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Abstract. V(D)J gene segments undergo combinatorial recombination
in the T-cells and B-cells to provide humans and other vertebrates with
a large number of antibodies required for immunity. Each such recom-
bination further undergoes mutations in their DNA sequences so that
they can recognize diverse antigens. Predicting the combination of gene
segments which formed a particular antibody is an essential task for
studying disease propagation and analysis. We propose a model based
on conditional random fields (CRFs) for predicting the boundary posi-
tions between V-D-J gene segments. We train the CRFs by generating
synthetic gene recombinations using all of the alleles of the V, D and J
gene segments. The alleles corresponding to a read can be determined
by mapping the segmented reads to the DNA sequences of the gene seg-
ments using softwares like BLAST and usearch. We test our method on
simulated dataset as well as real data of Stanford S22 individual.

Keywords: Conditional Random Fields, VDJ recombination, Mapping
of DNA sequences.

1 Introduction

The immune system of an organism provides protection against a wide range
of antigens with the help of a large number of antibodies. These antibodies
are encoded from genes within the B-cells, and bind to different antigens in
order to protect organisms from diseases. The large number of genes that encode
these antibodies are primarily produced by combinatorial recombination of gene
segments within the B-cells. Identifying the gene segments which encode for
a particular antibody is important for understanding the immune response to
different types of antigens, and in the study of infections.

In B-cells, three types of gene segments or germline components, namely vari-
able (V), diversity (D) and joining (J), combine together to form the variable
region of the immunoglobulin gene [10]. This combination of gene segments takes
place in a combinatorial fashion, in which one of the many alleles of D gene seg-
ment combines with an allele of J gene segment. This complex then combines
with one of the alleles of V gene segment to form a rearranged gene, which
has deleted segments between the joined regions. This process of combinatorial
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recombination is known as the VDJ recombination. These antibodies can un-
dergo somatic mutations in their DNA sequences by a process known as somatic
hyper-mutation [18].

Each antibody molecule consists of light and heavy chain protein molecules
[17]. The heavy chain molecule is made up of a VDJ recombination while the
light chain consists of recombinations of V and J gene segments only. In humans,
there are 281 V, 84 D and 12 J heavy chain alleles [20], which can produce 283,248
possible heavy chain molecules. The number of known functional heavy chain
alleles, however, are lesser (50 for V, 27 for D, and 6 for J giving 8100 possible
heavy chain molecules [13]). Two types of light chains are also known, the κ [15]
and λ [6]. Thus, only considering the combinatorial rearrangements, there can
be millions of possible antibodies.

A host of methods have been proposed that align the sequences to the germline
gene segments in order to determine the V(D)J configuration. IMGT/V-QUEST
maps the DNA sequences of the antibody to an immunoglobulin and T-cell
database to identify the V, D and J alleles [8]. JOINSOLVER, on the other
hand, determines the gene segments by identifying the conserved motifs in the
target gene [20]. SoDA implements a 3-D lattice alignment based on dynamic
programming to traverse through all possible states of VDJ gene segments to
determine the single highest scoring alignment [21]. The above methods do not
provide a meaningful way of evaluating different rearrangements. Moreover, the
large number of possible configurations makes sequence alignment equally time
consuming and computationally intensive.

iHMMune-align is a probabilistic model that uses Hidden Markov Models
(HMMs) for modeling the genes of an antibody to determine their constituent
gene segments [7]. The software creates an HMM model for each of the V gene
segment alleles connected to all the possible D and J gene segments. It also
models the N-nucleotide additions and exonuclease action around the V-to-D
or D-to-J gene segment boundaries. Soda2 is another HMMs based statistical
model [17]. Although HMMs have been used efficiently for sequential data tasks,
a HMM only models the dependencies between a base and its preceding context.
It assumes the distribution to be independent of bases in subsequent positions,
given the preceding context. Also the transition probability between two states in
an HMM are independent of the bases observed in the two states. Such assump-
tions reduces the model complexity and makes the model tractable. However, in
a typical gene segment, the distribution of bases is dependent throughout the
length of the sequence, rendering such assumptions invalid.

In this paper, we propose a model based on CRFs that takes into account such
dependencies without increasing the inference computation drastically. CRFs are
a special type of Markov random fields where the unknown output variables are
conditioned on the input variables [12]. For gene allele prediction, as each gene
is a combinatorial recombination of the V, D, and J gene segments, the task at
hand is to predict the boundary between the gene segments that make up an
antibody. First, we predict the boundary between V and D, using a consensus of
all V and D alleles in the database. Next, we infer the specific configuration of V
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and D allele by mapping the segment before the boundary to the known alleles of
V and after the boundary to the alleles of D. An identical process is followed for
inferring the boundary between D and J gene segments and the corresponding
J allele.

