
Striving for Object-Aware Process Support:

How Existing Approaches Fit Together

Vera Künzle and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{vera.kuenzle,manfred.reichert}@uni-ulm.de

Abstract. Many limitations of contemporary process management sys-
tems (PrMS) can be traced back to the missing integration of pro-
cesses and data. A unified understanding of the inherent relationships
existing between processes and data, however, is still missing. In the
PHILharmonicFlows project we figured out that process support often
requires object-awareness. This means, data must be manageable in terms
of object types comprising object attributes and relations to other ob-
ject types. In this paper, we systematically introduce the fundamental
characteristics of object-aware processes. Further, we elaborate existing
approaches recognizing the need for a tighter integration of processes and
data along these characteristics. This way, we show the high relevance of
the identified characteristics and confirm that their support is needed in
many application domains.

Keywords: Process-aware Information Systems, Object-aware Process
Management, Data-driven Process Execution.

1 Introduction

Despite the widespread adoption of existing process management systems (PrMS)
there exist numerous processes which are currently not adequately supported by
these PrMS. In this context, it has been confirmed by different authors that
many limitations of contemporary PrMS can be traced back to the missing inte-
gration of processes and data [1,2,3,4,5,6,7,8]. However, a unified understanding
of the inherent relationships existing between processes and data is still missing.

In the PHILharmonicFlows1 project, we analyzed various processes from dif-
ferent domains which require a tight data integration [9,10,11]. We figured out
that the support of many of these processes requires object-awareness ; i.e., these
processes focus on the processing of business data represented through business
objects. The latter comprise a set of object attributes and are inter-related. In this
context, business processes coordinate the processing of business objects among
different users enabling them to cooperate and communicate with each other.

Existing PrMS, however, focus on business functions and their control flow,
whereas business objects are ”unknown” to them. Most PrMS only cover simple

1 Process, Humans and Information Linkage for harmonic Business Flows.

K. Aberer, E. Damiani, and T. Dillon (Eds.): SIMPDA 2011, LNBIP 116, pp. 169–188, 2012.
c© IFIP International Federation for Information Processing 2012

170 V. Künzle and M. Reichert

data elements, which are needed for control flow routing and for supplying input
parameters of activities. Business objects, in turn, are usually stored in external
databases and are outside the control of the PrMS. For this reason, existing
PrMS are unable to adequately support object-aware processes [12].

In this paper, we introduce the main characteristics of object-aware processes
which we gathered in several case studies [9,10] (see [13] for details about the re-
search methodology we applied). Following this, we evaluate to what extent
existing data-aware or data-driven process support paradigms support these char-
acteristics. Overall, this evaluation reveals three major results: First, the char-
acteristics we identified for object-aware processes are of high relevance. Second,
object-aware process support is needed in many domains. Third, a comprehensive
framework for object-aware process management is still missing.

The paper is structured as follows. In Section 2 we elaborate the role of
business objects in the context of process management in detail and introduce
fundamental characteristics of object-aware processes along a running example.
Following this, we evaluate existing approaches against these characteristics in
Section 3. Section 4 discusses the outcomes of this evaluation. Finally, Section
5 introduces a comprehensive framework for object-aware process management.
We close with a summary and outlook in Section 6.

2 Object-Aware Process Support

We first discuss fundamental characteristics of object-aware processes which
constitute aggregations of more detailed property lists. The latter rely on an
extensive analysis of processes currently not adequately supported by PrMS
[9,10,12,11]. To ensure that the processes we analyzed are not ”self-made” ex-
amples, but constitute real-world processes of high practical relevance, we par-
ticularly considered processes as implemented in existing business applications.
In addition, we rely on extensive practical experiences gathered when developing
contemporary business applications; i.e., we have deep insights into their appli-
cation code and process logic. In order to justify our findings, we complemented
our process analyses by an extensive literature study to ensure both importance
and completeness. With the latter we want to ensure that we have not excluded
important properties already identified by other researchers. However, in this
study we did not consider properties in respect to process change and process
evolution. Instead, our focus was on process modeling, execution and monitor-
ing. In order to emphasize the relevance of the identified characreristics and
their inter-relations we contrast them with the different application examples
considered by existing approaches (cf. 4) As illustrated in Fig. 1, we discuss the
characteristics along a (simplified) real-world scenario for recruiting people as
known from human resource management.

Example 1 (Recruitment Example). In the context of recruitment, appli-
cants may apply for job vacancies via an Internet online form. Once an
application has been submitted, the responsible personnel officer in the hu-
man resource department is notified. The overall process goal is to decide which

Striving Object-Aware Process Support 171

applicant shall get the job. If an application is ineligible the applicant is im-
mediately rejected. Otherwise, personnel officers may request internal reviews
for each applicant. In this context, the concrete number of reviews may differ
from application to application. Corresponding review forms have to be filled
by employees from functional divisions. They make a proposal on how to pro-
ceed; i.e., they indicate whether the applicant shall be invited for an interview

or be rejected. In the former case an additional appraisal is needed. After the
employee has filled the review form she submits it back to the personnel officer.
In the meanwhile, additional applications might have arrived; i.e., reviews re-
lating to the same or to different applications may be requested or submitted
at different points in time. The processing of the application, however, proceeds
while corresponding reviews are created; e.g., the personnel officer may check
the CV and study the cover letter of the application. Based on the incoming
reviews he makes his decision on the application or initiates further steps (e.g.,
interviews or additional reviews). Finally, he does not have to wait for the ar-
rival of all reviews; e.g., if a particular employee suggests hiring the applicant

he can immediately follow this recommendation.

