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Abstract. We present a novel approach to improve 3D structure esti-
mation from an image stream in urban scenes. We consider a particular
setup where the camera is installed on a moving vehicle. Applying tradi-
tional structure from motion (SfM) technique in this case generates poor
estimation of the 3d structure due to several reasons such as texture-less
images, small baseline variations and dominant forward camera motion.
Our idea is to introduce the monocular depth cues that exist in a sin-
gle image, and add time constraints on the estimated 3D structure. We
assume that our scene is made up of small planar patches which are ob-
tained using over-segmentation method, and our goal is to estimate the
3D positioning for each of these planes. We propose a fusion framework
that employs Markov Random Field (MRF) model to integrate both spa-
tial and temporal depth information. An advantage of our model is that
it performs well even in the absence of some depth information. Spatial
depth information is obtained through a global and local feature extrac-
tion method inspired by Saxena et al. [1]. Temporal depth information is
obtained via sparse optical flow based structure from motion approach.
That allows decreasing the estimation ambiguity by forcing some con-
straints on camera motion. Finally, we apply a fusion scheme to create
unique 3D structure estimation.

1 Introduction

Estimating the 3D structure of a scene from 2D image stream is one of the
most popular problems within computer vision. It is referred to as structure
from motion (SfM) or 3D reconstruction from video sequence [2]. SfM has been
applied in several applications [2] such as robot navigation, obstacle avoidance,
entertainments, driver assistance, reverse engineering and modelling, etc.

In our work, we focus on the problem of estimating the 3D structure from a
video taken by a camera installed on a moving vehicle in urban environments.
This setup leads possibly to create 3D maps of our world. However, the dom-
inant forward motion of the camera from one side, and the texture-less scenes
that are present generally in urban environment produce an erroneous depth
recovery. The forward camera motion could result degenerated configurations
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for a naturally ill-posed problem, or mathematically, a large number of local
minima during the minimization of the reprojection error [3], that results in
inaccurate camera relative motion estimation. Moreover, the limited lifetime of
tracked feature points prevents using general optimization methods such as in
traditional SfM. Additionally, forward motion restricts features matching due to
non-homogeneous scale changes of image objects, especially those aligned paral-
lel to camera movement.

In the proposed method, we suggest to benefit from the monocular cues (e.g.
spatial depth information) to improve 3D depth estimation. We believe that
such spatial depth information are complementary to temporal information. For
instance, given a blue patch located at the top of an image, an SfM technique
will probably fail to compute the depth due to the difficult matching problem,
while the monocular depth estimation method (supervised learning) will assign
it a large depth value as it will be considered as a sky with high probability.

Similar to other works [I][4][5], we consider that our world is made up of
small planar patches, and the relationship between each two patches is either
connected, planar or occluded. Based upon these considerations, the goal is to
estimate the plane parameters where each patch lies. These patches are obtained
from the image using over-segmentation method [6] or what is called superpixels
segmentation. In order to fuse both temporal and monocular depth information,
and also to handle the interactive relationship between superpixels, we proposed
to use an MRF model similar to the one used in [I]. However, we extend the
model by adding new terms to include temporal depth information computed
using a modified SfM technique. Moreover we benefit from the limited Degrees
of Freedom (DoF') of camera motion (which is such of the vehicle) to improve
relative motion estimation, and in return, the depth estimation.

Spatial depth information is obtained using an improved version of the method
proposed in [I], which estimates the depth from a single image. The method
employs an MRF model that is composed of two terms; one integrates a broad set
of local and global features, while the other handles the neighbouring relationship
between superpixels based on occlusion boundaries. In our method, we compute
occlusion boundaries from motion [7] to obtain more reliable results than using a
single image as in the aforementioned method. Therefore, it is expected to have
better reconstruction, even before integrating the temporal depth information.

To perform SfM, which represents temporal depth information, we use opti-
cal flow based technique that allows forcing some constraints on camera motion
(which has limited DoF'). Moreover, it is proved to have better depth estimation
for small baseline distances and forward camera motion [6]. Here, we compute
a sparse optical flow using an improved method of Lucase-Kanade with mul-
tiresolution and subpixel accuracy, results are refined thanks to camera motion
estimation. Based on the famous optical flow equation [6], we obtain the depth
for set of points in the image. Hence we can add some constraints on the position
of scene patches to whom these points belong.

Outline of the Paper: In section 2l we give an overview of various methods
for depth estimation using; video sequences, single image, and then combined
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spatio-temporal methods. In section [B] we introduce the MRF model that inte-
grates SfM with the monocular depth estimation, and we explain its potential
functions, parameters learning and inference. In section [4] we conclude our work
and we discuss the advantages of the proposed method.

2 Related Works

In computer vision, structure from motion (SfM) has taken a great attention
by researchers, it is considered as one of the well-studied problems. However,
most of the efforts are focused on a certain number of aspects. For instance,
improving feature points matching [], formalize better constraints to improve
relative camera pose estimation [9][I0], robust methods for outliers rejection
[11], linear/non-linear reprojection error optimization and bundle adjustment
[10], formalize a set of constraints on more than two frames [9]. Most of these
contributions do only consider temporal information that results from image
stream variation with respect to time, without trying to analyse the monocular
depth cues that are present in every single image.

