language
A € Ntime(n'°8!°2™), We now show the simulator for this protocol is imprecise.

Given access a verifier’s code, Barak’s protocol can be simulated without
making use of rewinding: To perform simulation, the simulator commits to the
hash of the verifier’s message function including the auxiliary input (instead of
committing to zeros). The verifier’s next message function is then a program
whose output, on input ¢, is r. This provides the simulator a valid witness to
use in phase 2. However, consider a verifier V* that has a very long auxiliary

On Constant-Round Precise Zero-Knowledge 183

input, but most of the time only accesses a small portion of it. The simulator
will always commit to the hash of whole description of V* (including the whole
auxiliary input) and will thus always take long time, while V* might run fast a
large portion of the time. Hence the simulation strategy is imprecise.

3 Our Relaxation

In this section we present a slight relaxation on the precision requirement
and then point out that the known techniques cannot achieve this relaxation
and the constant-round property simultaneously. A constant-round precise zero-
knowledge protocol satisfying the relaxation will be introduced in next section.

3.1 The Relaxed Definition

Definition [Il requires that the precision p holds for all verifiers with probability
1—neg(n). Thus a slight relaxation is to require that with a probability arbitrarily
polynomially close to 1, there exists a precision p which holds for all verifiers.
Namely, we only relax the satisfiable probability from 1 — neg(n) to 1 — 1/q(n)
where ¢(n) can be an arbitrarily large polynomial. The formal definition is as
follows.

Definition 2. (The relaxation.) Let (P,V) be an interactive proof or argu-
ment system for a language L. We say that (P,V') is a precise zero-knowledge
proof or argument, if there exists a strict PPT algorithm S satisfying the follow-
ing conditions:

1. For every poly-time V* and every auziliary input aux € {0,1}* to V*, the
output of S(x,V*,aux) is computationally indistinguishable from V*’s real
view interacting with P(xz,w).

2. For any polynomial g(n), there is a monotonically increasing 2-variate poly-
nomial p : N X N — N such that for each poly-time V* and each auziliary
input aux € {0,1}* to V*, for sufficiently long random coins r € {0,1}*,
letting v be the view generated by S,(x,V*,aux), Pr[STEPSg (5 v+ aux) <

p(n, STEPSy«(v))] > 1 — q(ln).

3.2 Limitations of the Known Techniques

At this moment one may ask if the known techniques for constructing precise
zero-knowledge can achieve our relaxation and the constant-round property si-
multaneously. Unfortunately, we now point out that the known construction
techniques cannot do this job indeed.

Let us first consider the known precise zero-knowledge protocols and the “cut-
off” simulation techniques sketched in Section As shown there, a simulator

can succeed in extraction in each rewind interval with probability 1— pol; (n)" For

any polynomial ¢(n), this success probability can be instantiated with 1 — q(ln).

184 N. Ding and D. Gu

Thus we have there is a polynomial p(n,T) such that with probability 1 — q(ln),
the simulation is precise. However, in this construction ¢(n) should be known
to the simulator in advanced. That means for any larger polynomial ¢’(n) this
simulator cannot achieve any precision related to ¢’(n) with probability 1 — ¢ (1n) .
This shows Definition Pl cannot be satisfied by this construction.

Let us then consider Barak’s protocol and his simulator. It can be seen that
the barrier shown in Section[2.2]still exists w.r.t. out relaxation. That is, for a V*,
any ¢(n) and p, there exists an aux of length more than p(n,T) where T' denotes
V*’s running-time. Since Barak’s simulator needs to compute a commitment to
V*’s next message function which contains aux, its running-time is more than
p(n,T), contradicting condition 2 of Definition 2l So Barak’s simulator is still
imprecise with respect to Definition

4 The Protocol

In this section we present a constant-round zero-knowledge argument. In Sec-
tion [£1] we give a high-level overview of the protocol. In Section we present
the actual construction and prove it is an interactive argument for NP.

4.1 The Overview

Our protocol consists of two phases. Phase 1 adopts a mixed structure of Barak’s
protocol and ordinary zero-knowledge protocols. The adopted structure of or-
dinary zero-knowledge protocols is a commitment-challenge-response paradigm.
That is, the verifier first sends the prover n commitments to random strings
which then responds with a random challenge indicating that some commitments
should be revealed, and lastly the verifier opens the corresponding commitments.

