
Conversion of Real-Numbered
Privacy-Preserving Problems

into the Integer Domain

Wilko Henecka, Nigel Bean, and Matthew Roughan

School of Mathematical Sciences, University of Adelaide, Australia
{wilko.henecka,nigel.bean,matthew.roughan}@adelaide.edu.au

Abstract. Secure Multiparty Computation (SMC) enables untrusting
parties to jointly compute a function on their respective inputs without
revealing any information but the outcome. Almost all techniques for
SMC support only integer inputs and operations. We present a secure
scaling protocol for two parties to map real number inputs into inte-
gers without revealing any information about their respective inputs.
The main component is a novel algorithm for privacy-preserving random
number generation. We also show how to implement the protocol using
Yao’s garbled circuit technique.

1 Introduction

For the last 30 years the field of privacy-preserving techniques for distributed
computation, also called Secure Multiparty Computation (SMC), has been grow-
ing. It offers solutions for multiple parties to compute functions without revealing
their respective inputs to each other. These techniques have come a long way
from the first theoretical ideas to practical solutions for problems such as elec-
tronic voting, auctions, data mining, network management and optimisation.

Almost all secure multiparty computation techniques have a message space
consisting of a finite set of integers and the operations they provide are only
defined over the integers. What if you want to engage in a privacy preserving
protocol with real numbers, or floating point approximations? You can either
extend a SMC technique to support fixed-point [1] or floating-point [2, 3] arith-
metic, or you create a mapping from the inputs into the integer space and then
use conventional SMC [4–6]. The first approach introduces more complexity and
limits the choice of techniques to just a few, the latter raises an interesting pri-
vacy question: How do you agree on a mapping without revealing information
about the inputs?

In this paper we present the first secure scaling protocol for two parties.
It enables them to agree on a mapping (by scaling) in a privacy-preserving
manner. The key building block for this protocol is a novel algorithm for privacy-
preserving random number generation. We also provide an efficient implemen-
tation of the protocol.

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 131–141, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

132 W. Henecka, N. Bean, and M. Roughan

2 Secure Multiparty Computation

Secure Multiparty Computation (SMC) protocols enable parties to carry out
distributed computation tasks without having to reveal their inputs to each
other. The most famous example is the millionaires problem: Two millionaires
want to find out who is richer without revealing their actual wealth to each
other. When SMC was introduced in 1982 by Yao [7], he used this example as a
motivation.

Yao’s Garbled Circuits. The earliest generic solution for SMC was proposed
by Yao in 1986 [8]. It is a constant-round protocol for securely computing a
two-party function while at the same time keeping the inputs private. Let Alice
and Bob be two parties holding the inputs x(A) and x(B) respectively and f be
a polynomial-time function. The first step is to view f as a Boolean circuit C.

Boolean Circuit: A Boolean circuit consists of wires and gates. The wires trans-
mit a value {0, 1} and the gates compute a Boolean function on their input wires,
and output the result to another wire. This wire may then be connected to the
input of another gate or be an output value of the circuit (Figure 1). Mathe-
matically we describe a circuit by a series of functions gi(α, β), α, β ∈ {0, 1},
gi : {0, 1}n → {0, 1}.

α β γ

g1

g2

δ = g2(g1(α, β), γ)

with α, β, γ, δ ∈ {0, 1}
and gi : {0, 1}2 �→ {0, 1}

Fig. 1. A Boolean circuit consisting of 2 two-input gates

Once the input wires to a gate are given values α, β, it is possible to compute
g1(α, β) and assign it to the output wire which becomes an input to g2(·, ·), etc.
The output of the circuit is given by the values of the output wires of the circuit.
Thus, computing the circuit C is essentially just allocating appropriate Boolean
values to all wires of the circuit.

Privacy: The values for some wires are provided by Alice, and others by Bob.
These represent private inputs that should not be leaked to the other party.
Likewise all intermediate values have to remain hidden, since they could reveal
information about the inputs. The only values learned should be the outputs.
The protocol works by having one party (say Alice) first generate a garbled
version of the circuit and then send it to Bob. To create the garbled circuit Alice

Conversion of Real-Numbered Privacy-Preserving Problems 133

first assigns random labels for the 0 and 1 states of all wires. She then uses
these labels as keys to encrypt the truth-tables of the gates and finally sends
the encrypted values to Bob. In this form it doesn’t leak any information to
Bob. However, he can obtain the output of the circuit by decrypting it, using
the labels given to him by Alice. In order to ensure that Bob learns nothing
more than the output itself, Bob is only given the labels for the actual input
values (not all possible inputs). He receives the labels for his input by running
an oblivious transfer protocol with Alice (See [9] for further details).

