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Abstract. We present a method for prognostics biomarker mining based on a 
genetic algorithm with a novel fitness function and a bagging-like model  
averaging scheme. We demonstrate it on publicly available data sets of gene 
expressions in colon cancer tissue specimens and assess the relevance of the 
discovered biomarkers by means of a qualitative analysis.  Furthermore, we test 
performance of the method on the cancer recurrence prediction task using two 
independent external validation sets. The obtained results correspond to the top 
published performances of gene signatures developed specially for the colon 
cancer case.     
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1 Background  

The recent advances in high-throughput technologies have opened a wide space of 
opportunities for studying complex diseases, such as cancer, at the molecular level. 
These led to the successful development of clinically approved diagnostic tests based 
on gene expression, such as the MammaPrint [1,2] for breast carcinoma. However, 
the complexity of resulting data from next generation sequencing or microarray ex-
periments still poses a great analytical challenge.  High dimensionality that character-
izes high-throughput data, together with usually low number of available samples, 
renders classical statistical methodology nearly helpless when faced with data analy-
sis tasks in this domain. This creates the increasing demand for data-driven modelling 
approaches capable of facilitating search for prognostics biomarkers. In this study we 
propose a methodology for mining cancer biomarkers from high-throughput data and 
demonstrate it on microarray samples in colon cancer.  

Colorectal cancer is the third most common cancer type worldwide [3]. The dis-
ease starts as a benign polyp that develops to advanced adenoma and finally to inva-
sive carcinoma.  Although fairly curable if discovered on time (prior to stage III), a 
long term survival of initially successfully treated colorectal cancer patients critically 
depends on the stage of the disease at the time of diagnosis. As the current staging 
system does not always accurately reflect patient’s individual risks [4], there is a 
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growing need for patient-tailored diagnostics and prognostics tests. This resulted in 
increased efforts in the development of the gene signatures for this type of cancer  
[5-7]. 

The main objective of biomarker mining is to aid in the discovery of genes, pro-
teins or other biological indicators that could be potentially associated with a particu-
lar clinical condition. By performing a part of this process in an automated fashion the 
costs of wet-lab analysis and the clinical trials could be sustainably reduced, which 
motivated a myriad of recent research initiatives in this direction. In general, one can 
distinguish between the two main types of tasks and the corresponding methods that 
fall within a category of biomarker mining. The first includes approaches for the iden-
tification of causative factors of disease development and progression, thus of poten-
tial therapeutic targets. The second consists of methods for searching biomarkers of 
which alternations are indicative with, but not necessarily directly involved, in disease 
onset. These are mostly used for diagnostics or prognostics purposes, which renders 
this task closely related to feature selection as known in the field of machine learning.  

In this work we present a genetic algorithm-based method that facilitates the later 
approach to biomarker mining.  It essentially searches through the space of possible 
gene combinations to optimize prediction accuracy, taking into account multivariate 
relations between genes. Also, in contrast to similar existing methods, it explicitly 
enforces short gene signatures through the fitness function with a constant shrinkage 
pressure. Furthermore, we employ an iterative randomized procedure similar to boot-
strapping to enhance robustness of resulting gene signatures.  

Genetic algorithms have been frequently used for feature selection as they scale 
well with increasing data dimensionality and do not rely on a particular decision sur-
face form. This renders them suitable for solving multidimensional, non-
differentiable, non-continuous and other types of problems of arbitrary complexity; 
such as in genetic biomarker discovery. Jourdan et al. [8] use GA for feature selec-
tion, taking into account spatial correlation between neighbouring genes on the chro-
mosome. In [9] Jirapech-Umpai and Aitken proposed an evolutionary approach  
without cross-over for the same task and demonstrated it on two microarray data sets 
on cancer. They also compared it against a simple wrapper method based on genetic 
algorithm. However, both described approaches assume a fixed number of features. 
Ooi and Tan [10] partially address this problem in an implicit way - by introducing 
the gene that controls the size of a solution, but still within a predefined range.  

This paper is organised as follows. The second section describes the method (2.1) 
and the datasets (2.2) used. Discussion on the method starts with an introduction to 
genetic algorithms, followed by a top-level view on the system, a detailed description 
of the fitness function, other particularities of our implementation and the experimen-
tal framework for the external evaluation. The sub-section on data sets (2.2) contains 
a description of the data together with the details on preprocessing.  The third section 
discusses results in terms of qualitative biological analysis, followed by quantitative 
external evaluation. Finally, in the fourth section we present our conclusions.    
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2 Materials and Methods  

2.1 Introduction to Genetic Algorithms 

Genetic algorithms (GA) [11,12] are a class of search and optimization methods in-
spired by the “survival of the fittest” concept as known in evolutionary biology.  They 
mimic the process of natural selection by repeatedly generating sets of solutions, 
called populations, from which the fittest individuals (sometimes also called chromo-
somes) are selected for producing the next generation. Here each and every individual 
represents one candidate solution of the optimization problem, usually by an array of 
binary values called genes. It is an iterative process that terminates when the given 
objective is achieved or when some stopping criteria is met.  

