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Abstract. We propose a new hydrophobic interaction model that ap-
plies atomic contact energy for our protein–protein docking software,
MEGADOCK. Previously, this software used only two score terms, shape
complementarity and electrostatic interaction. We develop a modified
score function incorporating the hydrophobic interaction effect. Using
the proposed score function, MEGADOCK can calculate three physico-
chemical effects with only one correlation function. We evaluate the pro-
posed system against three other protein–protein docking score models,
and we confirm that our method displays better performance than the
original MEGADOCK system and is faster than both ZDOCK systems.
Thus, we successfully improve accuracy without loosing speed.

Keywords: Protein–Protein Docking, MEGADOCK, Hydrophobic In-
teraction, Fast Fourier Transform, Protein–Protein Interaction.

1 Introduction

Proteins play a key role in virtually all biological events that take place within
and between cells. Many proteins display their biological functions by binding to
a specific partner protein at a specific site. Determining the structure of a given
complex is one of the most important challenges in molecular biophysical research
[1, 2]. In addition, the number of protein 3-D structures stored in the Protein
Data Bank (PDB) [3] is currently increasing, allowing protein–protein interac-
tions and complex structures to be connected using computational prediction
methods, known as the 3-D interactome concept [4]. Against this background,
there has been considerable research on protein–protein docking, which is the
computational prediction of protein complex structures.

The goal of protein–protein docking is to determine the protein complex struc-
ture in atomic detail, starting from the coordinates of the unbound compo-
nent molecules. Most current docking methods start with rigid-body docking,
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which generates a large number of docked conformations (called “decoys”) with
good surface complementarity. One of the major methods of simulating protein–
protein docking is the Katchalski-Katzir algorithm [5], using a 3-D grid represen-
tation and fast Fourier transform (FFT) correlation approach. In the Katchalski-
Katzir algorithm, the pseudo interaction energy score (called the docking score)
between a receptor protein and a ligand protein is calculated by FFT and inverse
FFT (IFFT) using a correlation of two discrete functions, as follows:

S(t) =
∑

v∈N3

R(v)L(v + t) (1)

= IFFT[FFT[R(v)]∗FFT[L(v)]], (2)

where R and L are the discrete score function of the Receptor and Ligand pro-
teins, v is a coordinate in a 3-D grid space N

3, and t is the parallel translation
vector of the ligand protein. In order to find the best docking poses, possible
ligand orientations are exhaustively examined at nθ rotation angles for a given
stepsize θ. For each rotation, the ligand protein is translated into N × N × N
patterns in the N3 grid space (where N = |N| is the grid size in each dimension).
The decoy that yields the highest value of S for each rotation is recorded. In this
manner, a total of nθ ×N3 docking poses are evaluated for one protein pair. To
directly execute the simple convolution sums in eq. (1), O(N6) calculations are
required; however, this is reduced to O(N3 logN) using the FFT in eq. (2).

There are a number of software packages using the Katchalski-Katzir algo-
rithm [6–12]. Among them, ZDOCK [11, 12] is a widely used protein–protein
docking software [13–15]. ZDOCK uses the original docking scores, which are
accurate compared to other software. However, this requires two or more cor-
relation function calculations, with a correspondingly large calculation time.
Therefore, it is unrealistic to use ZDOCK in a situation where many docking
calculations are needed, e.g., when aimed at predictions of a protein–protein in-
teraction network [16–19] or an ensemble/cross-docking performing an all-to-all
docking [20–22].

