
A. Tatnall (Ed.): Reflections on the History of Computing, IFIP AICT 387, pp. 166–179, 2012.
© IFIP International Federation for Information Processing 2012

The History of Computer Language Selection

Kevin R. Parker1 and Bill Davey2

1 College of Business, Idaho State University, Pocatello, Idaho USA
parkerkr@isu.edu

2 School of Business Information Technology, RMIT University, Melbourne, Australia
billd@rmit.edu.au

Abstract. This examines the history of computer language choice for both in-
dustry use and university programming courses. The study considers events in
two developed countries and reveals themes that may be common in the lan-
guage selection history of other developed nations. History shows a set of recur-
ring problems for those involved in choosing languages. This study shows that
those involved in the selection process can be informed by history when making
those decisions.

Keywords: selection of programming languages, pragmatic approach to selec-
tion, pedagogical approach to selection.

1 Introduction

The history of computing is often expressed in terms of significant hardware devel-
opments. Both the United States and Australia made early contributions in computing.
Many trace the dawn of the history of programmable computers to Eckert and Mauch-
ly’s departure from the ENIAC project to start the Eckert-Mauchly Computer Corpo-
ration. In Australia, the history of programmable computers starts with CSIRAC, the
fourth programmable computer in the world that ran its first test program in 1949.
This computer, manufactured by the government science organization (CSIRO), was
used into the 1960s as a working machine at the University of Melbourne and still
exists as a complete unit at the Museum of Victoria in Melbourne. Australia’s early
entry into computing makes a comparison with the United States interesting.

These early computers needed programmers, that is, people with the expertise to
convert a problem into a mathematical representation directly executable by the com-
puter. The earliest history of programming languages was not of selection but of in-
vention. Groups would construct a computer with a means of programming in mind.
To simplify the programming process, various methods of helping humans cope with
the demands of digital devices created the need for shortcuts and these became the
first programming languages. The first programmers were mostly mathematicians or
engineers who programmed in machine code of some form. Many of them used
hardwiring to achieve their ends. These early programmers had no formal education
in machine language programming.

 The History of Computer Language Selection 167

The Computer History Museum (http://www.computerhistory.org/) provides a
timeline for the creation of early languages, which is shown in Table 1.

Table 1. Timeline for Creation of Early Languages (http://www.computerhistory.org/)

Year Development
1945 Kruse works on Plankalkul
1948 Claude Shannon identifies the bit as the fundamental unit of data and shows how

to code data for transmission

1952 Grace Hopper complete the A-0 compiler
1953 John Backus creates ‘speedcoding’ for the IBM 701
1956 Bob Patrick of GM and Owen Mock of North American Aviation create the batch

processing system GM-NAA for the IBM 704
1957 FORTRAN runs for the first time (Backus at IBM)
1960 COBOL created by a team representing manufacturers under Howard Bromberg
1960 LISP created by John McCarthy

1962 Kenneth Iverson develops APL
1963 ASCII determined
1964 BASIC created at Dartmouth by Thomas Kurtz and John Kemeny
1965 Simula written by Kristen Nygaard and Ole-John Dahl
1969 UNIX developed at AT&T by Kenneth Thompson and Dennis Ritchie

Eventually computer languages became codified and distributed. This led to the

need to provide a trained workforce, and formal institutions such as universities be-
came providers of this training. For example, the University of Sydney introduced a
course called ‘The Theory of Computation, Computing Practices and Theory of Pro-
gramming’ in 1947 (Tatnall and Davey, 2004).

The speed of the introduction of specialized degrees paralleled the introduction of
hardware and software in industry. At that time the computing industry and academia
were intertwined. Industry progressed due to innovations made by university academ-
ics, and many industry leaders moved to teaching and research positions. In Australia
the 1960s saw Gerry Maynard move from the Post Office to set up a course at the
Caulfield Technical College, Donald Overheu move from the Weapons Research
Establishment to the University of Queensland, and Westy Williams leave the public
service to start a program at Bendigo Technical College (Tatnall and Davey, 2004).
Computing founders in the USA were also intimately connected with Universities.
Grace Hopper, originally a teacher of mathematics at Vassar, became a research fel-
low at Harvard while she worked on the Mark I and Mark II for the navy (Sammet,
1981). Alternatively, Backus produced FORTRAN as an IBM employee and the lan-
guage became rooted in industry before being introduced in academia (Perlis, 1981).
The later development of ALGOL was the result of a conglomeration of actors from
industry and academia representing many stakeholders in play today, including D.
Arden (MIT), J. Backus (IBM), P. Desilets (Remington-Rand Univac), D. Evans
(Bendix), R. Goodman (Westinghouse), S. Gorn (University of Pennsylvania), H.
Huskey (University of California), C. Katz (Remington-Rand Univac), J. McCarthy

168 K.R. Parker and B. Davey

(MIT), A. Orden (University of Chicago), A. Perlis (Carnegie Tech), R. Rich (Johns
Hopkins), S. Rosen (Philco), W. Turanski (Remington-Rand Univac), and J. Wegstein
(National Bureau of Standards) (Perlis, 1981).