The CRFs are trained on a dataset of rearranged VDJ gene segments, where
the boundary positions between the gene segments are known. After training,
when given a DNA sequence, the CRF predicts a label for each base in the DNA
sequence. The label for each base indicates the gene segment (V, D or J) that
generated the corresponding base. The alleles constituting the DNA sequence
can be determined by mapping the segmented DNA sequence to the database of
known alleles.

The paper is organized as follows. Section 2 describes the method based on
CRFs for predicting the label sequence corresponding to the input DNA se-
quence. Section 3 explains the experimental setup and results obtained for simu-
lated dataset. We conclude the paper with a summary and a discussion of future
extensions of this work.

2 Methods

We are given a setX = {X1, X2, ...XN} ofN reads, each of which is sampled from
the rearranged genes. Here each of read is of the form Xi = {xi1xi2...xin} where
xi ∈ {A,G,C, T }. The read length n may vary from read to read. Our objective
is to associate each read Xi with a sequence of labels Yi = {yi1yi2...yin}, where
yik denotes the gene segment set from which the base xik was generated. These
sets of gene segments are denoted as V = {V1, V2, .., VK}, D = {D1, D2, ...DL},
and J = {J1, J2, ..., JM}, where (K,L,M) denote the number of alleles for corre-
sponding gene segments. Here, Vi, Di, Ji represent an allele of the corresponding
gene segments.

We address the problem of determining the gene segments constituting a read
in two steps. In the first step, we identify the bases xik and xil at which a
transition from V-to-D and D-to-J gene segment occurs. If the boundaries are
present within the read, we label each of the bases (xi1xi2...xik) as V, the ones
between V-to-D and D-to-J boundaries (xik+1xik+2...xil) as D, and the rest
(xil+1xil+2...xin) as J. In the second step, we determine the alleles for each gene
segment (Vi, Dj , Jk) by mapping the segmented portions of the read labeled V,
D and J to the corresponding alleles in the immunoglobulin database.

2.1 Conditional Random Fields for Gene Segment Boundary
Detection

For the first part, we propose a model based on conditional random fields (CRFs)
for predicting the boundaries between the gene segment set that generates a
read. Formally, each read x = {x1x2...xn} ∈ X is associated with a sequence
of labels y = {y1y2...yn} using CRFs. CRFs were originally proposed as proba-
bilistic models for segmentation and sequential labeling[12]. Such methods have
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been applied in natural language processing, bioinformatics, image and video
segmentation [16,14,1].

We use the linear-chain model of CRFs, where an input node xi represents
a base at a position i in read x ∈ X and an output node yi denotes the corre-
sponding gene segment label. The conditional probability of the label sequence
y given the observation x is proportional to

∑

i

exp (
∑

j

λjhj(y,x, i)) (1)

Here hj(y,x, i) is a feature function defined on a subset of the input and output
variables that form a clique on the undirected graph and also on the current posi-
tion i in the input sequence x. The exponential (log-linear) terms in the probabil-
ity expression are also known as potential functions. For the linear chain graph,
where each output label yi is connected to the preceding output label yi−1, and
the input gene sequence x, the feature function is of the form hj(yi, yi−1;x, i).
Another popular choice of feature functions are hj(yi;x, i), where the depen-
dence of the current label on the input sequence is captured. These two feature
functions are commonly known as the transition and state feature functions.

The feature functions can be designed to capture various aspects of the given
dataset, such as modeling the dependencies on the entire sequence x, as op-
posed to just the preceding context. This is one of the properties that makes
conditional random variables more powerful than Hidden Markov Models for se-
quential labeling. Each feature function is weighted by λj , which determines its
contribution in predicting the label. The normalizing constant Z(x) is defined as
the sum over all the output labels of all the log-linear potential functions defined
above.

Z(x) =
∑

y

∑

i

exp (
∑

j

λjhj(y,x, i)) (2)

Thus, the probability of a label sequence y given the input sequence x is given
by

P (y|x) = 1

Z(x)

∑

i

exp (
∑

j

λjhj(y,x, i)) (3)

where Λ = {λj} are the parameters of the model. Given a training dataset D,
containing a set X of N sequences and their labels Y in a training set, we define
a log-likelihood parameterized by Λ over all the training samples as

L(Λ) =
∑

(x,y)∈D

logP (y|x) (4)

The parameter values that maximize the above likelihood are chosen as the
model parameter values. To determine the maximum, one can use gradient as-
cent methods such as Margin Infused Relaxed Algorithm (MIRA) [4], Limited
memory BFGS [3].
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The model parameters Λ that maximize the conditional likelihood are used
for predicting the sequence of labels for test read x∗ as follows:

y∗ = argmax
y

P (y|x∗) (5)

The predicted sequence of labels y∗ indicates the boundaries of the gene segments
present in the test sequence.