Our protein–protein docking software, MEGADOCK [23, 24], also uses the
Katchalski-Katzir algorithm. By employing an original shape complementarity
score function (called rPSC) and a general electrostatic interaction score model,
MEGADOCK can calculate the docking score with only one correlation function,
and thus exhibits quicker calculation times than ZDOCK. Accordingly, the dock-
ing prediction accuracy of MEGADOCK is lower than that of ZDOCK. ZDOCK
calculates three physico-chemical effects: shape complementarity, electrostatics,
and an empirical potential-based desolvation free energy as a hydrophobic ef-
fect, with two or more correlation functions. To improve the docking accuracy
of MEGADOCK, we intend to incorporate a hydrophobic interaction effect to
our scoring model. However, using the conventional score model employed by
ZDOCK would cause an increase in the number of correlation functions to be
calculated. Therefore, we need a new score model to make MEGADOCK suitable
for varied applications.
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In this study, we introduce a hydrophobic interaction effect to MEGADOCK.
In particular, looking ahead to the application of an interaction network predic-
tion, which is the final goal of MEGADOCK, we develop a simple hydrophobic
interaction model that considers only the receptor protein. This increases the
performance of the docking calculation without any detrimental effect on the
speed.

2 Materials and Methods

2.1 Previous Score Model

In this subsection, we briefly explain our previously developed docking software,
MEGADOCK version 2.5. MEGADOCK 2.5 uses a docking score function that
combines two terms: the real Pairwise Shape Complementarity (rPSC) score
term and the electrostatics (ELEC) score term, which is defined based on the
FTDock force model [6] and the CHARMM19 atomic charge [25]. Each pair of
proteins is first allocated a position on the 3-D grid space N

3, which has a grid
step size of 1.2 Å. Scores are then assigned to each voxel v ∈ N

3 according to
the location in the protein, such as surface or core.

The rPSC term is defined as follows:

rPSC(t) =
∑

v∈N3

GR(v)GL(v + t),

GR(v) =

{
# of receptor atoms within (3.6 Å + rvdW) (open space)

−27 (inside of the receptor),
(3)

GL(v) =

{
1 (solvent excluding surface layer of the ligand)

2 (core of the ligand),
(4)

where GR and GL represent the rPSC grid value of the receptor/ligand proteins,
rvdW represents the van der Waals atomic radius, and t is the ligand translation
vector. We omitted the zero value domain.

The ELEC term from FTDock potential is represented as the electric field
ϕ(i). ϕ(i) is assigned to each voxel i ∈ N

3 as follows:

ϕ(i) =
∑

j∈N3

q(j)

ε(rij)rij
, ε(r) =

⎧
⎪⎨

⎪⎩

4 (r ≤ 6 Å)

38r − 224 (6 Å < r < 8 Å)

80 (8 Å ≤ r),

where q(j) is the charge at grid point j ∈ N
3, rij is the Euclid distance between

grid points i and j, and ε(r) is a distance-dependent dielectric function. ELEC
term is defined as follows:

ELEC(t) =
∑

v∈N3

ER(v)EL(v + t),

ER(v) = ϕ(v) (open space),

EL(v) = q(v),
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Table 1. Non-pairwise ACE scores. This table is reproduced from Table 1 of [26] in
which Zhang, et al. defined the atom types and assigned ACE scores.

atom type N Cα C O GCα Cβ KNζ KCδ DOδ

ACE score −0.495 −0.553 −0.464 −0.079 0.008 −0.353 1.334 1.046 0.933

atom type RNη NNδ RNε SOγ HNε YCζ FCζ LCδ CSγ

ACE score 0.726 0.693 0.606 0.232 0.061 −0.289 −0.432 −0.987 −1.827

where ER and EL represent the ELEC grid values of receptor/ligand proteins,
determined according to the charge of each voxel q(v) in which atoms in the
residues are assigned a charge according to CHARMM19.

Considering these two terms, the docking score S(t) is represented as:

R(v) = GR(v) + iER(v),

L(v) = GL(v) + iweEL(v),

S(t) = �
[
∑

v∈N3

R(v)L(v + t)

]
= rPSC(t)− weELEC(t),

where we is the weight parameter of ELEC term.

2.2 Proposed Method

In our proposed method, we used a non-pairwise-type atomic contact energy
(ACE) score [26] to incorporate a hydrophobic interaction effect. For the current
study, we introduce a simple model that considers only the receptor protein
because, when both the receptor and ligand are taken into consideration, an
increase in the number of correlation functions is unavoidable.