These examples indicate that the history of computer language selection should be
viewed in light of both the nature of languages and the stakeholders that determine the
lifetime of each language. In fact, it can be argued that a language becomes mature
when it is recognised by a University for teaching.

2 History of Language Development

The plethora of new languages in the period from 1960 to 1971 makes the task of
identifying trends difficult. As early as 1960 there were 73 languages in existence
(Sammet, 1972). By 1967 there were 117, and by 1971 there were 164 (Sammet,
1972). One response to the difficulty of determining language significance was taken
by the ACM Special Interest Group on Programming Languages (SIGPLAN). The
program committee for the History of Programming Languages (HOPL) conference
in Los Angeles assessed language importance via the following criteria: (1) the lan-
guage has been in use for at least 10 years, (2) the language has significant influence,
and (3) the language is still in use (Bergin and Gibson, 1996).

The development of FORTRAN began in 1954 and culminated in the first release
in 1957. Smillie (2004) recalls FORTRAN’s amazing appearance in light of how it
changed programming from almost electronics into a human activity:

I remember a lecture given by a colleague, Peter Sefton, in the late
1950s on a new language called FORTRAN, which he said he thought
might relieve some of the tedium of programming in machine language.

ALGOL, released in 1958 and updated in 1960, introduced recursion, indirect ad-
dressing, and character manipulation, among other features. Many universities
adopted ALGOL as the language for use in their computer programming courses be-
cause it was a precise and useful way for capturing algorithms (Keet, 2004). COBOL
was developed in 1959 and was widely used for a number of decades in business ap-
plications. By 1972, most universities in Australia and the USA had established com-
puter science or information systems (the latter often called ‘data processing’) degree
programs. Almost all computer science degree programs offered ALGOL,
FORTRAN, or LISP, while most data processing programs offered COBOL. In Brit-
ain, BASIC was also important. During the late 60s, departments experimented with
various languages like PL/I.

The mid-1970s brought about another important change ‒ the introduction of the
microcomputer. These machines came with BASIC and revolutionised the teaching of
computer courses in high schools. Most secondary schools immediately started using
BASIC, but this trend did not impact university programs.

With the introduction of Pascal in the 1970s, most universities adopted Pascal for
their introductory programming course. Some authors attribute this to two pragmatic
factors: the invention of the personal computer, and the availability of Pascal compi-
lers (Levy, 1995). Pascal compilers were always far slower than the languages used in

 The History of Computer Language Selection 169

industry, but the speed was well within the limits needed in a teaching environment.
At this time academics used arguments to justify the divergence from using industrial-
ly common languages. For example, Merritt (1980) wrote:

Since Pascal is a widely available and well-designed language, it was
suggested that Pascal provided a unique language environment in
which these features that support high quality program construction
can be learned. However, it is reasonable to expect that reliable soft-
ware will be a priority, that the connections between good programs
and language features will continue to be made, and that language fea-
tures will develop along the lines presented here. Information Systems
graduates will be in systems development and management roles.

The use of Pascal in academia was eventually superseded by languages used in indus-
try, beginning with C and C++, and eventually shifting to Java and C#. As recently as
1996 a survey of CSAB accredited programs showed the most popular first language
was still Pascal at 36% of the responding institutions, followed by C++ at 32% and C
at 17% (McCauley and Manaris, 1998).

3 Trends in Language Selection

The debate over programming language selection has been ongoing since the intro-
duction of programming classes in university curricula. A sampling of papers pub-
lished over time provides some insights into the trends observed during given time
periods.

3.1 The 1970s

Dijkstra (1972, p. 864) stated that:

...the tools we are trying to use and the language or notation we are us-
ing to express or record our thoughts are the major factors determining
what we can think or express at all! The analysis of the influence that
programming languages have on the thinking habits of their users ...
give[s] us a new collection of yardsticks for comparing the relative me-
rits of various programming languages.