Fig. 1. Example of a recruitment process from the human resource domain

Basically, data must be manageable in terms of object types comprising object
attributes and relations to other object types (cf. Fig. 2a). At run-time, the dif-
ferent object types comprise a varying number of inter-related object instances,
whereby the concrete instance number should be restrictable by lower and upper
cardinality bounds (cf. Fig. 2b). For each application, for example, at least one
and at most five reviews must be initiated. While for one application two reviews
are are available, another one may comprise three reviews (cf. Fig. 1).

172 V. Künzle and M. Reichert

Fig. 2. Data structure at build-time and at run-time

In accordance to data modeling, the modeling and execution of processes can
be based on two levels of granularity: object behavior and object interactions.

2.1 Object Behavior

To cover the processing of individual object instances, the first level of process
granularity concerns object behavior. More precisely, for each object type a sepa-
rate process definition should be provided (cf. Fig. 3a), which can be used for co-
ordinating the processing of an individual object instance among different users.
In addition, it should be possible to determine in which order and by whom the
attributes of a particular object instance have to be (mandatorily) written, and
what valid attribute values are. At run-time, the creation of an object instance is
directly coupled with the creation of its corresponding process instance. In this
context, it is important to ensure that mandatorily required data is provided
during process execution. For this reason, object behavior should be defined in
terms of data conditions rather than based on black-box activities.

Example 2 (Object behavior). For requesting a review the responsible person-

nel officer has to mandatorily provide values for object attributes return date

and questionnaire. Following this, the employee being responsible for the review

has to mandatorily assign a value to object attribute proposal.

2.2 Object Interactions

Since related object instances may be created or deleted at arbitrary points in
time, a complex data structure emerges, which dynamically evolves depending
on the types and number of created object instances. In addition, individual
object instances (of the same type) may be in different processing states at a
certain point in time.

Taking the behavior of individual object instances into account, we obtain a
complex process structure in correspondence to the given data structure

Striving Object-Aware Process Support 173

Fig. 3. Process structure at build-time and at run-time

(cf. Fig. 3a). In this context, the second level of process granularity comprises
the interactions that take place between different object instances. More pre-
cisely, it must be possible to execute individual process instances (of which each
corresponds to a particular object instance) in a loosely coupled manner, i.e., con-
currently to each other and synchronizing their execution where needed. First, it
should be possible to make the creation of a particular object instance dependent
on the progress of related object instances (creation dependency). Second, sev-
eral object instances of the same object type may be related to one and the same
object instance. Hence, it should be possible to aggregate information; amongst
others, this requires the aggregation of attribute values from related object in-
stances (aggregation). Third, the executions of different process instances may
be mutually dependent; i.e., whether or not an object instance can be further
processed may depend on the processing progress of other object instances (ex-
ecution dependency). In this context, interactions must also consider transitive
dependencies (e.g., reviews depend on the respective job offer) as well as trans-
verse ones (e.g., the creation of an interview may depend on the proposal made
in a review) between object instances (cf. Fig. 3).

Example 3 (Object interactions). A personnel officer must not initiate
any review as long as the corresponding application has not been finally submit-
ted by the applicant (creation dependency). Further, individual review process
instances are executed concurrently to each other as well as to the application

process instances; e.g., the personnel officer may read and change the
application while the reviews are processed. Further, reviews belonging to a
particular application can be initiated and submitted at different points in time.
Besides this, a personnel officer should be able to access information about sub-
mitted reviews (aggregative information); i.e., if an employee submits her review

recommending to invite the applicant for an interview, the personnel officer

needs this information immediately. Opposed to this, when proposing rejection of
the applicant, the personnel officer should only be informed after all initiated
reviews have been submitted. Finally, if the personnel officer decides to hire
one of the applicants, all others must be rejected (execution dependency). These

174 V. Künzle and M. Reichert

dependencies do not necessarily coincide with the object relations. As example
consider reviews and interviews corresponding to the same application; i.e., an
interview may only be conducted if an employee proposes to invite the applicant

during the execution of a review process instance.

2.3 Data-Driven Execution

In order to proceed with the processing of a particular object instance, usually,
in a given state certain attribute values are mandatorily required. Thus, object
attribute values reflect the progress of the corresponding process instance. In
particular, the activation of an activity does not directly depend on the com-
pletion of other activities, but on the values set for object attributes. More
precisely, mandatory activities enforce the setting of certain object attribute
values in order to progress with the process. If required data is already avail-
able, however, mandatory activities can be automatically skipped when being
activated. In principle, it should be possible to set respective attributes also up
front ; i.e., before the mandatory activity normally writing this attribute becomes
activated. However, users should be allowed to re-execute a particular activity,
even if all mandatory object attributes have been already set. For this purpose,
data-driven execution must be combined with explicit user commitments (i.e.,
activity-centred aspects). Finally, the execution of a mandatory activity may
also depend on available attribute values of related object instances. Thus, co-
ordination of process instances must be supported in a data-driven way as well.