We modify the receptor rPSC value GR in eq. (3) in order to introduce the
ACE score. The new receptor value G′

R is defined as follows:

G′
R(v) = GR(v) + whHR(v),

HR(v) =

⎧
⎪⎨

⎪⎩

sum of ACE scores of receptor atoms

within (3.6 Å + rvdW) (open space)

0 (inside of the receptor),

where wh is the weight parameter of HR. Fig. 1 shows a pattern diagram of the
proposed model. We use the ACE values given in Table 1.

This score model attains a value of GR(v) + whHR(v) when the open space
near the receptor surface is superposed on the ligand surface. The score of a
ligand core of 2 depends on the penalty (−54) at the time of a core collision for
enlargement. It is assumed that 2×{GR(v)+whHR(v)} will be obtained by the
ligand core, depending on its position, under a situation where the core moves
into a pocket that can obtain a high score, because a penalty (−27) is imposed
on any collision between the ligand surface and a receptor. Therefore, we do not
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Fig. 1. Proposed scoring model G′
R(v) and GL(v). The model consists of 3-D grid, but

here we show only two dimensions for simplicity. For clarity, grid points with a value
of 0 have been omitted. Small arrows indicate the five atoms that are within the cutoff
distance of a grid, and thus contribute to its score of 5+H , where H means whHR(v).

consider this situation to affect the good docking pose of the decoy. ZDOCK 2.3
[11] uses two correlation functions, and ZDOCK 3.0 [12] uses eight correlation
functions to consider three effects—shape complementarity, electrostatics, and
desolvation free energy—our score model can calculate docking scores under con-
sideration of three effects with only one correlation function, while maintaining
an advantage in terms of calculation speed.

2.3 Dataset

The protein complex structures used in this study were retrieved from a stan-
dard protein–protein docking benchmark set [27], containing 176 known 3-D
structures of complex component proteins in both bound and unbound forms.

2.4 Evaluation of Docking Performance

To evaluate the docking pose prediction performance, we conducted a re-docking
and unbound docking experiment using the benchmark dataset. We used the root
mean square deviation (RMSD) of the ligand (L-RMSD), which is the RMSD
of the predicted ligand position and that of the crystal complex structure calcu-
lated for all the atoms when the receptor positions are superimposed, in order to
determine the accuracy of the docking predictions. The RMSDs of the unbound
structures were only calculated for residues that were aligned by pairwise align-
ment of the amino acid sequences between the bound and unbound structures.
We defined a “near-native decoy” as that for which L-RMSD was less than or
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equal to 5 Å. We compared the performance of the following docking meth-
ods: the proposed method, MEGADOCK 2.5, ZDOCK 2.3, and ZDOCK 3.0.
For comparison with ZDOCK, we set parameters of 3,600 decoys per case and
θ = 15◦ for the ligand rotation step. We compared the following widely used two
values [1, 11, 12] to determine the docking performance:

– Average Hit Count: The average number of near-native decoys across the
set of cases for a given number of top-ranked predictions per test case.

– Success Rate: The percentage of cases with near-native decoys for a given
number of top-ranked predictions per test case.

3 Results and Discussions

3.1 Optimization of Weight Parameters

For determining parameter values we and wh, we used only the bound dataset
to avoid overfitting the unbound structures. We optimized the parameters for
maximizing the Success Rate of 100 predictions. We searched the best combi-
nation of we and wh, and tested we from 0.5 to 1.5 by 0.05 steps and wh from
0.1 to 2.0 by 0.1 steps. As a result, we found the best values of we = 1.15 and
wh = 0.6.