Sime (1973) noted a need for an empirical approach to evaluate programming lan-
guages for unskilled users rather than experienced users, a trend that he observed in
language evaluation papers prior to his work. Yohe (1974) pointed out that the devel-
opment of problem-oriented languages began in the late 1950s, and they now offered
an alternative to assembly language, although that was still the most basic tool availa-
ble to most programmers. The availability of so many languages, however, presented
a new problem in the selection of a language best suited for a particular task. Fried-
man and Koffman (1976) stressed the need for structured programming as a replace-
ment to the older versions of FORTRAN, noting that “teaching disciplined program-
ming at an elementary level is a nearly impossible task in the absence of a suitable

170 K.R. Parker and B. Davey

implementation language” (p. l). Smith and Rickman (1976) were also seeking a
replacement for FORTRAN, developing a well-designed set of criteria, including
pedagogical factors, resource constraints, and political issues through which they
‘graded’ ALGOL W, APL, Assembler, Basic, COBOL, EULER, Structured
FORTRAN, LISP, Pascal, PL/I, and SNOBOL. Furugori and Jalics (1977) reported
that the results of their survey indicated that over half of the respondents still used
FORTRAN in their introductory courses, while PL/I was used in a quarter of the
schools. Finally, in 1978, Schneider indicated a trend toward the use of Pascal in
classes. He pointed out that Pascal was the language that best met two critical and
apparently opposing criteria – richness and simplicity. Pascal was rich in those con-
structs needed for introducing fundamental concepts in computer programming, but
simple enough to be presented and grasped in a one-semester course.

3.2 The 1980s

The 1980s were marked by an increase in the number of available languages, which
led to increased uncertainty about which to choose for the introductory programming
course. Various paradigms were also introduced during this period. Boom and Jong
(1980) performed a critical comparison of multiple programming language implemen-
tations available on the CDC Cyber 73, including ALGOL 60, FORTRAN, Pascal, and
ALGOL 68. Tharp (1982) also pointed out the variety of languages available, includ-
ing FORTRAN, COBOL, Jovial, Ada, ALGOL, Pascal, Pl/I, and Spitbol. He discussed
several recent comparisons of programming languages on the basis of their support of
good software engineering practices, availability of control structures, the programmer
time required for developing a representative non-numeric algorithm, and the machine
resources expended in compiling and executing it. Soloway, Bonar, and Erlich (1983)
discussed recent research into finding a better match between a language and an indi-
vidual’s natural skills and abilities. Their study explored the relationship between the
preferred cognitive strategies of individuals and programming language constructs.
Luker (1989) discussed the alternatives to Pascal, noting that many instructors at that
time were choosing between Ada and MODULA-2. He then examined the paradigms
available, including functional programming, procedural programming, object-oriented
programming, and concurrent programming.

3.3 The 1990s

King (1992) looked at the evolution of the programming course from the Computing
Curricula 1978 to the Computing Curricula 1991 recommendations. He noted that the
1980s saw the creation of several important languages while at the same time several
languages of the 1970s became popular. He also discussed the increasing popularity
of various programming paradigms during the 1980s, including the imperative or
procedural paradigm, the concurrent or distributed paradigm, the database paradigm,
the functional or applicative paradigm, the logic-programming paradigm, and the
object-oriented paradigm. He continued by proposing a set of criteria for the selection
of programming languages. Howatt (1995) also proposed an evaluation method for

 The History of Computer Language Selection 171

programming languages. His criteria included the broad categories of language design
and implementation, human factors, software engineering, and application domain.
He went on to provide an evaluation approach. Howland (1997) also presented an
extensive list of criteria that the author felt were important in choosing a language for
introductory computer science instruction, but concluded that the selection of a pro-
gramming language should be made primarily on the basis of how well key program-
ming concepts may be expressed in the language.

3.4 The 2000s

By the turn of the century, the object-oriented paradigm was becoming more promi-
nent, as was the importance of security. The Ad Hoc AP CS Committee (2000) noted
that in their study of language selection for CSl and CS2 classes three main principles
emerged: emphasis on object-orientation, need for safety in the language and envi-
ronment, and a desire for simplicity. Wile (2002) stated that programming language
choice is subject to many pressures, both technical and social. He organized the pres-
sures into three competing needs: (1) those of the problem domain for which languag-
es are used for problem solving; (2) the conceptual and computing models that under-
lie the designs of the languages themselves, independent of their particular problem
domains; and (3) the social and physical context of use of the languages. He also ob-
served a trend away from writing an entire application ‘from scratch’ in a single lan-
guage to build a stand-alone system toward using general-purpose languages as the
integrating medium for extensive functionality offered by database packages, web-
based services, GUIs, and myriad other COTS and customized products that interface
via an application program interface (API). At the same time, ‘contextual concerns’
for security, privacy, robustness, safety, etc., universally dominate applications across
the board (p. 1027). Roberts (2004a) observed another trend, that the growth in the
popularity of the object-oriented paradigm and the decision by the College Board to
move the Advanced Placement Computer Science program to Java led an increasing
number of universities to adopt Java as the programming language for their introduc-
tory course. He further pointed out (2004b) that there were two additional challenges
in which dramatic increases had a negative impact on pedagogy: (1) the number of
programming details that students must master has grown, and (2) the languages,
libraries, and tools on which introductory courses depend are changing more rapidly
than they have in the past. Finally, Gee, Wills, and Cooke (2005) pointed out another
trend that is becoming increasingly evident (and controversial), that is, the use of
scripting languages to teach programming concepts because they provide “not only a
proper programming environment but also an instant link into the formation of active
web pages”. Parker et al. (2006a, 2006b) examined a multitude of studies, including
many of those mentioned above, and presented a set of criteria for use when selecting
a computer programming language for an introductory programming course, and de-
veloped an instrument that allows weighting of each of those selection criteria to spe-
cify their relative importance in the selection process.