The adopted structure of Barak’s protocol is that in the above step of sending
a challenge, the prover additionally sends the verifier a commitment to the 0-
string and after the verifier opens some commitments, the prover sends the
verifier a commitment to the hash of the 0-string. The goal of this strategy is
for using Barak’s non-black-box simulation strategy.

In phase 2, the prover proves to the verifier that it knows a witness for x € L
or the transcript of phase 1 is in a language A. The definition of A requires that
a transcript is in A iff what are committed by the prover in phase 1 are actually
a program and some auxiliary input bits such that the program on given the
auxiliary input bits and a challenge, can output the value of one unrevealed
commitment by the verifier in phase 1.

4.2 Owur Language A and Protocol

In this subsection we present our protocol, which uses the following crypto-
graphic primitives:

On Constant-Round Precise Zero-Knowledge 185

— Let {Hn}nen, in which each h € H,, maps {0,1}* to {0,1}", denote a hash
function family which collision resistance holds against all n@{oglogm)_gize
circuit.

— Let HCom denote a two-round perfectly-hiding commitment scheme, BCom
denote a one-round (or two-round) perfectly-binding commitment scheme.
For simplicity of statement we always use C' or Z to denote a perfectly-hiding
or perfectly-binding commitment (while ignoring the possible first message
of HCom and BCom).

— Let PRG denote a pseudorandom generator which admits the following prop-
erties. On input an n-bit random seed r, PRG(r) can iteratively generate
arbitrarily polynomial pseudorandom bits. That is, it generates a fixed poly-
nomial pseudorandom bits in each iteration, and then when run iteratively,
PRG(r) can output an arbitrarily polynomial pseudorandom bits. [4] pre-
sented one construction of such PRGs. PRG will be used in our definition
of language A. In the verification of membership in A, PRG will be run it-
eratively. That is, the verification sets up a repetition process and in each
repetition PRG(r) is run once to output a fixed polynomial bits iteratively
based on the internal state generated in the previous iterations.

— Let CoinToss denote a constant-round coin-tossing protocol, which runs as
follows. The verifier first adopts HCom to compute a commitment to a ran-
dom n-bit string and sends it to the prover, which responds with an inde-
pendent n-bit strings. Then the verifier opens the commitment. Then the
XOR of the two strings are the final coins.

— Let ZKUA denote a constant-round zero-knowledge universal argument for

any language in NE defined in [2] and its simulator runs in strict polynomial-
time. Note that [2] already presented a construction of ZKUA, but its sim-
ulator runs in expected polynomial-time. We can easily adapt it to our re-
quitement. The ZKUA in [2] consists of two phases, where phase 1 is an
“encrypted” commitment-challenge-commitment construction and phase 2
is an ordinary zero-knowledge protocol of knowledge, aiming at proving that
the committed messages in phase 1 are consistent and satisfy the require-
ment of a PCP verification. Due to the call to the simulator of the ordinary
zero-knowledge protocol in simulation, the simulator of this ZKUA runs in
expected polynomial-time.
Now we replace the zero-knowledge protocol in phase 2 by Barak’s zero-
knowledge protocol in [I] (note that phase 2 itself of Barak’s protocol is
a WI universal arument). Thus we can see the new ZKUA owns a strict
polynomial-time simulator and still satisfies the weak proof of knowledge
property. Thus the new ZKUA is a desired universal argument.

Now we present a definition of A in Definition Bl Assume L is an arbitrary NP
language and our argument for L is shown in Protocol [l

Definition 3. (Language A). We define A as follows: 7 = (h,0,U, Z1, Za,r) €
A iff there exist a program IT € {0,1}", a string y (as auziliary input to IT) and
coins (s1,s2) such that the following conditions can be verified within n'°8l°8n
steps:

186

N. Ding and D. Gu

Public input: z € {0,1}" (statement to be proved is “z € L”);
Prover’s auxiliary input: w (a witness that « € L).

1. V. — P: Verifier selects h <r Hn. Choose u; <r {0,1}" and compute C; <+
HCom(u;) for 1 < i <n. Send h and C;,1 < i < n, to prover.

P — V: Prover selects a random o € {0,1}" and computes Z1 < BCom(0").
Send o and Z; to verifier.

V' — P: For each i satisfying that the ith bit of ¢ is 0, open all these C; to prover.
P — V: Prover computes Z2 <~ BCom(h(0™)) and sends Z to verifier.