Feature Functions. The log-linear nature of the feature functions provide the
ability to capture complex dependencies on the input data without exponentially
increasing the computational complexity for the inference. For applications in
text processing such as named entity recognition (NER), the feature functions
can be defined to incorporate the grammar of the language, for instance, the
word capitalization. In another example, hj(y,x, i) could be defined to count
the number of words starting with a capital letter in a sentence. Incorporating
feature functions which capture such information increases the predictive power
of the model.

In the current context, there is no prior knowledge about such grammar rules
for VDJ recombination. In order to overcome such a challenge, we created a set
of features which captures different dependencies in the neighborhood of a given
base, and learns their weighting parameters from the training dataset. Ideally,
the feature functions relevant for determining a V-to-D or a D-to-J junction
should get higher weights as compared to the others. The features used are
listed in Table 1.

Table 1. Feature functions used for predicting the V,D,J gene segments

Size of neighborhood Relation to current base

1-base

xi−2

xi−1

xi

xi+1

xi+2

2-base
xi−1xi

xixi+1

3-base
xi−2xi−1xi

xixi+1xi+2

4-base
xi−3xi−2xi−1xi

xixi+1xi+2xi+3

5-base
xi−4xi−3xi−2xi−1xi

xixi+1xi+2xi+3xi+4

xi−2xi−1xixi+1xi+2
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2.2 Boundary Detection and Determination of Gene Segment
Alleles

Once we obtain the sequence of labels y for a given sequence x using CRFs, we
can determine the boundary between V-to-D and D-to-J gene segments as given
in y. A base’s predicted label is considered to be spurious, if all the neighboring
bases within a distance of 4 have a identical labels that is different from that
of the base under consideration. We correct for such spurious predictions in our
method using mode filtering.

The alleles of gene segment present in a read are determined by mapping
boundary segmented parts of reads to their corresponding gene segment set.
For example, if a part of the read that is predicted to be generated from V
gene segment, we map the read to the alleles in the V-gene segment set to
determine the closest matching allele Vi. We use a program usearch for mapping
the sequence on the allele and assign to it the label of the allele with the highest
scoring alignment [5].

3 Experiments and Results

First, we evaluate the performance of CRFs in predicting boundaries between
gene segments on simulated datasets. We synthetically generated all the combi-
natorial recombinations of the alleles of gene segments. The allele sequences for
V, D and J gene segments in humans, are known. The combinatorial rearrange-
ments of V, D and J alleles are generated by concatenating an allele of V with
an allele of D, followed by an allele of J gene segment. In humans, there are 281
V gene segments, 84 D gene segments and 12 J gene segments, giving rise to
a total of 283,248 possible recombinations [20]. The downloaded gene segments
are from the Kabat database available on the JOINSOLVER website[20]. The
statistics of the V, D, and J gene segments are given in Table 2.

Table 2. Statistics of the alleles present in the Kabat gene sequence database

Gene Segment Total Number Average Length Maximum Length Minimum Length

V gene segments 281 287 305 103
D gene segments 84 25 37 11
J gene segments 12 53 63 48

We randomly choose 60% of these combinatorial rearrangements for training
the CRFs, and use the remaining 40% for testing. We repeated the experiment
5 times in which different 60% of the dataset was used for training, and the
remaining 40% for testing. For training the CRFs, we used the software package
CRF++ [11]. This implementation allows us to select a set of feature functions
based on arbitrary combinations of neighboring nucleotides. Table 1 shows the
feature functions that were used for training the linear CRF. We use a combina-
tion of bi-,tri-,tetra-, and penta-mers to train the CRF. We did not incorporate



216 R. Malhotra, S. Prabhakara, and R. Acharya

the state transition type feature functions as such prior knowledge is usually not
available for a real dataset. For training, the default LBFGS training algorithm
in CRF++ was used.

The test data for the boundary prediction by CRFs is generated as follows.
We randomly choose 10 combinatorial rearrangements from the 40% of the data
not used for training and sample reads using 454 sequencing technology. We used
MetaSim to simulate 454 sequencing reads [19] with an average length of 200 bps
and standard deviation 20 bps.We simulated reads using the default parameters
for 454 sequencing technology provided in MetaSim.