Example 4 (Data-driven execution). During a review request the personnel

officer must mandatorily set a return date. If a value for the latter is available,
a mandatory activity for filling in the review form is assigned to the responsible
employee. Here, in turn, a value for attribute proposal is mandatorily required.
However, even if the personnel officer has not completed his review request yet
(i.e., no value for attribute return data is available), the employee may optionally
edit certain attributes of the review (e.g., the proposal). If a value of attribute
proposal is already available when the personnel officer finishes the request, the
mandatory activity for providing the review is automatically skipped. Opposed to
this, an employee may change his proposal arbitrarily often until he explicitly
agrees to submit the review to the personnel officer. Finally, the personnel

officer makes his decision (e.g., whether to reject or to accept the applicant)
based on the incoming reviews.

2.4 Variable Activity Granularity

For creating object instances and changing object attribute values, form-based
activities are required. Respective user forms comprise input fields (e.g., text-
fields or checkboxes) for writing and data fields for reading selected attributes
of object instances. In this context, however, different users may prefer differ-
ent work practices. In particular, using instance-specific activities (cf. Fig. 4a),

Striving Object-Aware Process Support 175

all input fields and data fields refer to attributes of one particular object in-
stance, whereas context-sensitive activities (cf. Fig. 4b) comprise fields referring
to different, but related object instances (of potentially different type). When
initiating a review, for example, it is additionally possible to edit the attribute
values of the corresponding application. Finally, batch activities involve several
object instances of the same type (cf. Fig. 4c). Here, the values of the different
input fields are assigned to all involved object instances in one go. This enables
a personnel officer, for example, to reject a number of application in one go.
Depending on their preference, users should be able to freely choose the most
suitable activity type for achieving a particular goal. In addition to form-based
activities, it must be possible to integrate black-box activities. The latter enable
complex computations as well as the integration of advanced functionalities (e.g.,
provided by web services).

Fig. 4. Different kinds of activities

Moreover, whether certain object attributes are mandatory when processing
a particular activity might depend on other object attribute values as well; i.e.,
when filling a form certain attributes might become mandatory on-the-fly. Such
control flows being specific to a particular form should be also considered.

Example 5 (Activity Execution). When an employee fills in a review, addi-
tional information about the corresponding application should be provided; i.e.,
attributes belonging to the application for which the review is requested. For
filling in the review form, a value for attribute proposal has to be assigned. If
the employee proposes to invite the applicant, additional object attributes will
become mandatory; e.g., then he has to set attribute appraisal as well. This
is not required if he assigns value reject to attribute proposal. Further, when a
personnel officer edits an application, all corresponding reviews should be vis-
ible. Finally, as soon as an applicant is hired for a job, for all other applications
value reject should be assignable to attribute decision by filling one form.

2.5 Integrated Access

To proceed with the control flow, mandatory activities must be executed by
responsible users in order to provide required attribute values. Other attribute

176 V. Künzle and M. Reichert

values, however, may be optionally set. Moreover, users who are usually not
involved in process execution should be allowed to optionally execute selected
activities. In addition to a process-oriented view (e.g. worklists), a data-oriented
view should be provided enabling users to access and manage data at any point in
time. For this purpose, we need to define permissions for creating and deleting
object instances as well as for reading/writing their attributes. However, at-
tribute changes contradicting to specified object behavior should be prevented.
Which attributes may be (mandatorily or optionally) written or read by a par-
ticular form-based activity not only depends on the user invoking this activity,
but also on the progress of the corresponding process instances. While certain
users must execute an activity mandatorily in the context of a particular ob-
ject instance, others might be authorized to optionally execute this activity; i.e.,
mandatory and optional permissions should be distinguishable. Moreover, for
object-aware processes, the selection of potential actors should not only depend
on the activity itself, but also on the object instances processed by this activity.
In this context, it is important to take the relationships between users and object
instances into account.

Example 6 (Integrated Access). A personnel officer may only decide on
applications for which the name of the applicants starts with a letter between
’A’ and ’L’, while another officer may decide on applicants whose name starts
with a letter between ’M’ und ’Z’. An employee must mandatorily write attribute
proposal when filling in a review. However, her manager may optionally set this
attribute as well. The mandatory activity for filling the review form, in turn,
should be only assigned to the employee. After submitting her review, the employee

still may change her comment. In this context, it must be ensured that the employee

can only access reviews she submitted before. However, attribute proposal, in
turn, must not be changed anymore. The personnel officer might have already
performed the proposed action.

3 Existing Approaches

Many existing approaches have already confirmed the high relevance of a tighter
integration of processes and data. In this section, we evaluate selected approaches
along the main characteristics of object-awareness: object behavior, object in-
teractions, data-driven process execution, variable activity granularity, and in-
tegrated access to data.