172 K.R. Parker and B. Davey

4 Language Selection Studies

The problems that must be faced in designing an introductory course are many and
varied. These range from those of interdepartmental politics in the case of service
courses to logistical challenges if substantial numbers of students must be accommo-
dated (Solntseff, 1978). A cursory glance through back issues of computer-related
journals such as the ACM Special Interest Group on Computer Science Education
(SIGCSE) Bulletin makes it apparent that discussions about the introductory pro-
gramming language course and the language appropriate for that course have been
numerous and on-going (Smolarski, 2003). The selection of a programming language
for instructional purposes is often a tedious chore because there is no well-established
approach for performing the evaluation. The informal process may involve faculty
discussion, with champions touting the advantages of their preferred language, and an
eventual consensus, or at least surrender. As the number of faculty, students, and lan-
guage options grows, this process becomes increasingly unwieldy. As it stands, the
process currently lacks structure and replicability (Parker et al., 2006a).

A list of the factors that affected the choice of a programming language for an in-
troductory course at one US university is ably discussed in Smith and Rickman
(1976). According to Solntseff (1978), there “appears to be no other discussion in the
literature of comparable thoroughness”. A current study carefully examines a first
programming language for IT students (Gee et al., 2005). A more recent study ex-
amines over 60 papers relevant to language selection in academia (Parker et al.,
2006a). The selection of programming languages in university curricula in the US and
Australia is almost identical, with some interesting differences. The current distribu-
tion in Australia is shown in Table 2.

Table 2. Languages taught (de Raadt et al. 2003b)

Language Number of courses Weighted by students
Java 23 43.9%
VB 14 18.96%
C++ 8 15.2%
Haskell 3 8.8%
C 4 5.5%
Eiffel 2 3.3%
Delphi 1 2.0%
Ada 1 1.7%
jBase 1 0.8%

This is a close approximation to the statistics in US universities. One historical dif-

ference between the countries involved Ada. When the US Department of Defense
mandated Ada for their applications the language experienced a surge in US colleges,
but its use declined after 1997 when the mandate was removed.

 The History of Computer Language Selection 173

5 Selection Approaches

Over the years languages have been invented to solve problems. Other languages have
been invented to make teaching algorithms easier. This has led to two sometimes
conflicting lines of arguments by academics about which languages they should use in
university courses: choose a language that is commonly used or is expected to be
commonly used in industry, or choose a language that best supports concept devel-
opment in students. Thus, there have been two distinct arguments for language selec-
tion that have been extant throughout the history of languages: pragmatic versus pe-
dagogical.

5.1 Pragmatic Selection

The pragmatic approach recommends choosing a language that will help students get
a job after graduating. The pragmatic approach is impacted by a language’s industry
acceptance as well as the marketability of individuals proficient in its use.

5.1.1 Industry Acceptance
Industry acceptance refers to the market penetration (Riehle, 2003) of a particular
language in industry, i.e., the use of a language in business and industry. Often re-
ferred to as industrial relevance, this can be assessed based on current and projected
usage, as well as the number of current and projected positions. Stephenson (2000)
claims that this factor has the greatest influence in language selection, as indicated by
23.5% of schools that participated in his study. Lee and Stroud (1996) point out that
real-world acceptability is a factor that once had little weight, as indicated by the ear-
lier use of ALGOL and Pascal, but that attitude does seem to be changing. They note
that for their students being able to have an industrially accepted language on their
résumé is a significant consideration for them. A 2001 census of all Australian uni-
versities revealed that perceived industry demand was the major factor in the choice
of an introductory language (de Raadt et al., 2003a). King (1992) agrees that many
language decisions are made on the basis of current popularity or the likelihood of
future popularity; he notes that choosing popular languages has a number of practical
benefits, including increased student motivation to study a language that they have
heard of and know is in demand, as well as a good selection of books and language
implementations that will be available for a popular language.