3.2 Docking Prediction Accuracy

The Average Hit Count is shown in Fig. 2 since bound dataset was used for
optimization of weight parameters, the results of unbound dataset are more im-
portant than bound dataset. We can see that our proposed method performed
better than MEGADOCK 2.5 with both the bound and unbound sets. In addi-
tion, the proposed method displays an equivalent performance to ZDOCK 2.3
for the unbound set and is broadly similar for the bound set. However, our
method is still less accurate than ZDOCK 3.0 for both sets. The performance
of ZDOCK 3.0 is mainly due to its pairwise potential function, although this
performance is obtained at the expense of calculation speed.

A similar trend is observed in the Success Rate of each method, as shown in
Fig. 3. We see that the Success Rate of our proposed method is again better
than that of MEGADOCK 2.5 for both sets. However, our proposed method is
noticeably worse than ZDOCK 2.3 for the bound set. We think that GR and HR

require further tuning using more complex structures in the PDB.

3.3 Calculation Time

Table 2 shows the average computation time for the benchmark dataset. All
the calculations were conducted on the TSUBAME 2.0 supercomputing system,
Tokyo Institute of Technology, Japan, which consists of two Intel Xeon 2.93 GHz
(6 cores× 2) processors and 32 GB RAM, with operational nodes connected via
an InfiniBand and Gigabit Ethernet. An average of 14.2 min was required for
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Fig. 2. Average Hit Count for all test cases of benchmark dataset. The Average Hit
Count was defined as the average number of near-native decoys across the set of cases
for a given number of top-ranked predictions per test case.
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Table 2. Total time for 176 docking calculations using the benchmark dataset

Proposed MEGADOCK 2.5 ZDOCK 2.3 ZDOCK 3.0

time (hr) 41.7 41.6 157.3 365.6
speedup from ZDOCK 2.3 3.77 3.78 (1.0) 0.43
speedup from ZDOCK 3.0 8.77 8.79 2.32 (1.0)

each docking calculation using one CPU core. The proposed method obtained
the almost same calculation speed as MEGADOCK 2.5 (only 0.7% of calculation
time increase), some 3.8 times faster than ZDOCK 2.3 and 8.8 times faster than
ZDOCK 3.0. Since FFT takes most of the execution time of MEGADOCK and
the proposed method, if we increase the correlation function to 2 or 3 to get
better performance of docking, calculation time will also increase 2- or 3-fold.

3.4 Application to Pathway Analysis

We also performed a case study using a biological interaction network by apply-
ing our proposed docking method to the protein–protein interaction prediction
problem of bacterial chemotaxis pathways, which represents a typical target of
signal transduction in the field of systems biology [28]. Docking and protein–
protein interaction prediction were undertaken for 101 × 101 = 10,201 pairs
corresponding to the constituent protein data of the 13 protein species present
in the chemotaxis pathway [17].

We used the method of Matsuzaki et al. [17], with the improved MEGADOCK
in place of ZDOCK 3.0. The docking score of 101× 101 combinations was calcu-
lated for 101 protein structures and their affinity scores based on the literature
[17]. We obtained an F-measure of 0.45 for this system, which is similar to that
found in the previous study using ZDOCK 3.0 (F-measure of 0.49).

4 Conclusion

In this study, we added a hydrophobic interaction model to the protein docking
software MEGADOCK. This additional component, which considers only the
receptor protein, was combined with the considerations of shape complemen-
tarity and electrostatic interaction without increasing the calculation time. The
proposed method succeeded in achieving the better level of accuracy as previous
MEGADOCK. Although we need more better level of accuracy in bound cases,
the proposed method achieved the same level of accuracy as ZDOCK 2.3 in un-
bound cases. It was also 3.8 times faster than ZDOCK 2.3 and 8.8 times faster
than ZDOCK 3.0. However, to enhance the accuracy of the proposed model,
further tuning of some system parameters is necessary in future. ACE was in-
troduced only into the receptor side in the study because receptor term of rPSC
was easy of introducing some atomic effects. We are attempting to develop a new
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score model with both receptor and ligand ACE term using only one correlation
function. Additionally, we will apply our method to other large analyses, such
as the interaction network prediction problem of other biological systems or the
cross-docking of ensemble structures.
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