3.1 Case Handling

Case Handling [1] is a data-driven process support paradigm in which activities
are explicitly represented through user forms comprising a number of input fields
(i.e., text fields, combo boxes, check boxes). The latter refer to atomic data el-
ements which are either defined as mandatory, restricted or free. An activity is
considered as being completed if all mandatory data elements have an assigned

Striving Object-Aware Process Support 177

value. Beside defining who shall work on an activity, Case Handling also allows
specifying who may redo or skip it; for these uses separate roles exist.

Object Behavior. Unfortunately, Case Handling does not provide explicit sup-
port for complex objects and relations between them. However, a ”case” can be
considered in tight accordance with an ”object”; i.e., the data elements can be
considered as object attributes. This enables the definition of object behavior
specifying in which order and by whom object attributes shall be written. Since
it is possible to assign a corresponding value constraint to each input field, valid
attribute settings can be enforced. In addition, data constraints can be assigned
to transitions connecting individual activities (i.e., user forms). Altogether, pro-
cesses are defined in terms of data conditions.

Data-Driven Execution. An activity is considered as completed if a value for
all mandatory data elements is available. Since different forms may comprise the
same data element, it is possible to provide required attribute values up-front;
i.e., before they are mandatory for one activity. This way, activities can be auto-
matically skipped if mandatorily required data is already available. Despite the
introduction of the redo-role, re-executing activities may be often not possible.
In particular, if all data elements being mandatory for the current and for the
subsequent activity are available, both activities are automatically marked as
executed. In this case, a user may only re-execute the activity if he additionally
owns the redo-role for both the current and the subsequent activity. In partic-
ular, it is not supported that users re-execute a certain activity as long as they
have not explicitly confirmed its completion.

Object Interactions. In Case Handling, it is possible to involve related cases
by using sub-plans. The latter must be instantiated at specific points during
the execution of the higher-level case (i.e., creation dependency). Further, these
sub-plans can be categorized as dynamic. This enables the instantiation of a
variable number of instances at run-time. In this context, cardinality constraints
are considered by defining a minimal and maximal number of instances which
should be completed at run-time. However, it is not possible to execute sub-plans
asynchronously to the higher-level one. Thus, execution dependencies cannot be
defined. Aggregations, in turn, are possible. For this purpose, the higher-level
case may include an array whose elements are mapped to data elements of the
respective sub-plan. Finally, since sub-plans require a strong hierarchical collo-
cation of related cases, the consideration of arbitrary relationships between cases
is not supported. It is not possible, for example, to define a dependency between
reviews and interviews (cf. Fig. 1); i.e., it is only allowed to initiate an interview
if at least one review proposes to invite the applicant.

Variable Activity Granularity. Using Case Handling, all forms must be pre-
defined at build-time. This means, it is not possible to automatically generate
user forms based on the current processing state und the user executing the

178 V. Künzle and M. Reichert

activity. However, when creating forms, it is possible to invoke data elements
corresponding to the higher- and lower-level plans as well. Thus, in addition to
instance-specific forms, context-specific ones can be provided. Batch activities,
in turn, are not support. Context-specific activities contain input fields corre-
sponding to selected object instances. In this context, it is a cumbersome and
desperate task to provide all conceivable granularities of forms.

Integrated Access. In principle, each involved user may execute the currently
activated activity. In this context, he can read all data elements and additionally
write all data elements which are not categorized as mandatory or restricted.
However, it is not possible to assign different permissions to optionally read
and write data elements for different user (roles). Moreover, it is not possible to
make these permissions dependable on the process state. Opposed to free data
elements, mandatory and restricted ones can only be written by users owning the
execute-role. This prevents changes of data element values contradicting process
execution. However, it is not possible to define one and the same activity as
optional for one user while being mandatory for another one.

3.2 Proclets

A proclet [2,14] is an object-specific process which is modeled using a Petri net.
The latter consists of nodes which comprise places (e.g. circles) and transitions
(e.g., rectangles). Places and transitions are connected with arcs. In this context,
it is only allowed to connect different node types; i.e., places with transitions or
transitions with places. Transitions represent activities. Places, in turn, have
assigned tokens representing the current state of the Petri net. In particular, a
transition (i.e., an activity) can be activated if each input place contains at least
one token. During its activation, one token from each input place is removed
and to each output place, in turn, one token is assigned. The proclet framework
enables the communication between different proclets based on messages. The
latter are exchanged through ports which are connected by transitions. Each sent
or received message is stored in the knowledge base of the respective proclet. To
discover related proclets for communicating with them, a naming service is called
which manages all existing proclets based on their unique proclet ID. Activities
have assigned pre- and post-conditions using information from the knowledge
base. At run-time, an activity becomes enabled if its corresponding transition is
activated (i.e., each input place contains at least one token), the pre-condition
evaluates to true, and all input ports contain a message.