The particular implementation of a genetic algorithm is completely characterized 
by its fitness function and the types of genetic operators used. The fitness function 
reflects the quality of a single individual (i.e. of a single solution) and thus affects the 
probability that it later would be kept in the next generation or selected for combining 
with other well adapted individuals. This function is essential for guiding the search 
process and therefore its form represents an important algorithm design choice. 

The genetic operators play a crucial role in the diversification of the solution pool 
through chromosomal structure alterations. The two most important are the crossover 
and the mutation, while additional custom operators, such as a random immigrant, are 
also used sometimes.  Crossover is a mechanism of exchanging genes between two 
individuals (parents) in a random manner to produce child solutions (Fig. 1). It could 
take various forms given the particular implementation of genetic algorithm, such as 
single-point, two points “cut and splice”, half-uniform, uniform or other. The muta-
tion operator affects one or more genes of a single chromosome in a way that is 
analogous to natural mutations. Usually, the value of a single bit of individual  
solution is flipped according to the predefined probability (Fig. 1). 

 

Fig. 1. Genetic operators: crossover (A) and mutation (B) 

2.2 The Method 

Our strategy for biomarker mining could be summarized by the following workflow 
(see Fig. 2). The core of our method is a genetic algorithm that optimizes a feature 
subset given the data and preferred classification performance metrics. This GA util-
izes a customized fitness function based on supervised classification and the minimi-
zation of genetic signature length. The described optimization process is repeated 
iteratively, following a procedure similar to bagging [13] to facilitate robustness of 
the final result.   
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Fig. 2. The workflow of biomarker mining 

We represent presence/absence of a biological gene in the signature by a value of a 
corresponding binary variable (gene) in a chromosome of the genetic algorithm. Thus 
a chromosome (candidate solution) works as a feature mask vector, having ones on 
the places of features (biological genes) to be selected and zeros elsewhere. A particu-
lar instance of potential predictive gene subset is then evaluated by the fitness func-
tion and discarded or retained for proliferation with chances proportional to its fitness. 
This is repeated for several chromosomes during many generations until GA reaches 
the execution limit, after which the most optimal genetic signature found is returned. 
We repeat described procedure one hundred times, saving these individual signatures 
from every iteration.   

Each of GA optimization runs that we perform uses a different random sample 
from the whole training data for internal training of the classifier embedded in the 
fitness estimation procedure. For this we use Monte Carlo resampling with replace-
ment, where the size of a resample is equal to that of the whole data set (bootstrap 
[14]). This leaves approximately 36.8% of total examples out, so that they can be 
utilized for the internal testing (out-of-bag examples). As we keep the counts on  
selected genes over all hundred runs, and use these for the final estimation of a par-
ticular gene importance, our procedure for model averaging emulates the bootstrap 
aggregation principle (bagging). 

Counts across candidate genes approximately follow a negative binomial distribu-
tion which can be used for determining the threshold for selection. In general, the 
negative binomial distribution has relaxed assumptions compared to the Poisson dis-
tribution, which renders it appropriate for modelling a wider class of count data. Here 
we decide to include in the final signature genes that were selected more times than 
the 99% quantile of the estimated negative binomial distribution, which in this case 
corresponds to 17 or more (Fig 3). However, these counts could be also used as non-
parametric ranks if one does not need to pose hard threshold for his/hers particular 
application, as is often the case in gene prioritization tasks.   
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Fig. 3. Extracting the gene signature. The top figure shows how many times each gene has been 
selected in a signature (out of 100 independent GA runs). The figure on bottom shows these 
that suppressed the threshold, together with their names and frequencies (the final signature).   

The Fitness Function. We use a fitness function that is based on the size of the indi-
vidual solution and its performance on the independent test set. Firstly, we select 
genes based on a candidate solution and train one nearest neighbour (1-NN) classifier 
[15] on a bootstrap sample from the original data set. Then we measure performance 
of a trained classifier on the out-of-bag examples in terms of balanced accuracy : 
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where B stands for the balanced accuracy corresponding to a classifier based on a 
chromosome jc  from a generation gc , and tp,tn,fp,fn for the obtained numbers of true 
positives, true negatives,  false positives and false negatives, respectively. 