V' — P: For all i satisfying the ith bit of o is 1, send these u;’s to prover. Let
U denote the set consisting of these u;’s. Then prove to prover via a constant-
round zero-knowledge protocol of that these u;’s are the committed messages in
the corresponding C;’s.

6. P <> V: Prover and verifier execute CoinToss to agree with random r € {0,1}".

2.

-

Let 7 denote (h,o,U, Z1, Z2,T).

P — V: Prover proves to verifier using its input w via ZKUA that z € L or 7 € A.

Protocol 1. Our precise zero-knowledge argument for L

1. Zy = BCom(II;s1) and Zy = BCom(h(y); s2), where s1,s2 denote the ran-
domness in commitments.

2. Run the following repetitions at most n'°81°€"/5 times. In the jth repetition,
j >0, do the following:

(a)

(b)
(c)

Iteratively run PRG(r) based on its existing internal state generated in
the previous (j—1) runs (if j = 1, PRG has no internal state) to generate
sufficient pseudorandom bits, denoted (o;,7;) (where o; € {0,1}™ and r;
1s used as randomness in BCom, which length is a fixed polynomial that
we omit specifying for clearness of statement);

Compute Z7 BCom(II;r;);

Run (0}, Z%,y) (y as auziliary input) and during this running if IT
needs an additional auzxiliary input bit beyond y, cancel the running and
denote by L II''s output, else let U denote II'’s output. In the case II'’s
output is U7, if there exists at least one string in Ur (viewed as a set)
such that it is in U, the verification of this condition succeeds. In other
cases, continue the repetitions.

A witness w for 7 € A is a tuple of (II,y, s1, s2) satisfying Definition Bl

Theorem 2. Assume the existence of hash function families which collision-
resistance hold against all n®(°81981) _gize circuits. Then Protocol[is an inter-
active argument for L.

Due to the hiding property of the commitments, any prover in the ordinary
run cannot know the value of any unrevealed commitment and the committed

On Constant-Round Precise Zero-Knowledge 187

program and auxiliary input by the prover are independent of the values in
the unrevealed commitments. So the program cannot output any unrevealed
message. Thus the transcript cannot belong to A, which leads to the soundness.
We remark that the full proof of Theorem [2] employs the simulator of the zero-
knowledge protocol in Step 5 to show the soundness. Due to short of space we
omit the full proof.

5 The Precise Simulator

In this section we will prove the following result.
Theorem 3. Protocol[dl is precise zero-knowledge with respect to Definition [2

In Section Bl we present the overview and actual description of our precise
simulator. In Section we show this simulator satisfies all requirements in
Definition Pl and complete the proof of Theorem [3l

5.1 The Description

Let V* denote any verifier of length {0, 1}"/2, aux be an arbitrarily long auxiliary
input to V*, S denote our simulator. Basically, S behaves like Barak’s simulator,
which runs as a prover interacting with V*, tries to obtain a witness for the
transcript 7 of phase 1 and lastly uses this witness for the combined statement
in phase 2. Informally, in phase 1 S commits to V*’s next message function
excluding aux in Step 2. W.l.o.g. let IT € {0,1}" denote this committed program
(more precisely, S first computes V*’s next message program and then generates
IT as an oblivious machine of this program). Notice that in Step 3 V* (i.e. IT)
may access some positions in aux. Thus S emulates I1’s computation on input
S’s message of Step 2 as well as aux to generate an output, and at the same time
records those auxiliary input bits IT really accesses. Let y denote the auxiliary
bits. Then S commits to the hash of y in Step 4.

In phase 2 S adopts a parallel simulation strategy, in which it uses (II,y)
(as well as some coins used in commitments) as a witness for the transcript
in A to interact with V*, and in parallel, it employs the simulator of ZKUA
to generate a view. S finally adopts that view generated in the one of the two
parallel simulation which first finishes as the simulated view of phase 2.

Oblivious Machines. We outline some facts on obvious machines to help un-
derstand the execution of II. A machine is oblivious if the sequence in which it
accesses memory locations is equivalent for any two inputs with the same run-
ning time, e.g. oblivious Turing Machines (TM) and oblivious Random Access
Machines (RAM). If an oblivious machine accesses more memory locations, it
consumes more running-time. W.l.o.g. we assume a machine can be emulated by
an oblivious machine with polynomial slowdown (for any unspecified appropri-
ate computational model used for verifiers and the simulator). For instance, [9]
showed how to emulate an arbitrary one-tape TM by a two-tape oblivious TM

188 N. Ding and D. Gu

Input: z € {0,1}" (statement to be proved is “z € L”);
Verifier’s code: V* € {0,1}"/?; V*’s auxiliary input: aux € {0,1}".