Object Behavior. Although proclets are object-specific processes, they do not
support the definition of object behavior as required for the support of object-
aware processes. In particular, these processes are defined in an activity-centred
way and not in terms of data conditions. This way, it is neither possible to deter-
mine the order in which object attributes should be written nor to define what
valid attribute settings are.

Striving Object-Aware Process Support 179

Data-Driven Execution. Since the proclet framework is based on an activity-
centered paradigm, data-driven activation of activities is not possible. However,
each activity can be associated with a pre- and post-condition defined on ba-
sis of the information from the knowledge base (i.e., exchanged messages). At
run-time, an activity becomes enabled if its incoming transition is activated, the
pre-condition evaluates to true, and required messages are available. This way,
data-driven coordination of proclet instances becomes possible.

Object Interactions. At run-time, for each proclet type a dynamic number of
instances can be handled. In addition, it is possible to send messages to multiple
proclets; e.g., to all instances of a certain proclet type. This way, a complex
process structure evolves in which the individual proclet instances can be exe-
cuted asynchronously to each other. In this context, for each port a cardinality
constraint can be defined which determines the number of recipients. Creation
and execution dependencies as well as aggregations can be defined based on
pre-conditions for activities. In this context, however, it is not possible to handle
transitive or transverse relationships between proclet instances. This means, it is
not possible to synchronize a job offer instance with the set of corresponding re-
views directly. Such dependencies must be specified using (several) intermediate
dependencies. More precisely, reviews must be synchronized with their corre-
sponding applications and applications with the job offer to which they refer.
Otherwise, it is not possible to ensure that only the reviews required for the
applications belonging to the respective job offer are considered; i.e., reviews for
applications referring to other job offers are then invoked as well.

Variable Activitiy Granularity. All activities are defined in the context of one
proclet type: This way, instance-specific activities are supported while context-
specific ones are not explicitly considered (i.e., it is not possible to access data
elements from lower- or higher-level proclet instances). Regarding the latter, in-
formation from other proclet instances can be transferred using messages. How-
ever, there is no interrelationship between activity execution and the content
of messages. Batch-oriented activities, in turn, are partially supported by en-
abling multiple instantiation of related proclet instances. The execution of a set
of instance-specific activities (which are represent as transitions of individual
proclet instances) in one go, however, is not possible. Since activities are treated
as black-boxes, internal process logic is not supported.

Integrated Access. Integrated access to application data is taken into account.

3.3 Business Artifacts

The business artifacts framework [15,3] is a process design methodology which
focuses on data objects (i.e., business artifatcs) rather than on activities. A busi-
ness artifact holds all business information relevant about itself. This includes
atomic and structured attributes as well as all related artifacts. In addition, a life-
cycle is defined for each business artifact which is specified using a finite-state

180 V. Künzle and M. Reichert

machine capturing the main processing stages and the transitions between them.
Transitions can be associated with conditions. The latter can be defined in terms
of attribute values or relationships to other business artifacts. Attribute values
are assigned during the execution of services. In particular, services are exe-
cuted to move business artifacts through their lifecycles. Services as associated
with pre- and post-conditions for their execution (i.e., available attribute values,
stages). In addition, associations specify how services are associated with arti-
facts. They are defined using ECA-rules (i.e., event, condition, action). Events
may comprise currently assigned attribute values, a reached state, a launched or
completed service, an incoming message, or a performer request. Conditions, in
turn, are defined using first-order logic (e.g., SQL statements). Finally, actions
represent service invocations or the activation of a subsequent artifact stage. Ar-
tifacts (including their informational structure and lifecycles), services and ECA-
rules only constitute a logical representation of business processes and business
data. In particular, there exists no well-defined operational semantics for the
direct execution of the defined models. Instead, the definitions are mapped to
an activity-centred flow diagram (i.e. for optimization) and are then (manually)
implemented. This results in hard-coded process logic.

Object Behavior. Since transitions are associated with (data-) conditions, it is
possible to synchronize process state and data state. However, it is a cumbersome
task to ensure that pre- and post-conditions assigned to services are consistent
with ECA-rules and the conditions defined for the transitions between the stages
an artifact moves through.

Object Interactions. Within the data structure of an artifact, related artifacts
are defined as well. Their corresponding lifecycles, however, are treated indepen-
dently (i.e., within their own artifact model). Consequently, the arising data
structure is distributed among several data models and overlapping; i.e., some
artifacts are defined in the context of several other artifacts. This makes it a hard
job to comprehend the emerging process structure and to keep it consistent. In
addition to object behavior support, ECA-rules can be used for coordinating ar-
tifact lifecycles as well (i.e., by using quantifiers). Consequently, there is no clear
separation between object behavior and object interactions. Moreover, services
may change attribute values of related business artifacts. In this context, it is a
cumbersome task to take care of the lifecycles of related artifacts. Finally, ag-
gregations are not taken into account and transitive and transverse relationships
between business artifacts are not considered.

Data-Driven Execution. It is possible to activate a service based on data con-
ditions. However, since the invocation of a service depends on pre-conditions, it
is not possible to dynamically skip services if their post-condition has already
been fulfilled. Moreover, if certain pre-conditions cannot be met during run-time,
process execution will be blocked.