For a given read x, the CRFs model returns a label sequence y where each
label represents the gene segment from which the corresponding base was gen-
erated.
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Fig. 1. Predicted label sequence for one read

After obtaining the label sequence y for a given read x, we need to predict
the boundary positions between the gene segments. We predict a gene segment
boundary at a base xi, if all the bases after xi are labeled by a different label as
compared to the bases before xi. A base xi’s label prediction yi is considered to
be spurious if it was surrounded by similarly labeled bases, that differ from the
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label yi. For example, we observe that for most of the reads, there is one base
labeled as D when all the other surrounding bases in the read are labeled as V.
This is depicted in Figure 1, where we represent a read on the x-axis and the
true and predicted labels for a read are shown on the y-axis. The V, D, and J
labels are assigned levels of 10, 30, and 70 on y-axis for ease of representation.

Predicting a boundary at each position where we observe a change in labeling
of the bases in the read, generates a large number of gene segment boundaries,
which are not present in the read. We address this problem by first performing
a 9-based wide mode filtering on the predicted label sequence. This technique
relabels each of base to the mode label in a 9 base window centered on the current
base. The window size of 9 was chosen heuristically. A boundary between V-to-D
gene segments is called if there is a transition from V-to-D labels in the mode
corrected label sequence. If there are multiple such transitions, then we call a
boundary at a base having the minimum number of bases labeled as V after the
transition. Also, in a given read, as a V-to-J transition is not a valid transition,
and we ignore them. We also correct the labeling of all bases between the V-to-D
transition and the D-to-J transition as D.

The time complexity for the overall method is same as the time complexity
of the CRF method to predict the boundaries for a given set of reads. Once
the models for V, D and J gene segments are trained, we can use them for
prediction for any number of datasets. The boundary prediction correction, as
described above, takes a linear time in terms of the number of reads, thus the
time-intensive step being the training time for the CRF method.

Table 3. Precision, Recall, True Negative and Accuracy results for boundary detection
of V-to-D and D-to-J gene segments

V-to-D boundary D-to-J boundary

Recall 95.7± 0.8% 64.1 ± 7.5
Precision 64.5± 3.2% 93.6 ± 3.9

True Negative 60.5± 6.7% 98.2± .8
Accuracy 75.6± 3.1% 88.9 ± 2.1

Table 3 reports the precision and recall rates for predicting a gene boundary
averaged over the 5 test datasets. These values are calculated separately for the
V-to-D and the D-to-J gene segment boundaries. The precision is defined as the
number of reads in which a boundary is correctly detected divided by the total
number of reads in which same boundary is detected. The recall rate is defined as
the ratio of the number of reads in which the gene boundary is correctly detected
to the number of reads which actually have that gene boundary. CRFs are more
than 90% precise in detecting the boundary between the D-to-J gene segments
and are more than 88% accurate for the same. However, the V-to-D boundary
detection is not as precise. This can be attributed to the smaller lengths of the
D gene segments, making it difficult to correctly predict a base as D.
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For most cases, the gene segment boundary was predicted within 6 bases of
the actual boundary. We compute the difference between the base position of a
predicted gene segment boundary and the base position of a true gene segment
boundary. The percentage of the reads in which the boundary was detected
within a k base pairs from the true gene segment boundary is shown in Table 4
for k = {2, 3, 4, 5, 6}. We report the results separately for V-to-D and D-to-J
boundaries. The algorithm predicts the boundary between gene segments within
six base pairs with an average accuracy of 80%. One can segment the reads
using the predicted boundary positions and map the segmented parts to the
corresponding gene segments sets to determine the constituent allele within the
read.

Table 4. Boundary prediction results as obtained after performing the mode filtering
of the labeled sequences

Base pairs window V-to-D D-to-J

2 base pairs 31.4± 11.2% 32.6± 3.1%
3 base pairs 48.2± 8.7% 46.2± 4.8%
4 base pairs 63.1± 8.1% 61.8± 4.6%
5 base pairs 71.9± 7.5% 69.6± 2.9%
6 base pairs 80.2± 4.6% 73.7± 2.7%

Table 5 shows the 5-fold precision and recall values for the gene label pre-
diction on a per base basis. The recall for V (D or J) gene segments is defined
as the number of bases across all reads which were correctly identified as V (D,
or J) divided by the total number of bases with true labels as V (D or J). The
precision value is defined as the number of bases correctly labeled as V ( D or
J) gene segments divided by the total number of bases labeled as V (D or J )
gene segments. We observe the highest precision and recall values for the longer
V gene segments and lowest values for shorter D gene segments.