1. V* — 5: S emulates V* to output h and C; for 1 <i < n.

2. S — V™*: Compute the oblivious machine corresponding to V*’s next message
function (excluding aux), denoted II € {0,1}". S selects a random o € {0, 1}" and
random coins s;. Compute Z; < BCom(IT;s1) and send (o, Z1) to V*.

3. V* — S: S emulates IT to output some u;’s. During the emulation, S records those
bits in aux accessed by II. Denote by y these accessed bits. (Also run V* to finish
this step.)

4. S — V*: S chooses random coins s and computes Zs < BCom(h(y); s2). Send Z
to V™.

5. V* — S: S emulates V* to output the remainder u;’s and interacts with V* in the
following zero-knowledge proof. Let U denote the set consisting of these u;’s.

6. S+« V*: S and V” run CoinToss to agree with coins r € {0,1}".

Let 7 denote (h,o,U, Z1, Za,T).

S — V*: S adopts the following parallel simulation strategy. It adopts the honest
prover’s strategy with witness (I1,y, s1,s2) to prove to V* via ZKUA that x € L or
7 € A, and in parallel it calls the simulator of ZKUA to generate a simulated view. S
halts whenever an arbitrary one of the two parallel simulation finishes, and adopts the
view in the finished one as the simulated view in phase 2.

Algorithm 1. The precise simulator S

with a logarithmic slowdown, and [5] showed how to emulate an arbitrary RAM
by an oblivious RAM with a poly-logarithmic slowdown.

In our simulation, IT is an oblivious machine corresponding to the verifier’s
next message function. Thus in an execution of II, more auxiliary input bits
II accesses, more running-time II consumes. Thus that IT accesses more auxil-
iary input bits is equivalent to that II consumes more running-time. So in the
verification of 7 € A, the condition that the execution of II(---,y) should be
canceled if IT needs to access more auxiliary input bits than y is equivalent to
that the execution of IT(---,y) should be canceled if II’s running-time is more
than (the poly-logarithmic overhead of) V*’s running-time. This fact will be
used to establish the precision property of S in next subsection.

The actual construction of the simulator is shown in Algorithm [I1

5.2 Analysis

In this subsection we present the following three claims to show that S can
provide precise zero-knowledge property with respect to Definition 2l We also
sketch the proofs of them but omit the full details due to short of space.

On Constant-Round Precise Zero-Knowledge 189

Claim 4. For any polynomial q(n), with probability at least 1— q(ln) (I1,y, s1, $2)
1s a witness for T € A and on the occurrence of this the membership of T € A
can be verified with (I1,y, s1, s2) in O(q(n)w(logn)T') time, where T denotes the
running-time of Il (o, Z1,vy).

Proof. (sketch) Let II(---,y) denote II with y hardwired. We need to show the
conditions in Definition [3] can be satisfied. In the verification of 7 € A, first
assume each prover’s message (o;, Z]*) is truly random. If in the execution of
I (0}, Z5,y) II doesn’t need to access any auxiliary bit beyond y, II(0;, Z},y)
can output some decommitments to those in the verifier’'s message of Step 1.
Since o; equals the real challenge with probability 27", there is a commitment
which was not revealed in the real interaction, but is revealed in the output of
I (0}, Z},y). Thus the membership of 7 € A can be verified. Thus all that is left
is to show IT doesn’t need any auxiliary input bit beyond y in one repetition

with high probability. In fact, it is true that within 2¢(n)w(logn) repetitions, the

desired event occurs with probability at least 1 — Qq%n) — neg(n). Now replacing
each (05, Z;) by the pseudorandom strings output by PRG(r), the probability is
at least 1 — q(ln). So the claim holds. O

Claim 5. For any pair (z,w) such that w is the witness for x € L, the view
of V* in an interaction with the honest prover of Protocol [l holding (x,w) is
computationally indistinguishable from S’s output on input (x,V*, aux).