Striving Object-Aware Process Support 181

Variable Activitiy Granularity. Each service requires its own implemen-
tation. For that reason, the granularity of each service is fixed at build-time;
i.e. form-based activities are not explicitly supported. In addition, control flows
specific to a particular form (i.e., some attributes values become mandatory on-
the-fly) are not considered.

Integrated Access. Optional activities can be enforced by using ECA-rules as
well; e.g., without specifying an event or a condition. However, the framework
focuses on process-relevant activities. For this reason, it is not possible for users
to distinguish optional and mandatory activities in their worklist. For process
authorization (i.e,, service execution) users are directly assigned to the service
they should execute. In this context, it is neither possible to consider the business
artifact properties nor the relation of a user to the respective artifacts. Data
authorization (i.e., permissions for creating, deleting and changing of business
artifacts), in turn, is not explicitly considered. However, services are annotated
with conditional effects (i.e., for ensuring specific attribute values to be set). This
way, mandatorily required attribute values can be distinguished from optional
ones. However, it depends on the respective service implementation how these
assumptions are ensured at run-time. Attribute values violating a constraint
are marked as invalidated. These attribute values should then be changed in a
subsequent service invocation.

3.4 Data-Driven Coordination

The data-driven coordination framework [4,16] enables the coordination of in-
dividual processes based on objects and object relations. Objects are defined in
terms of states and (internal) transitions between them. The latter are assigned
with processes which must be executed to reach the subsequent state. According
to the relations between objects, so called external transitions connect states
belonging to different objects with each other. This enables the coordination of
the individual object lifecycles. More precisely, whether or not a certain state
of an object can be activated may depend on the currently activated states of
other objects. In addition to correctness constraints (i.e., for ensuring the proper
termination of the arising process structure), the approach also comprises well-
defined operational semantics for the automatic enactment of object lifecycles
and process structures.

Object Behavior. Although the behavior of objects is explicitly defined, ob-
ject attributes and their respective values are not taken into account. For this
reason, it is not possible to determine mandatorily required data and to define
what valid attribute settings are. Consequently, processes are further defined
in terms of black-box activities rather than based on data conditions. Thus, it
is not possible to ensure that the actual processing state is in accordance with
corresponding attribute values.

182 V. Künzle and M. Reichert

Object Interactions. It is possible to asynchronously execute individual object-
related processes and to synchronize them. In particular, creation as well as ex-
ecution dependencies can be defined by using external transitions. The latter,
however, can only be specified along relations between objects which are directly
represented within the corresponding data structure. Transitive or transverse re-
lations, in turn, are not supported. Although it is possible to create a variable
number of instances at run-time, aggregations are not supported.

Data-Driven Execution. Processes themselves are still activity-driven; i.e.,
the activation of a subsequent state depends on the completion of a process
associated with the incoming state transition. Thus, it is not possible to execute
processes or respective activities up front or to dynamically skip them. Opposed
to this, process synchronization follows a data-driven approach.

Finally, since object attributes are out of scope and process execution is based
on black-box activities, neither a variable granularity of activities nor in-
tegrated access to application data is provided.

3.5 Product-Based Workflow Support

The product-based workflow design or support approach [5,17,6] uses a so-called
product data model which specifies required data elements to assemble a partic-
ular product. This product data model is described by a tree [5] and consists
of atomic data elements and operations. Data elements are depicted as circles.
Operations, in turn, are represented by arcs with small cycles having zero or
more input data elements and exactly one output data element. An operation is
executable if values for all input data elements are available. In addition, condi-
tions on the value of the input data elements may restrict the execution of the
operation. If the condition is not satisfied, the operation is not executable, even
if values for all of its input data elements are available. The product is considered
as being fully processed as soon as a value for the top element of the product
data model (i.e., the root element) is available. Several operations can have the
same output element while having a different set of input elements. Such a sit-
uation represents alternative ways to produce a value for that output element.
For selecting the best execution alternative, operations are associated with dif-
ferent attributes describing characteristics of the operations like execution cost,
processing time, and failure probability. This enables the consideration of differ-
ent execution priorities during process enactment. To achieve a corresponding
process model, the product data model can be manually translated [5]. Since
this is time-consuming and error-prone, different algorithms are provided to au-
tomatically generate a process model on the basis of a given product data model
[17]. Opposed to the consideration of an explicit process model, however, the ap-
proach also provides the direct execution of the product data model [17,6]. For
this purpose, end users are supported with recommendations about which oper-
ation should be executed next. Such recommendations take care of the required
performance criterion and calculate how the various alternative executions differ

Striving Object-Aware Process Support 183

from each other with respect to that performance criterion. This way, the need
to translate a product data model into a process model disappears.

Object Behavior. Using atomic data elements, it is possible to specify which
data is mandatorily required during process execution. In addition, it is possible
to determine the order in which data elements have to be written, and to specify
what valid attribute settings are.

Object Interactions. Since each instance is executed in isolation, it is not pos-
sible to coordinate them.