5.1.2 Marketability
Marketability refers to the employability of graduates. This may include regional or
national/international marketability, based on the placement of a program’s graduates.
Language selection is often driven by demand in the workplace, i.e., what employers
want. Not only are marketable skills important in future employability, but students
are more enthusiastic when studying a language they feel will increase their employa-
bility (de Raadt et al., 2003a). Language marketability is stressed in several studies.
The census of introductory programming courses conducted by de Raadt et al.
(2003a) emphasizes the importance of employability. In fact, the most commonly

174 K.R. Parker and B. Davey

listed factor in language selection (by 56% of the participants) was the desire to teach
a language that provides graduates with marketable skills. Watt (2000) discusses the
need for transferable skills that will be useful in whatever career the student chooses
to pursue. Emigh (2001) agrees that the primary concern in language evaluation must
be the demand in the workplace and argues that when deciding on a new language one
must take into account employers’ expectations of graduates. Further, graduates’
marketability can be improved by exposing them to several languages (de Raadt et al.,
2003a). They cite, for example, that a progression from C to C++ to Java will qualify
a graduate for more advertised positions than exposure to any single language in iso-
lation. Extrinsically motivated students aspiring to a lucrative career will demand to
be taught those tools that are currently in vogue in the industry. Universities may have
to accept that pedagogical issues in the choice of platform and language must be sec-
ondary to marketing concerns (Jenkins, 2001).

5.2 Pedagogical Selection

Smolarski (2003), Mclver and Conway (1996), and Howland (1997) question whether
changes in the curriculum and programming courses should be as driven by industry
as they often seem to be. They argue that decisions about the language used in an
introductory course should be made based on how well it underscores fundamental
skills that prepare the student for subsequent courses and helps to make any student-
developed software well-written and error-free, rather than on what language would
be most useful for a student in finding a job (Smolarski, 2003).

5.2.1 Avoiding the Complexities of Industrial Environments
These arguments also call attention to the possibility that the purposes of teaching
problem solving and introducing a professional grade language into the first course
conflict because students end up focusing on difficulties associated with that language
and its environment (Johnson, 1995; Jenkins, 2002; Gee et al., 2005; Allison et al,
2002; Kelleher and Pausch, 2005). “A language that requires significant notational
overhead to solve even trivial problems forces the language rather than the tech-
niques of problem-solving to become the object of study” (Zelle, 1999).

5.2.2 Clear Problem-Solving Principles
A teaching language should have attributes that help teach fundamentals of all pro-
gramming tasks. This is the argument used by Wirth (1993), Kölling et al. (1995), and
all the other inventors of languages designed for classroom use, and is exemplified by
proponents of the various ‘pure’ teaching languages. The argument quickly becomes
one that urges use of a language not common in industry. Some urge development of
a new teaching language to meet the needs for teaching, one that does not have to be a
real world production language and thus can avoid the compromises in conceptual
cleanness for efficiency that cause many of the problems with existing languages
(Kölling et al., 1995).

 The History of Computer Language Selection 175

6 Primary Selection Criterion

The relevant importance ascribed to both the pragmatic and practical approaches is
illustrated by a recent survey of academics, shown in Table 3. The primary reason for
language selection reported by the survey is marketability, cited by 56.1% of the res-
pondents, followed by pedagogical benefits, cited by 33.3% of the academics.

Table 3. Reasons for choosing language (de Raadt et al. 2003b)

Used in industry / Marketable 56.1%
Pedagogical benefits of language 33.3%
Structure of degree/dept politics 26.3%
OO language 26.3%
GUI interface 10.5%
Availability/Cost to students 8.8%
Easy to find appropriate texts 3.5%
OS/Machine limitations of dept 1.8%

7 Caveats

The task of anticipating industry needs is complex. Emigh (2001) points out that four
to five years pass between when a student begins a program of study and when he or
she attains a position requiring programming skills. Even if a curriculum teaches a
newer programming language, there is no guarantee that employers will still be look-
ing for that language when the student enters the work force. Further, some trends are
difficult to understand. Currently in Australia there seems to be a demand for multi-
skilled programmers (de Raadt et al. 2003a). The average advertisement required 1.84
languages. 48% of jobs required more than one language. C++ appeared as a require-
ment in around 30% of advertisements, as did Java. Visual Basic was next with 21%,
followed by C with 17% (de Raadt et al. 2003b). The Gottleibsen reports (Gottliebsen
1999; Gottliebsen 2001) on job advertisements in Australia for a sample of years
shows 128 languages advertised in 1999, 3822 positions for C++, 2555 for Visual
Basic, 1052 for Java, and 4678 for COBOL. By 2001 there were 206 languages in
demand by industry, with 4359 positions for C++, 2680 for Java, 3369 for Visual
Basic, and 1087 for COBOL.