We choose balanced instead of standard accuracy due to its robustness in presence 
of highly skewed class distributions, which is often a problem with the biomedical 
data sets in general. Furthermore, we choose 1-NN over more complex classification 
algorithms as it is very fast to evaluate and still able to capture non-linear relation-
ships in data. When a new data point is presented to the trained algorithm, it simply 
assigns the outcome value of the closest (usually in terms of the Euclidean distance) 
example from training set to it. Thus, it also does not require any parameter tuning 
and, consequently, nested loops in algorithm. In addition, kNN asymptotically 
achieves Bayes error within a constant factor [16] and there is a body of empirical 
evidence suggesting that it could not be consistently outperformed by several more 
complex classification algorithms [17].   
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Furthermore, we penalize longer, and reward shorter solutions in terms of relative size 
gain or loss (S) when compared to average size of individuals from the initial generation: 
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where Nc and Ng stand for number of chromosomes in a single generation and num-
ber of gene positions per chromosome, respectively; f is a binary variable that equals 
to one if a gene has been selected given the position (i), chromosome (j) and genera-
tion (g); g stands for a generation number (here zero and current generation – gc). In 
this way, in addition to maximizing the performance measure we force algorithm to 
converge toward smaller solutions, hoping that this would lead to more robust and 
general feature subsets. Finally, given (1) and (2), the fitness function (F) takes the 
following form (3):  
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where the same weight is given to size and accuracy, while the constant 1 is added to 
assure that every possible fitness function value remains positive. 

 
Implementation Details of the Proposed GA. We build up our code basing it on the 
SpeedyGA.m 1.2 Matlab script [18] that implements a simple genetic algorithm as 
described in [19]. Our initial population counts 200 randomly generated individuals 
with chance of 0.2 for each feature to be present in one.  The probability of mutation 
per bit of individual chromosome has been set to 0.5 divided by the maximal length of 
solution (1000). We use uniform crossover, with the probability of reproduction with-
out it set to zero. Selection is preformed proportionally to the sigma-scaled value [19] 
of the fitness function using the stochastic universal sampling [20]. We restrict the 
maximal number of generations to 500 and keep track on the best solution over all 
generations. 

 
External Evaluation. To estimate the generalisation ability of the method we fit a 
simple linear regression to the selected biomarkers using all samples from the training 
data set and apply it to two independent test sets. In addition, we compare our algo-
rithm against another frequently used multivariate feature selection method that util-
izes bagging and supervised classification performance - namely Random Forest (RF) 
feature selection [21] on the same data sets. It estimates the importance of the single 
variable by comparing accuracy of each and every tree in the trained ensemble on 
corresponding out-of-bag examples against accuracy that is obtained when the values 
of former are randomly shuffled. To avoid influence of a solution size to the unbiased 
assessment, we set the number of genes to be selected by the RF to that obtained with 
our method and number of trees to be generated to hundred.    
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2.3 Data Sets 

We utilize three independent publicly available microarray data sets containing colon 
cancer samples from the Gene Expression Omnibus (GEO) [22]. The set under GEO 
accession number GSE17536 [23] has been used for deriving the gene signature 
where sets GSE17537 [23] and GSE5206 [24] have been considered for the external 
evaluation of our method. All three data sets were generated on the Affymetrix HG 
U133 Plus 2.0 microarray platform. Prior to a public release, the first two data sets 
were preprocessed using the MAS5.0 [25] and the third one by the RMA [26]. In 
addition, we discard probes that correspond to multiple genes from all three data sets 
and average values over multiple probes associated with a single gene.    

We use samples from  the Moffitt Cancer Center (GSE17536) as the training set. 
This data set contains 177 samples from which 145 with known relapse status (36 out 
of 145 patients relapsed). Prior to application of the method, we pre-filtered it with 
the Wilcoxon Rank Sum test by keeping thousand of the most significant genes. The 
p-value of this particular non-parametric test corresponds to the area under ROC 
curve, so we use it here due to its robustness. The data from the Vanderbilt Medical 
Center (GSE17537) are used as one of our external validation sets. Here, the relapse 
status is determined for all 55 patients with 19 of them having developed recurrent 
cancer within a five years period. The second validation set (GSE5206) contains sam-
ples from 105 patients. We exclude non-diseased subjects and cases where the loca-
tion of major diagnosis was not the colon, resulting in 74 retained examples in total, 
from which 16 with recorded recurrence.    

3 Results and Discussion 

Our final signature consists of 16 genes, namely (in the order of relative importance) : 
ARL14, VLDLR, MEP1A, CCL11, KRT17, FOXF1, HOXD11, WT1, FLI37786, 
OLR1, DUSP5, FAM3B, CPE, KANK4, CD55, NAT1. Firstly, we performed func-
tional analysis to estimate the biological relevance of this result. We used Ingenuity 
Pathway Analysis (IPA) to determine if the signature was significantly enriched for 
particular pathways or functions of interest. We also performed a transcription factor 
association analysis in IPA. Out of the 16 signature genes, 10 genes 
(CCL11,CD55,DUSP5,FOXF1,HOXD11, KRT17, MEP1A, NAT1, OLR1, WT1) 
were functionally associated with cancer (p=4.84E-04), of which 3 were associated 
with colorectal cancer in particular (DUSP5,FOXF1, MEP1A, p-value=4.75E-02).  