Table 5. Precision and recall values for the predicted gene segments on a per base
basis

Gene Segment Recall Precision

V gene segments 91.0± 3.2% 97.5± 0.2%
D gene segments 68.9± 1.2% 35.1± 7.9%
J gene segments 74.2± 0.9% 61.5± 9.2%

For testing our models on real transcriptome dataset, we use the CRFs trained
on all of the synthetic generated recombinations. As the transcriptome for S22
individual consists of rearranged V,D, J gene segments, and the CRFs are also
trained on all the junctions obtained from human V,D and J genes, we believe
that the usage of the CRFs trained above are a valid choice for the S22 individual.
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The Stanford S22 dataset consists of 13,153 reads from the rearranged VDJ genes
for an individual. These reads were obtained from the DNA sequences derived
from peripheral blood mononuclear cells [9]. The genotype of the individual is
known through a previous study [2]. Thus, we can use the genotype to evaluate
the predictions made by our model. We also compare our error rates with the
iHMMune align method [7] mentioned in the benchmarking paper [9].

We used our model trained from all synthetically generated recombinations
to predict the labels for each base in the reads of the Stanford S22 dataset. The
gene segment boundaries are determined in a read in a similar fashion to that
used in the simulated dataset. Using all the predicted gene positions for a V-to-D
(or a D-to-J) transition, we call a V-to-D (or a D-to-J) transition at a position
which has the minimum number of V (or D and V) gene labeled bases after the
gene position. If a D-to-J transition is absent in a read, we call a D-to-J boundary
at a base position which is length of D base pairs after the V-to-D transition.
This is easily obtained as the length of the D gene segments are known. We use
similar corrections for incorrect prediction of a D-to-J transition before a V-to-D
transition. Also, as before, a V-to-J transitions are ignored as they are incorrect.

To evaluate our method, we extract gene segments from each read based on
the predicted boundaries. We map the predicted gene segments to the database
of V, D and J genes using the software usearch [5]. An error in the mapping is
counted if the mapped gene is not present in the genotype of the individual (given
in the dataset). We compared these error results with that obtained for iHM-
Mune align [7]. Table 6 summarizes our results. The error percentages reported
for our method are comparable and even better than that for iHMMune-align.
This can be explained on the basis that iHMMune align assumes an inherent
Markov chain property where the prediction for a base is dependent on the pre-
vious bases only. In contrast a CRF uses potential functions dependent on all
types of neighborhood relations between the bases. Also as all the genes of one
type are modeled together, the general relationship between the genes of a type
is captured in the CRF model. This helps in accurately predicting the bound-
aries between the gene segments. The relevant gene segments for a gene can
be determined based on well established sequence searching algorithms (such as
BLAST, usearch) once the boundaries are determined.

Table 6. Comparison of our method (CRF-based) to iHMMune Align. The numbers
in the parenthesis are the number of errors for each gene type. The error was called for
both using a similar technique.

Gene ID Error % iHMMune Align Error % CRF-based

V genes (707) 5.3% (136) 1.0%
D genes (1008) 7.6% (68) 0.5%
J genes (10) 0.08% (18) 0.13%
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4 Conclusion and Future Work

We have applied the CRFs for identifying the junctions in VDJ recombination.
The approach is very similar to Named Entity Recognition in the text domain.
In the text domain, each word is labeled as a named entity or not, in a similar
fashion, we label parts of the DNA sequences as belonging to the V, D, or
J gene segments. The boundary predictions are within 6 base pairs difference
of the actual transition in the simulated data. This is the approximately the
number of bases that are deleted and inserted (N-nucleotide additions) when
the recombination process happens. Thus our method is predicting the gene
boundaries within the accepted accuracy. Our method also works well on the
Stanford S22 dataset, where the boundary predictions made lead to most of the
gene segments mapping within the genotype of the individual. It is comparable
and in some respects better than iHMMune align for predicting the gene segment
boundaries. That being said, our method is a work in progress. We have not
considered hyper-mutations of the VDJ recombinations, which often change the
DNA sequences of these gene segments. These hyper-mutations introduce an
additional challenge in predicting the boundaries between the gene segments.
Nevertheless, boundary detection between the gene segments when combined
with mapping of the detected sequences to the known DNA sequences will help in
simplifying the prediction of individual alleles constituting a VDJ recombination.
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