Proof. (sketch) We use Sy (resp. S2) to denote S’s strategy with the first (resp.
second) strategy used in phase 2. We have both Si’s and Sa’s outputs are in-
distinguishable from the real view of V*. In particular, over any noticeable sub
probability space, S1’s output is indistinguishable from Ss’s. We then show S’s
output is indistinguishable from S7’s. If there is only an negligible probabil-
ity that S’s strategy in phase 2 equals Sy, the fact holds. Otherwise, let B
denote the noticeable event that S’s strategy in phase 2 equals S;. So on the
occurrence of B, S is actually S;. Then for any D, | Pr[D?(n) = 1]—Pr[D%1(n) =
1] < Pr[B]|Pr[D%(n) = 1|B] — Pr[D%(n) = 1|B]| + Pr[B]|Pr[D%(n) =
1|B] — Pr[D%(n) = 1|B]] < |Pr[D%(n) = 1|B] — Pr[D%(n) = 1|B]|.
Since |Pr[D®(n) = 1|B] — Pr[D%(n) = 1|B]| = neg(n), S’s output is indis-
tinguishable from S;’s. The claim holds. O

Claim 6. S satisfies condition 2 of Definition [2.

Proof. (sketch) Choose a random sufficiently long coins rand for S. Let T” de-
note STEPSy (v), where V3,x denotes V* with the auxiliary input aux. We
now analyze t%e running-time of S. First, S runs in strict polynomial-time. S’s
running-time for emulating V3% is O(T”+T'). Due to Claim [and the relatively
efficient prover property of ZKUA, S’s running-time in phase 2 is O(n®T*) for
some constant cg, ¢ (where ¢, ¢ are independent of T, T"). So we have there ex-
ists a polynomial p(n,T") such that S’s running-time is less than p(n,T”) with

probability 1 — q(ln). The claim holds. a

Combining the three claims, we complete the proof of Theorem [3l Then com-
bining it with Theorem 2] we also complete the proof of Theorem [l

190 N. Ding and D. Gu

6 Conclusions

In this paper we investigate the question of how to construct constant-round
precise zero-knowledge protocols. Since there are some barriers in solving this
question that cannot be go beyond with all the known techniques, we look for a
meaningful relaxation for precise zero-knowledge and a candidate constant-round
construction with respect to the relaxation.

As a result, we propose one such relaxation that requires that with a prob-
ability arbitrarily polynomially close to 1, there exists a precision p such that
the simulator can reconstruct all verifiers’ views satisfying the requirement p.
Then we show the impossibility of constructing constant-round protocols sat-
isfying our relaxed definition with all the known techniques, which makes the
relaxation meaningful with respect to constant-round constructions. The main
contribution of this work is a constant-round precise zero-knowledge argument
for NP satisfying the relaxation.

Acknowledgments. The authors are grateful to the reviewers of ICICS 2012 for
their useful comments. This work is supported by the National Natural Science
Foundation of China (61100209) and Shanghai Postdoctoral Scientific Program
(11R21414500).

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106—
115 (2001)

2. Barak, B., Goldreich, O.: Universal arguments and their applications. In: IEEE
Conference on Computational Complexity, pp. 194-203 (2002)

3. Ding, N., Gu, D.: Precise Time and Space Simulatable Zero-Knowledge. In: Boyen,
X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 16-33. Springer, Heidelberg
(2011)

4. Goldreich, O., Micali, S.: Increasing the expansion of pseudorandom generators
(1996), http://www.wisdom.weizmann.ac.il/oded/papers.html

5. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431-473 (1996)

6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. STAM J. Comput. 18(1), 186-208 (1989)

7. Micali, S., Pass, R.: Local zero knowledge. In: Kleinberg, J.M. (ed.) STOC, pp.
306-315. ACM (2006)

8. Pass, R.: A precise computational approach to knowledge. Tech. rep., Ph. D. thesis,
MIT. Available (2006)

9. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2),
361-381 (1979)

http://www.wisdom.weizmann.ac.il/oded/papers.html

	On Constant-Round Precise Zero-Knowledge
	Introduction
	Our Results
	Organizations

	Barriers for Constructing Constant-Round Precise Zero-Knowledge
	Precise Zero-Knowledge
	Barriers for Achieving Constant-Round Constructions

	Our Relaxation
	The Relaxed Definition
	Limitations of the Known Techniques

	The Protocol
	The Overview
	Our Language and Protocol

	The Precise Simulator
	The Description
	Analysis

	Conclusions
	References