Interestingly the NF-κB complex regulates 5 (DUSP5,FOXF1, CCL11, 
OLR1,KRT17) of the 16 genes, of which 2 are associated with colorectal cancer: 
DUSP5 and FOXF1. NF-κB plays a well-studied role in the immune response, cell 
proliferation and cell survival by inhibition of apoptosis. DUSP5 [27,28] is a kinase 
phosphatase which negatively regulates members of the mitogen-activated protein 
(MAP) kinase family, which are associated with cellular proliferation and differentia-
tion. Forkhead box F1 (FOXF1) is a gene associated with multiple cancer types and 
plays a role as a putative tumor suppressor gene [29,30]; also its inactivation causes 
megacolon, colorectal muscle hypoplasia and agangliosis [31].  FOXF1 has also been 
involved in paracrine signalling in association with the WNT signalling pathway, 
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known to be involved in colorectal cancer development [32]. We found FOXF1 to be 
downregulated in our dataset coinciding with the hypothesis of it being a tumor-
suppressor gene. Although no strong evidence supports associating other signature 
genes with colon cancer, their performance in the signature is likely related to their 
coexpression with functionally relevant markers, as we can see with the NF-κB  
regulated genes.  

To assess reliability of our approach we test the gene signature that we obtained 
and another one generated by RF feature selection on the two independent test sets in 
a way previously described in “external evaluation” sub-section with following results 
(Fig 4): the GA based feature selection produces an AUC of 0.7705 on GSE5206 data 
and an AUC of 0.7266 on GSE17537, while the corresponding values for the RF fea-
ture selection are 0.7188 and 0.6564. Here we use the area under the ROC curve 
(AUC) as our preferred metrics for comparing classifiers due to its independence 
from a biased choice for a decision threshold. On these figures one can notice that, 
comparing to the Random Forest feature selection, our method yields better results on 
both testing data sets. In addition, it produces a stable set of biomarkers on repeated 
runs which the RF does not do. 

Furthermore, our results are comparable or better to those already reported in lit-
erature [6,7], [33,34]. In [6] the 30-genes signature gives prediction accuracy of 80 
and 76,3%, depending on a cross-validation scheme used. Wang et al.  [7] suggest a 
gene signature that includes 23 genes and has corresponding AUC of 0.741. Jiang  
et al. [33] proposes further refinement of this signature (7 genes) and achieves an 
AUC of  0.66 on an independent validation set. In a study by Lin et al. [34], the au-
thors test different combinations of classifiers and gene signatures augmented with 
clinical data on two data sets, resulting in AUCs of 0.73 and 0.80. They do not report 
AUCs obtained on gene expression data only.  

 

Fig. 4. ROC curves for linear regression based classification using the two feature selection 
methods on two test data sets (left - GSE5206, right - GSE17537) 

However, most of these results are obtained using a single data set and some sort of 
internal validation. The predictive performance estimation in [6] and [7] relies on a 
training/validation split scheme (with addition of Monte Carlo crossvalidation in [6]), 
while [34] employs leave-one-out crossvalidation. We strongly believe that in order to 
prove robustness of a predictor and to avoid overestimation of its performance, one 
should test against external data set that originates from different cohort of patients. 
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Some of these studies [33,34] utilize additional or prior information, while some  
optimize choice on classifier to be used with biomarkers [34].  Finally, our gene  
signature is shorter than those reported in [6,7].   

4 Conclusions 

We present a simple genetic algorithm that is potentially applicable for a variety of 
biomarker discovery tasks and demonstrate it on the colon cancer recurrence predic-
tion problem. The resulting gene signature displayed similar or better prediction per-
formance than several of these proposed in the literature. Furthermore, in contrary to 
most of studies on the given problem, we utilize independent test sets for assessment 
of our method, which gave us indication of strong generalization properties of the 
resulting predictors. We also demonstrate biological relevance of particular bio-
markers by means of a qualitative functional analysis.  

In our future work we plan to improve the algorithm via finer tuning of its compo-
nents and to introduce a dynamic version of the proposed fitness function to facilitate 
faster convergence. Furthermore, we will test it in conjunction with several popular 
classifiers to obtain fully optimized and complete classification system. In addition, 
we look forward to test the method on a wider class of biomarker mining problems 
and on data originating from various high-throughput platforms.    
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