An interesting omission from most programming language selection approaches is
the ability to produce output using the language. Experiments such as that conducted
by Zeigler (1995) could be used to help decide the issue. The same 60 programmers
developed code in both Ada and C, the same work environment was used, as were the
same debugging tools, same editors, same testing tools, and the same design metho-
dology. Most of these programmers had masters degrees in computer science, and the
more experienced programmers tended to work more in C. When first hired, 75% of
the programmers knew C, while only 25% knew Ada. Despite the bias in C’s favor,
the experiment showed that the cost of coding in Ada is about half the cost of coding
in C, because code written in Ada contained 70% less bugs discovered before product

176 K.R. Parker and B. Davey

delivery and 90% less bugs discovered after product delivery (Zeigler, 1995). Note
that this approach is limited by the shear quantity of programming languages availa-
ble, well into the thousands today. A one-to-one comparison of all possible candidates
cannot possibly be preformed.

Student perceptions also play a part in this debate. There exist several languages
designed for teaching (e.g. Pascal, LOGO), but any department using one of these
today would be an object of ridicule (Jenkins, 2002). It is true that programming lan-
guages designed for teaching purposes are not used to any extent by industry. There-
fore student perception is that these languages are of little practical worth and they
further assume that, in general, they lack the advanced facilities of other languages
(Gee et al., 2005). If that argument were to be carried to absurdity then the over-
whelming choice would be COBOL, which now has an installed base of “more than
200 billion lines of code, and 5 billion lines of COBOL are written every year”
(Langley, 2004).

As noted earlier, Parker et al. (2006a, 2006b) propose a set of criteria for the selec-
tion of a programming language in an academic setting. Their work is based on papers
by researchers in both Australia and the United States. Each of the criteria has been
used in one or more previous studies that evaluate programming languages. This ex-
tended set of selection criteria points to a more formal and mature approach to lan-
guage selection. As our current period moves into history, we may be able to see the
early years of the twenty-first century as a time of fundamental change in language
choice.

8 Conclusion

While there have been various differences throughout the years between Australia and
the United States in the teaching of programming languages, there is a pattern that
seems culturally independent. Across the two countries there have been, and still ex-
ist, two primary approaches to language selection. The pragmatic approach recom-
mends choosing a language that will enhance student employability. The pedagogical
approach insists that the language used in introductory programming classes should
be designed for teaching programming concepts and problem solving and should mi-
nimize complexities so that more time can be spent on developing design skills. There
has been no consensus on which approach is optimal, but the ultimate lesson is that
neither approach is sufficient by itself.

There are additional critical factors that must be considered when selecting a pro-
gramming language. Recent studies have examined a variety of factors that must be
taken into account, and while pragmatic and pedagogical concerns are still near the
forefront, they must be tempered by an awareness that other factors impact the selec-
tion process. The bottom line is that academics must carefully assess the best interests
of the students, weigh all variables in the language selection process such as those
listed by Parker et al. (2006a, 2006b), and choose a language accordingly. As Johnson
(1995) points out, “the greatest danger to our university system is the lemming-like
rush to do the same thing, to be one with the crowd, to be part of the current fashion
industry of computing”.

 The History of Computer Language Selection 177

References

Ad Hoc AP CS Committee. Round 2: Potential Principles governing language selection for
CS1-CS2 (2000), http://www.cs.grinnell.edu/~walker/sigcse-ap/99-
00-principles.html

Allison, I., Ortin, P., Powell, H.: A virtual learning environment forintroductory programming.
In: Proceedings of the 3rd Annual Conference of the Learningand Teaching Support Net-
work Centre for Information and Computer Sciences, Loughborough, UK (2002)

Bergin, T.J., Gibson, R.G.: History of Programming Languages-II. ACM Press, USA (1986)
Boom, H.J., de Jong, E.: A critical comparison of several programming language implementa-

tions. Software: Practice and Experience 10, 435–473 (1980)
de Raadt, M., Watson, R., Toleman, M.: Introductory programminglanguages at Australian

universities at the beginning of the twenty first century. Journal of Research and Practice in
Information Technology 35(3), 163–167 (2003a)

de Raadt, M., Watson, R., Toleman, M.: Language tug-Of-war: Industry demand andacademic
choice. In: Australasian Computing Education Conference (ACE 2003). Australian Com-
puter Society, Inc., Adelaide (2003b)

Dijkstra, E.W.: The humble programmer. Communications of the ACM 15(10), 859–866
(1972)