Security Model: Yao’s protocol for SMC is secure in the semi-honest model, i.e.,
parties are assumed to correctly follow the protocol, and there is no efficient
adversary that can extract more information from the transcript of the protocol
execution than is revealed by that party’s private input and the result of the
function. There are also extensions to the protocol which are secure against
certain types of active adversaries: (See Lindell and Pinkas [9] and the citations
therein).

Practicality: Recent contributions [10, 11] improved the efficiency of implemen-
tations of Yao’s protocol significantly.

Over the past few years several implementations for generic secure two-party
computation using garbled circuits have been developed [11–14]. They differ in
abstraction level, supported optimisation techniques and efficiency. We use [14]
because it allows construction of dynamic loops.

There are other protocols for secure multiparty computation, varying in as-
sumptions, security guaranties, number of supported parties, performance and
supported operations (see [15] for an overview). However, our protocol translates
naturally into a Boolean circuit.

3 Secure Scaling

Almost all secure multiparty computation techniques support only integers as
inputs and operations on the integers. To engage in a privacy preserving protocol
having real numbers, or floating point approximations, as inputs, you can define
a mapping from the real inputs into the integer space and then use conventional
SMC.

The obvious trivial approach to map real numbers to integers is scaling and
quantisation. Let r ∈ R be the real number input. Then i = �s ·r� is the mapping
from r to i, where �·� is the function that rounds to the nearest integer, and s
is a scaling factor the parties agree on.

It is easy to see that the scaling factor leaks information about the inputs,
since it has to be chosen such that all inputs are mapped into the finite set and
are still distinguishable. Each party can support a different set of scaling factors,
depending on their respective inputs. Revealing these sets to each other leaks
information. They want to agree on a scaling factor without having to reveal
any information about their supported sets other than they contain the chosen
scaling factor.

134 W. Henecka, N. Bean, and M. Roughan

We propose a Secure Scaling protocol to pick a scaling factor at random out of
the intersection of ranges given by two parties. The basic idea is to first compute
a secure set intersection and then, without revealing the intersection, pick an
element at random (see Section 4.4). While secure set intersection protocols are
readily available we propose the first protocol we know of to draw a random
number from a private range.

4 Drawing Random Numbers from a Private Range

We don’t want to reveal the range of the scaling factors, once it is computed
with the privacy-preserving set-intersection protocol. Instead we keep it in the
encrypted space and use it as the input to the random number algorithm. The
goal of this algorithm is to pick an element uniformly at random out of the range
without giving the participants any more information than the randomly drawn
element itself.

We first show the simple case where the range starts with 0 and has a power of
two elements. Then we allow for an arbitrary number of elements, still starting
with 0, and finally we present the algorithm where both bounds of the range are
arbitrary values.

4.1 Range N2m−1 = {0, 1, 2, . . . , 2m − 1}

The setN2m−1 = {0, 1, 2, . . . , 2m−1} is the set of integers that can be represented
by an m-bit number. If we choose m random bits, each with probability 1/2, the
binary number denoted by these bits will be uniformly distributed over N2m−1.
The algorithm combines random bits chosen by both parties, and then chooses
m of these.

Let the private input m come from a finite set I = {0, 1, . . . , n}, which is
agreed on by both parties, and, N2n−1 = {0, 1, . . . , 2n− 1} be the set of all n-bit
integers. Now both parties choose r(A), r(B) ∈R N2n−1, respectively, where ∈R
means chosen uniformly at random from the set. The algorithm first combines
the random n-bit inputs by the bitwise exclusive OR operation (XOR) to get
r, and then selects the m least significant bits of r by computing the output
x = r mod 2m.