Integrated Access. Access to data is only possible during the execution of
operations specified within the product data model; i.e., users are not allowed
to access and manage data at any point in time. Different ways for reaching
a process goal are definable using alternative execution paths. If one path has
been selected, however, it is no longer possible to additionally execute the other
one. Thus, it is not possible to differentiate between optional and mandatory
operations.

Data-Driven Execution. The direct execution of the product data model en-
ables data-driven process execution. In particular, a subsequent operation can be
executed if for all required input data elements a corresponding value is available
and the eventually associated data condition evaluates to true. Since activity ac-
tivation depends on pre-conditions, however, it is not possible to automatically
skip an activity if the required output data element has been already available.
In addition, re-execution of activities is not possible.

Variable Activity Granularity. Each operation requires a specific implemen-
tation and therefore constitutes a black-box activity. As a consequence, all op-
erations have a fixed granularity and control-flow support during the execution
of activities is not provided.

3.6 Further Approaches

Similar to the Proclets [2] framework, the Object-centric Business Process Mod-
eling framework [7,8] enables the coordination of object-specific processes along
their corresponding object relations. However, processes are defined in an activity-
centred way; i.e., in terms of black-box activities. For coordination, however,
cardinality constraints as well as creation and execution dependencies are taken
into account. Finally, [18] proposes to group and ungroup related activities within
user worklists. This way, batch activities can be supported.

4 Comparing the Different Approaches

As illustrated in Fig. 5, each characteristic is addressed by at least one existing
approach. Although the mentioned approaches have limitations (see footnotes

184 V. Künzle and M. Reichert

in Fig. 5), they can be considered as pioneer work towards object-aware process
support. However, none of them covers all characteristics in a comprehensive
and integrated way. Also note that Fig. 5 does not make a difference between
process modeling and process execution. Though some approaches (e.g., the
business artifacts framework [3]) provide rich capabilities for process modeling,
they do not cover run-time issues (or at least do not treat them explicitly).

Fig. 5. Evaluation of existing approaches

In order to emphasize the high practical impact of object-aware process sup-
port, we contrast the characteristics with the different application examples con-
sidered by existing approaches (cf. Fig. 5). In particular, existing approaches
partially consider similar scenarios, while addressing different characteristics (cf.
the grey boxes on the bottom of Fig. 5). For example, order processing was taken
as illustrating scenario by Case Handling [1], Batch Activities [18], and Business
Artifacts [3]. Case Handling addresses the need for enabling object behavior,
data-driven execution, and integrated access. Business Artifacts, in turn, con-
sider data-driven execution, object behavior and object interactions. Finally, [18]
describes the need for executing several activities in one go (i.e., the execution
of batch-activities). Consequently, this indicates that integrated support of all
these characteristics is urgently needed to adequately cope with order processes.
Altogether, this comparison demonstrates two things: First, the characteristics
are related to each other. Second, broad support for them is required by a variety
of processes from different application domains.

Striving Object-Aware Process Support 185

5 An Integrated Framework for Object-Aware Processes

Altogether, we believe that object-aware process management will provide an
important contribution towards the realization of flexible process management
technology in which daily work can be done in a more natural way.

Fig. 6. Object-aware Process Management

In particular, as illustrated in Fig. 6, a comprehensive integration of processes
and data entails three major benefits:

1. Flexible execution of unstructured, knowledge-intensive processes.
2. Integrated view on processes, data, and functions to users.
3. Generic business functions: automatically generated form-based activities.

In the PHILharmonicFlows project we target at a comprehensive framework for
object-aware process management enabling the introduced characteristics (cf.
Fig. 7). PHILharmonicFlows enforces a well-defined modeling methodology gov-
erning the definition of processes at different levels of granularity and being based
on a well-defined formal semantics. Due to lack of space, this paper focuses on
existing approaches already addressing particular characteristics of object-aware
process support. Hence, we omit details about the different modeling components
and formal issues (e.g., ensuring soundness). The same applies in respect to the
formal semantics process execution is based on (see [11,19] for details).

The framework differentiates between micro and macro processes in order to
capture both object behavior and object interactions. As a prerequisite, object
types and their relations need to be captured in a data model. For each object
type a corresponding micro process type needs to be defined. In this context, our
approach applies the well established concept of modeling object behavior in
terms of states and state transitions [3,4]. Opposed to existing approaches, how-
ever, PHILharmonicFlows enables amapping between attribute values and objects

186 V. Künzle and M. Reichert

states and therefore ensures compliance between them. Finally, the presented ex-
ecution paradigm combines data-driven process execution with activity-oriented
aspects. Optional access to data, in turn, is enabled asynchronously to process
execution and is based on permissions for creating and deleting object instances
as well as for reading/writing their attributes. For this, PHILharmonicFlows
maintains a comprehensive authorization table taking the current progress of
the corresponding micro process instance into account. In accordance to the re-
lations between the invoked object instances, the corresponding micro process
instances additionally form a complex process structure. By using macro pro-
cesses, however, we hide this complexity from modelers as well as from end-users
to a large degree.