Emigh, K.L.: The impact of new programming languages on university curriculum. In: Pro-
ceedings of ISECON 2001, Cincinnati, Ohio, vol. 18, pp. 1146–1151 (2001),
http://isedj.org/isecon/2001/16c/ISECON.2001.Emigh.pdf (retrieved
July 10, 2005)

Friedman, F.L., Koffman, E.B.: Some pedagogic considerations in teaching elementary pro-
gramming using structured FORTRAN. In: Proceedings of the ACM SIGCSE-SIGCUE
Technical Symposium on Computer Science and Education, pp. 1–10 (1976)

Furugori, T., Jalics, P.: First course in computer science, a small survey. ACM SIGCSE Bulle-
tin 9(1), 119–122 (1977)

Gee, Q.H., Wills, G., Cooke, E.: A first programming language for ITstudents. In: Proceedings
of the 6th Annual Conference of the Learning and Teaching Support Network Centre for In-
formation and Computer Sciences, York, UK (2005)

Gottliebsen, C.: Computer market results 1999. C. Gottliebsen. Bayswater, GIMA (1999)
Gottliebsen, C.: Icon index trend report 2001. Icon index Trend Report. B.Youston. Bayswater

(2001)
Howatt, J.W.: A project-based approach to programming language evaluation. ACM SIGPLAN

Notices 30(7), 37–40 (1995),
 http://academic.luther.edu/~howaja01/v/lang.pdf
Howland, J.E.: It’s all in the language: yet another look at the choice ofprogramming language

for teaching computer science. Journal of Computing in Small Colleges 12(4), 58–74
(1997), http://www.cs.trinity.edu/~jhowland/ccsc97/ccsc97/

Jenkins, T.: The motivation of students of programming. In: ACM SIGCSEBulletin, Proceed-
ings of the 6th Annual Conference on Irmovation and Technology In Computer Science
Education, ITiCSE 2001, vol. 33(3) (2001)

Jenkins, T.: On the difficulty of learning to program. In: Proceedings of the 3rd Annual Confe-
rence of the Learning and Teaching Support Network Centre for Information and Compu-
ting Science, Loughborough, UK (2002)

Johnson, L.F.: C in the first course considered harmful. Communications of the ACM 38(5),
99–101 (1995)

178 K.R. Parker and B. Davey

Keet, E.E.: A personal recollection of software’s early days (1960-1979): Part1. In: IEEE An-
nals of the History of Computing (October-December) (2004)

Kelleher, C., Pausch, R.: Lowering the barriers to programming: Ataxonomy of programming
environments and languages for novice programmers. ACM Computing Surveys 37(2), 83–
137 (2005)

King, K.N.: The evolution of the programming languages course. In: Proceedingsof the Twen-
ty-Third SIGCSE Technical Symposium on Computer Science Education, Kansas City,
Missouri, pp. 213–219 (1992)

Kölling, M., Koch, B.: Requirements for a first year object-orientedteaching language. In:
ACM SIGCSE Bulletin, Proceedings of the Twenty-Sixth SIGCSE Technical Symposium
on Computer Science Education, vol. 27(1). Language History - A Tale of Two Countries
151 (1995)

Langley, N.: COBOL integrates with Java and .NET. Computer Weekly (2004),
http://www.computerweekly.com/articles/article.asp?liArticleI
D=133085

Lee, P.A., Stroud, R.J.: C++ as an introductory programming language. In: Woodman, M. (ed.)
Programming Language Choice: Practice and Experience. International Thomson Computer
Press, London (1996),

 http://www.cs.ncl.ac.uk/oId/publications/books/apprentice/
lnstructorsManual/C-H-_Choice.html

Levy, S.P.: Computer Language Usage In CS 1: Survey Results. SIGCSE 27(3), 21–26 (1995)
Luker, P.: Academic staff development in universities with special reference to small group

teaching. (Unpublished PhD Thesis), University of Nottingham (1989)
McCauley, R., Manaris, B.: Computer science programs: what do they looklike? In: Proceed-

ings of the 29th SIGCSE Technical Symposium on Computer Science Education, pp. 15–19
(February 1998)

Mclver, L., Conway, D.M.: Seven deadly sins of introductory programminglanguage design.
In: Proceedings of Software Engineering: Education and Practice (SE:E&P 1996), Dunedin,
NZ, pp. 309–316 (1996)

Merritt, S.M.: On the importance of teaching Pascal in the IS curriculum. In: ACM SIGCSE
Bulletin, Proceedings of the Eleventh IGCSE Technical Symposium on Computer Science
Education SIGCSE 1980, vol. 12(1) (1980)