Algorithm 1. urandom1: Drawing x randomly from {0, 1, 2, . . . , 2m − 1}
Inputs: (private) m ∈ I
Outputs: x = urandom1({0, 1, . . . , 2m − 1})

r ← r(A) XOR r(B) {r(A), r(B) ∈R N2n−1, where r(i) is provided by party i}
x← r mod 2m

return x

Conversion of Real-Numbered Privacy-Preserving Problems 135

Correctness: It is easy to see that x ∈ {0, 1, . . . , 2m−1} since that is exactly the
co-domain of r mod 2m. We also have to show that x is a uniformly distributed
random variable over that range.

Lemma 1. If at least one of r(A) and r(B) is chosen uniformly at random out of
N2n−1 = {0, 1, . . . , 2n−1} then r = r(A) XOR r(B) is a random number uniformly
distributed over N2n−1.

Proof. Let N2n−1 = {0, 1, 2, . . . , 2n − 1} be the set of all integers that can be
represented by n bits. If r(A) is a random variable on N2n−1, then there exists a

unique random vector (r
(A)
1 , . . . , r

(A)
n) on {0, 1}n such that r(A) =

∑n
i=1 2

i−1r
(A)
i .

If r(A) is uniformly distributed over N2n−1 then the r
(A)
i ’s are mutually inde-

pendent Bernoulli random variables with parameter 1/2. r = r(A) XOR r(B) can

now be written as r =
∑n

i=1 2
i−1ri with ri = r

(A)
i XOR r

(B)
i . Note that the XOR

operation returns 1 iff both arguments are different.
Assume that r(A) is uniformly distributed. Therefore

Pr[ri = 1|r(B)
i = 0] = Pr[r

(A)
i = 1] = 1/2

Pr[ri = 1|r(B)
i = 1] = Pr[r

(A)
i = 0] = 1/2.

Note that the value of r
(B)
i has no influence on Pr[ri = 1]. Thus Pr[ri = 1] =

Pr[ri = 0] = 1/2. XOR is a bitwise operation and the ri are mutually indepen-
dent and thus r is uniformly distributed over N2n−1. ��
Now x = r mod 2m can be rewritten as x =

∑m
i=1 2

i−1ri since the mod2m op-
eration selects the m least significant bits of r. The ri are mutually independent
Bernoulli random variables with parameter 1/2, hence x is a random variable
uniformly distributed over {0, 1, . . . , 2m − 1}.

Security: We want to keep the input m private. We will ensure that the parties
don’t learn it using the garbled circuit technique (see Section 5). What’s left to
show is that neither party can choose their input to manipulate the output. A
successful attack would distort the uniform distribution of the output. However,
we know from Lemma 1 that the output is uniformly distributed as long as at
least one input is uniformly distributed. So even if party A (or party B) deviates
from the protocol and deliberately chooses a specific value for r(A) (or r(B)) the
output will remain uniformly distributed.

4.2 Range Nq = {0, 1, . . . , q}
In this section, we relax the restriction that the size of the range must be an
exact power of two. Now we allow any range Nq = {0, 1, . . . , q} with q ∈ N. The
number of elements in that range is not necessarily a power of two and therefore
we can’t directly apply Algorithm 1.

136 W. Henecka, N. Bean, and M. Roughan

We use the acceptance-rejection method to constructing a Las Vegas type
algorithm that uses Algorithm 1 repeatedly until it produces a value in the
required range. To do this, we extend Nq to N2m−1 so that it is of the form of
Algorithm 1. That is, we choose the unique m ∈ N with 2m−1− 1 < q ≤ 2m− 1,
and then run the algorithm as described in Algorithm 2. This approach translates
naturally into a compact circuit with a number of gates that is linear in the input
size.

Algorithm 2. urandom2: Drawing x randomly from {0, 1, . . . , q}
Inputs: (private) q ∈ N2n−1

Outputs: x = urandom2({0, 1, . . . , q})
m← �log2(q) + 1�
repeat

x← urandom1({0, 1, . . . , 2m − 1})
until x ≤ q
return x

Correctness: When the algorithm terminates x ∈R {0, 1, . . . , q} since the exit
condition ensures x ≤ q, and urandom1 produces non-negative numbers, and
x is uniformly distributed since acceptance-rejection sampling of a subset of a
uniform distribution is again uniformly distributed.