Fig. 7. Overview about the PHILharmonicFlows Framework

6 Summary and Outlook

In this paper we made several contributions. First, we systematically introduced
the main characteristics of object-aware processes. Second, we elaborated pio-
neering work recognizing the need for a tighter integration of processes and data
along these characteristics. Overall, the conducted evaluation has confirmed the
high relevance of the characteristics and that their support is needed in many ap-
plication domains. However, as discussed, a comprehensive framework for object-
aware process management is still missing. PHILharmonicFlows offers a compre-
hensive solution framework to adequatlely support object-aware processes and
to automatically generate most end-user components at run-time. In [11] we

Striving Object-Aware Process Support 187

have already introduced the basic components of PHILharmonicFlows as well as
their complex interdependencies. In addition, details on micro process support
and the automatic generation of form-based activities can be found in [19]. Fi-
nally, a tighter integration of processes and data implicates further challenges
in respect to the integration of users [10]. These issues are considered in PHIL-
harmonicFlows as well. To evaluate our framework, we are currently developing
a proof-of-concept prototype for the modeling as well as run-time support of
object-aware processes. In this context, additional techinques enabling improved
system performance and scalability are introduced.

References

1. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A new Paradigm
for Business Process Support. DKE 53(2), 129–162 (2005)

2. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Workflow Mod-
eling using Proclets. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS,
vol. 1901, pp. 198–209. Springer, Heidelberg (2000)

3. Bhattacharya, K., Hull, R., Su, J.: In: A Data-Centric Design Methodology for
Business Processes, pp. 503–531. IGI Global (2009)

4. Müller, D., Reichert, M., Herbst, J.: Data-Driven Modeling and Coordination of
Large Process Structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131–149. Springer, Heidelberg (2007)

5. Reijers, H.A., Liman, S., van der Aalst, W.M.P.: Product-Based Workflow Design.
Management Information Systems 20(1), 229–262 (2003)

6. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product-based Workflow
Support. Information Systems 36(2), 517–535 (2011)

7. Redding, G.M., Dumas, M., ter Hofstede, A.H.M.: Transforming Object-oriented
Models to Process-oriented Models. In: ter Hofstede, A.H.M., Benatallah, B., Paik,
H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 132–143. Springer, Hei-
delberg (2008)

8. Redding, G.M., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible,
object-centric approach for business process modelling. In: Service Oriented Com-
puting and Applications, pp. 1–11 (2009)

9. Künzle, V., Reichert, M.: Towards Object-Aware Process Management Systems:
Issues, Challenges, Benefits. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E.,
Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS 2009. LNBIP, vol. 29, pp. 197–210.
Springer, Heidelberg (2009)

10. Künzle, V., Reichert, M.: Integrating Users in Object-Aware Process Management
Systems: Issues and Challenges. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.)
BPM 2009. LNBIP, vol. 43, pp. 29–41. Springer, Heidelberg (2010)

11. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-
aware Process Management. Journal of Software Maintenance and Evolution: Re-
search and Practice 23(4), 205–244 (2011)

12. Künzle, V., Weber, B., Reichert, M.: Object-aware Business Processes: Fundamen-
tal Requirements and their Support in Existing Approaches. International Journal
of Information System Modeling and Design (IJISMD) 2(2), 19–46 (2011)

13. Künzle, V., Reichert, M.: PHILharmonicFlows: Research and Design Methodology.
Technical Report UIB-2011-05. University of Ulm, Ulm, Germany (May 2011)

188 V. Künzle and M. Reichert

14. van der Aalst, W.M.P., Mans, R.S., Russell, N.C.: Workflow Support Using Pro-
clets: Divide, Interact and Conquer. Bulletin of the IEEE Computer Society Tech-
nical Committee on Data Engineering 32(3), 16–22 (2009)

15. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling Business Contexture and Behavior
Using Business Artifacts. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 324–339. Springer, Heidelberg (2007)

16. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and Dy-
namic Adaptation of Data-Driven Process Structures. In: Bellahsène, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 48–63. Springer, Heidelberg (2008)

17. Vanderfeesten, I.: Product-Based Design and Support of Workflow Processes. Phd
thesis. Eindhoven University of Technology (2009)

18. Sadiq, S.W., Orlowska, M.E., Sadiq, W., Schulz, K.: When workflows will not
deliver: The case of contradicting work practice. In: Proc. BIS 2005 (2005)

19. Künzle, V., Reichert, M.: A Modeling Paradigm for Integrating Processes and Data
at the Micro Level. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E.,
Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81,
pp. 201–215. Springer, Heidelberg (2011)

	Striving for Object-Aware Process Support:How Existing Approaches Fit Together
	Introduction
	Object-Aware Process Support
	Object Behavior
	Object Interactions
	Data-Driven Execution
	Variable Activity Granularity
	Integrated Access

	Existing Approaches
	Case Handling
	Proclets
	Business Artifacts
	Data-Driven Coordination
	Product-Based Workflow Support
	Further Approaches

	Comparing the Different Approaches
	An Integrated Framework for Object-Aware Processes
	Summary and Outlook
	References