Perlis, A.J.: The American Side of the Development of Algol. In: Wexelblat, R.L. (ed.) History
of Programming Languages I, pp. 25–74. ACM (1981)

Parker, K.R., Ottaway, T.A., Chao, J.T.: Criteria for the selection of a programminglanguage
for introductory courses. International Journal of Knowledge and Learning 2(1/2), 119–139
(2006a)

Parker, K.R., Chao, J.T., Ottaway, T.A., Chang, J.: A formal language selection process for
introductory programming courses. Journal of Information Technology Education 5, 133–
151 (2006b)

Riehle, R.: SEPR and programming language selection. CrossTalk – TheJournal of Defense
Software Engineering 16(2), 13–17 (2003),

 http://vkfww.stsc.hill.afmil/crosstalk/2003/02/Riehle.html
Roberts, E.: Resources to support the use of java in introductory computer science. In: Proceed-

ings of the 35th SIGCSE Technical Symposium on Computer Science Education,Norfolk,
Virginia, pp. 233–234 (2004)

Sammet, J.E.: Programming languages: History and future. Communicationsofthe ACM 15(7),
601 (1972)

 The History of Computer Language Selection 179

Sammet, J.E.: The Early History of COBOL. In: Wexelblat, R.L. (ed.) History of Programming
Languages I. ACM (1981)

Schneider, G.M.: The introductory programming course in computer science: Ten principles.
ACM SIGCSE Bulletin 10(1), 107–114 (1978)

Sime, M.E., Green, T.R.G., Guest, D.J.: Psychological evaluation of two conditional construc-
tions used in computer languages. International Journal of Man-Machine Studies 5(1), 105–
113 (1973)

Smillie, K.: People, languages, and computers: A short memoir. IEEE Annals ofthe History of
Computing (April-June), 60–73 (2004)

Smith, C., Rickman, J.: Selecting languages for pedagogical tools in the computer sciencecurri-
culum. In: Proceedings of the 6th SIGCSE Technical Symposium on Computer Science
Education, pp. 39–47 (1976)

Smolarski, D.C.: A first course in computer science: Languages and goals. Teaching Mathe-
matics and Computer Science 1(1), 137–152 (2003),

 http://math.scu.edu/~dsmolars/smolar-e.pdf
 (retrieved November 10, 2005)
Soloway, E., Bonar, J., Ehrlich, K.: Cognitive strategies and looping constructs: an empirical

study. In: Soloway, E., Spohrer, J.C. (eds.) Studying the Novice Programmer, pp. 853–860.
Lawrence Erlbaum Associates, Hillsdale (1989)

Solntseff, N.: Programming languages for introductory computing courses: aposition paper.
ACM SIGCSE Bulletin 10(1), 119–124 (1978)

Stephenson, C.: A report on high school computer science education in five USstates (2000),
http://www.holtsoft.com/chris/HSSurveyArt.pdf

Tatnall, A., Davey, B.: Stream in the history of computer education in Australia. In: History of
Computing in Education. J. Impagliazzo and J. A. N. Lee, Kluwer Academic Publishers
(2004)

Tharp, A.L.: Selecting the ‘right’ programming language. ACM SIGCSE Bulletin 14(1), 151–
155 (1982)

Watt, D.A.: Programming languages-Trends in education. In: Proceedings of Simposio Brasi-
leiro de Linguagens de Programacao, Recife, Brazil (2000),

 http://www.dcs.gla.ac.uk/~daw/publications/PLTE.ps
Wile, D.S.: Programming languages. In: Marciniak, J.J. (ed.) Encyclopedia of Software Engi-

neering, 2nd edn., pp. 1010–1023. John Wiley and Sons, Hoboken (2002)
Wirth, N.: Recollections about the development of Pascal. In: ACM SIGPLAN Notices, The

Second ACM SIGPLAN Conference on History of Programming Languages HOPL-II
28(3) (1993)

Yohe, J.M.: An overview of programming practices. ACM Computing Surveys 6(4), 221–245
(1974)

Zeigler, S.F.: Comparing development costs of C and Ada. Rational SoftwareCorporation,
Santa Clara, Calif, March 30 (1995)

Zelle, J.M.: Python as a first language. In: Proceedings 13th Annual Midwest Computer Confe-
rence (MCC 1999), Lisle, IL, March 18-19 (1999)

	The History of Computer Language Selection
	Introduction
	History of Language Development
	Trends in Language Selection
	The 1970s
	The 1980s
	The 1990s
	The 2000s

	Language Selection Studies
	Selection Approaches
	Pragmatic Selection
	Pedagogical Selection

	Primary Selection Criterion
	Caveats
	Conclusion
	References