The number of iterations of the loop follows a geometric distribution. Let X
be a random variable describing how many iterations Algorithm 1 takes to get
a valid result. The probability that X ≤ k with k ∈ N is

Pr[X ≤ k] = 1− (1− Pr[x ≤ q])k.

The probability that the exit condition is fulfilled in one iteration is

Pr[x ≤ q] ≥ 2m−1 + 1

2m
>

1

2
,

because 2m−1 − 1 < q ≤ 2m − 1, and so Pr[X ≤ k] > 1− (1/2)k.
That means that even in the worst case the expected number of iterations is

less than 2, and the probability of less than 10 iterations is greater than 99.9%.
We illustrate the performance in Section 5.2.

Security: Again, neither party can distort the uniform distribution of the random
value by the same argument as for Algorithm 1.

4.3 Range Np,q = {p, p + 1, . . . , q}
In the most general case where the range is arbitrary we first shift it to zero and
then use Algorithm 2 to compute a random value and finally shift it back to the
initial range (See Algorithm 3 for details).

Conversion of Real-Numbered Privacy-Preserving Problems 137

Algorithm 3. urandom3: Drawing x randomly from {p, p+ 1, . . . , q}
Inputs: (private) p, q ∈ N2n

Outputs: x = urandom3({p, p+ 1, . . . , q})
m← �log2(q − p) + 1�
repeat

s← urandom1({0, 1, . . . , 2m − 1})
until s ≤ q − p
return x = s+ p

Correctness and Security: Correctness and security follow from the same argu-
ments as for Algorithm 2.

4.4 Secure Scaling

Once we have a random number generator, we can build an efficient solution for
the secure scaling problem.

Both parties input their smallest (p(A), p(B)) and biggest (q(A), q(B)) possible
scaling factors. The first step is to determine the intersection of these ranges
by computing the boundaries of the intersection as p = max(p(A), p(B)) and
q = min(q(A), q(B)). In the second step we use the random number generator to
select an element out of {p, p+ 1, . . . , q}.

Algorithm 4. The Secure Scaling algorithm

Inputs: p(A), q(A), p(B), q(B) ∈ N2n−1

Outputs: s ∈R {p(A), p(A) + 1, . . . , q(A)} ∩ {p(B), p(B) + 1, . . . , q(B)}
p← max(p(A), p(B))
q ← min(q(A), q(B))
s← urandom3({p, p+ 1, . . . , q})
return s

Correctness and Security: Correctness and security follow from the same argu-
ments as for Algorithm 2. In the following section we show how to implement
all of the steps needed in Algorithm 4 using garbled circuits.

5 Secure Scaling with Boolean Circuits

We compute the secure scaling algorithm with Yao’s garbled circuit technique by
expressing it as a Boolean circuit. Boolean circuits are easily combined, so we will
show the subcircuits corresponding to the elementary operations in the algorithm.

We will describe the complexity of each subcircuit by the number of non-
linear two-input gates in relation to the number of bits l needed to represent the
inputs p(A), p(B), q(A), q(B). A linear input gate has an even number of zeros and
ones in the truth table. The linear gates for a constant output or the (negated)
identity of an input wire can be trivially optimised away, e.g. XOR gates can be
evaluated essentially for free [16], therefore the dominating factor for efficiency
of the circuits is the number of non-linear gates.

138 W. Henecka, N. Bean, and M. Roughan

– (min(q(A), q(B)), max(p(A), p(B))): To compute these we use the integer com-
parison circuit described by Kolesnikov et al. [17], it has a complexity of l
non-linear gates.

– (m← �log2(q − p) + 1�): In this step we don’t actually have to compute m,
because all we need later on is a bit mask to select the �log2(q − p) + 1�
least significant bits. Therefore we first compute t = q − p with the integer
subtraction circuit described in [17] and then we use a chain of OR-gates
(see Figure 2) to calculate the mask 2�(log2(t)+1� − 1. This circuit consists of
l − 1 non-linear gates.

y0

∨

t0. . .

. . .

. . .

∨ �

yl−3

tl−3

∨ �

yl−2

tl−2tl−1

�

yl−1

Fig. 2. A chain of OR gates to compute y = 2�log2(t)+1� − 1

– (r = r(A) XOR r(B)): r is just a bitwise XOR between r(A) and r(B). There-
fore the complexity is 0 non-linear gates.

– (s = r mod 2m): Computing modulo a power of two is the special case where
we just want to select the m least significant bits of r. We can achieve this
by computing a bitwise AND between r and 2m − 1, the bit-mask with the
m least significant bits set to 1. This is exactly the bit-mask we computed
before. The complexity is l non-linear gates.

– (repeat until s ≤ q − p): Note that this loop has an unknown number of iter-
ations, therefore it is impossible to generate the whole circuit to compute the
loop beforehand. However, in this case, where the exit condition of the loop
does not reveal any sensitive information, we can use a step-by-step approach.
That is, the creator generates the circuit for one round of the loop and then
the evaluator evaluates the circuit and reveals the result of the exit condition.
Depending on that result the creator then generates either another round of
the loop or goes on with the rest of the algorithm. Note that the disclosure of
the result of the exit condition gives neither party an advantage in inferring
the other parties input as long as their random inputs are kept private. This
privacy is guaranteed by the garbled circuit technique.
For the exit condition we can reuse q − p which we computed before. Thus
we only need an integer comparison circuit [17] which has a complexity of l
non-linear gates.

– (x = s+ p): We use the addition circuit of [17] to compute this sum. Again,
the complexity is l non-linear gates.

Conversion of Real-Numbered Privacy-Preserving Problems 139

Overall Complexity: Let X describe the number of iterations of the repeat-until
loop in Algorithm 2. Then the number of non-linear gates add up to 2l+2l−1+
X(2l) + l = 5l− 1 + 2lX . Since X follows a geometric distribution with success
probability 1/2 < p ≤ 1, we know that 1 ≤ E[X] < 2, thus the expected overall
complexity is less than 9l.

5.1 Implementation

We chose the EFSFE framework of Henecka and Schneider [14] to implement our
example of the random scaling factor. Amongst other optimisation techniques
used in this framework the following are particularly useful for our application:

– Pipelined circuit execution: The circuit generation and evaluation processes
are overlapped in time [11] thereby removing the need to construct the com-
plete circuit before the evaluation, which is useful here because we cannot
build the circuit in advance, since the number of iterations is dynamic.

– Oblivious-transfer extension: In [18], Ishai et al. show how to efficiently ex-
tend Oblivious transfer. You first have to execute a certain amount of con-
ventional OTs and then by using this result you can generate a virtually
unlimited number of very efficient OTs. (The initial OTs take ∼ 0.5 s, and
then every additional OT takes only 3.5 μs).

The EFSFE framework contains a library of circuits for common arithmetic
which can be easily combined to describe the desired function. You can combine
circuits from and add circuits to the library by extending the CompositeCircuit
class. For example, the implementation of the chain of OR-gates circuit as shown
in Figure 2 is done by defining subcircuits and connecting them with wires as
follows:

public class NextBitMask extends CompositeCircuit {

protected void createSubCircuits() throws Exception {

for(int i=0; i<l-1; i++){

subCircuits[i] = OR_2_1.newInstance();

}

super.createSubCircuits();

}

protected void connectWires() throws Exception {

for(int i=0; i<l-1; i++){

inputWires[i].connectTo(subCircuits[i].inputWires, 0);

}

inputWires[l-1].connectTo(subCircuits[l-2].inputWires, 1);

for(int i=0; i<l-2; i++){

subCircuits[i+1].outputWires[0].connectTo(

subCircuits[i].inputWires, 1);

}

}

protected void defineOutputWires() { ... }

140 W. Henecka, N. Bean, and M. Roughan

5.2 Measurements

All our measurements were run on an iMac with a Core i3 3Ghz processor, run-
ning Mac OS X 10.6.8 and Java 1.6.0 31. We ran measurements for four different
input sizes (10, 100, 1000 and 10000 bits). For each size we ran the secure scaling
algorithm 10000 times with inputs (p(A), p(B), q(A), q(B)) generated uniformly at
random from the set of non-negative integers able to be represented by the given
number of bits. The resolution of the measurements is 1 ms, therefore the data
points for the 10 bit input size are not very precise and only included in the
graph to underline the overall trend. Figure 3 shows the distributions of the
runtimes for the different input sizes. The single red line denotes the median,
the blue box include the data points from the 25th to the 75th percentile and the
whiskers include all points up to 1.5 times the size of the blue box. The linear
circuit complexity with respect to input bit lengths is clear. Note also the very
strong right skewness of the data.

Figure 4 shows the complementary cumulative distribution functions of the
number of iterations for different input sizes. That is the probability that a run has
more thanX iterations. We also added the worst case scenario for 1000 bit inputs,
that is the inputs are chosen such that the private range is 2999 and therefore the
probability that the exit condition of the loop is fulfilled is (2999+1)/21000 ≈ 1/2.
We see that the input size has little effect on the distribution. Even for the worst
case the probability for a high number of iterations drops rapidly.

1

10

100

1000

 10 100 1000 10000
bitlength

tim
e

in
 m

s

Fig. 3. Runtime distributions of the secure
scaling algorithm for different input sizes

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

Iterations

P
ro

pa
bi

lit
y

10 bit: random range
100 bit: random range
1000 bit: random range
10000 bit: random range
1000 bit: worst case

Fig. 4. Complementary cumulative distri-
bution functions of the number of itera-
tions for different input sizes

6 Conclusions

This paper presents a protocol to solve the secure scaling problem. Its main com-
ponent is, to our knowledge, the first privacy-preserving random number genera-
tor. We believe that it might be a useful component for other privacy-preserving
protocols. We show the practicality of our solution by an implementation of the
protocol.

Conversion of Real-Numbered Privacy-Preserving Problems 141

Acknowledgement. The authors would like to acknowledge the support of an
Adelaide Scholarship International, a supplementary Scholarship of the Defence
Systems Innovation Centre, and Australian Research Council grant DP0985063.

References

1. Catrina, O., Saxena, A.: Secure Computation with Fixed-Point Numbers. In: Sion,
R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)

2. Fouque, P., Stern, J., Wackers, G.: Cryptocomputing with Rationals. In: Blaze, M.
(ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003)

3. Franz, M., Deiseroth, B., Hamacher, K., Jha, S., Katzenbeisser, S., Schroeder, H.:
Secure computations on Non-Integer values. Technical report (2010)

4. Nguyen, H., Roughan, M.: Multi-Observer privacy preserving hidden markov mod-
els. In: IEEE/IFIP NOMS, pp. 514–517 (2012)

5. Blanton, M., Aliasgari, M.: Secure computation of biometric matching. Technical
Report CSE Technical Report 2009-03, University of Notre Dame (April 2009)

6. Bianchi, T., Piva, A., Barni, M.: On the implementation of the discrete fourier
transform in the encrypted domain. IEEE Transactions on Information Forensics
and Security, 86–97 (March 2009)

7. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, pp. 160–164 (1982)

8. Yao, A.C.: How to generate and exchange secrets. In: 27th Annual Symposium on
Foundations of Computer Science, pp. 162–167. IEEE (October 1986)

9. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

10. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Compu-
tation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

11. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security Symposium (2011)

12. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party compu-
tation system. In: USENIX Security Symposium (2004)

13. Henecka,W., Kögl, S., Sadeghi, A.R., Schneider, T.,Wehrenberg, I.: TASTY: tool for
automating secure two-party computations. In: Proceedings of the 17th ACM Con-
ference on Computer and Communications Security, CCS 2010, pp. 451–462 (2010)

14. Henecka, W., Schneider, T.: EFSFE: Even faster secure function evaluation (sub-
mission, 2012)

15. Frikken, K.: Secure multiparty computation. In: Algorithms and Theory of Com-
putation Handbook, 2nd edn., pp. 1–16. Chapman & Hall/CRC (2009)

16. Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and
Applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

17. Kolesnikov, V., Sadeghi, A., Schneider, T.: Improved Garbled Circuit Building
Blocks and Applications to Auctions and Computing Minima. In: Garay, J.A.,
Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer,
Heidelberg (2009)

18. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

	Conversion of Real-Numbered Privacy-Preserving Problems into the Integer Domain

	Introduction
	Secure Multiparty Computation
	Secure Scaling
	Drawing Random Numbers from a Private Range
	Range N2m-1={0,1,2,…, 2m-1}
	Range Nq={0,1,…,q}
	Range Np,q={p, p+1,…, q}
	Secure Scaling

	Secure Scaling with Boolean Circuits
	Implementation
	Measurements

	Conclusions
	References