From another side, several monocular cues that exist in a single image have
been exploited by researchers, that includes; vanishing points and horizon line [9],
shades, shadows, haze, patterns and structure [12]. Unfortunately, most of these
cues are not present in all kinds of images, and they require specific settings. In
contrast, we are looking to provide a general spatial depth estimation approach
to be integrated with temporal depth estimation as mentioned earlier. Hence, we
target a new generation (since last decade) of methods that perform 2D to 3D
conversion using a single image. Generally these methods have no constrains and
are based on the use of exhaustive feature extraction and probabilistic models
to learn depth. An early approach attempts to estimate general depth of an
image is proposed in [I3] which employs Fourier spectrum to compute a global
spectral signature of a scene to estimate the average depth of the image scene.
Later on, an innovative attempt to perform 3D reconstruction from one image
is proposed in [I4]. Where first the image is over-segmented into superpixels,
then each superpixel is classified as ground, sky or vertical. It employs a wide
set of colour, texture, location, shape and edge features for training. Finally, the
vertical region is “cut and folded” in order to create a rough 3D model. Although
this method has been improved later by considering some geometric subclasses
(centre, left, right, etc.) [I5], the “ground-vertical” world assumption does not
apply for wide range of images. More general method is proposed in [5] which
estimates the depth from a single image based on some predicted semantic labels
(sky, tree, road, etc.) using multi-class pixel-wise image labelling model. Then,
the computed labels guide the 3D estimation by establishing a possible order
and positioning of image objects. Another general approach has been proposed
in [I] which does not have initial assumption about scene’s structure. It proceed
by over-segmenting the image similar to [I4]. The absolute depth of each image
patch is estimated based on learning an MRF model, where a variety of features
that capture local and contextual information is employed. We see later how a
part of our work is inspired by this method.
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In the context of combining both spatial and temporal depth information (as
we aim), a method that combines SfM with a simultaneous segmentation and
object recognition is proposed in [16], it targets road scene understanding. The
task is achieved through a conditional random field model (CRF) which con-
sists of pixel-wise potential functions that incorporate motion and appearance
features. The author claims that it overcomes the effect of small baseline vari-
ations. In our method, we perform direct depth estimation rather than object
recognition. However, similar to [16], our method is also supervised learning
oriented, we benefit from computed features to capture contextual information
and learn depth. Another approach with the same context is a semantic struc-
ture from motion approach [I7] which is based on a probabilistic model. The
proposed model incorporates object recognition with 3D pose and location esti-
mation tasks. Also it involves potential functions that represent the interaction
between objects, points and regions. In comparison with our approach, we use
small planar patches [4] to model the world rather than the pixel-wise approach
used in [16] as we think they better describe the world around us. Our idea is
also supported by the experimental results in [I§].

3 Spatio-temporal Depth Fusion Framework

In this section, we first introduce some notations. Then we explain how we
compute spatial and temporal depth features. After that, we discuss estimating
occlusion boundaries that play an important role in our model. Next, we intro-
duce our proposed framework as an MRF model that incorporates several terms
related to spatial and temporal depth features. Finally we show how we estimate
the parameters from a given dataset and perform the inference for a new input.

3.1 Image Representation

As mentioned earlier, we assume that the world is composed of planar patches,
and the obtained superpixels are their one-to-many 2D projection. This assump-
tion represents a good estimate if the number of computed superpixels is large
enough. We obtain the superpixels from an image by using an over-segmentation
algorithm [6]. We represent the image as a set of superpixels St = {S%, 5%, ..., St },
where S! defines superpixel i at time t. We define a! € R? the plane parameters
associated to S! such that for a given point x € R? on the plane satisfies alz = 1.
Our aim is to find the plane parameters for all superpixels in the image stream.

3.2 Spatial Depth Features

Spatial features for supervised depth estimation have not achieved much success
compared to other computer vision domains such as object recognition and clas-
sification. Although the problem of monocular vision had been well studied in
human vision (even before computers appear) and many monocular depth cues
that human uses have been identified, however, it was not possible to obtain
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explicit depth representative measurements such as in stereo vision. Recently,
there were several attempts to infer image 3D structure using spatial features
and supervised learning [I][5][I6]. In our method, we proceed in similar way, in
order to capture texture information, the input image is filtered with a set of tex-
ture energies and gradient detectors (20 filters) [I8]. Then by using superpixel
segmentation image as a mask, we compute the filter response for each super-
pixel by summing its pixels in the filtered image. We refer the reader to [18] for
more details. In order to capture general information, the aforementioned step
is repeated for multiple scales of the image. Also, to add contextual information,
e.g. texture variations, each superpixel feature vector includes the features of
its neighbouring superpixels. Additionally, the formed feature vector includes
colour, location, and shape features as they provide representative depth source
for fixed camera configuration and urban environment. For instance, recognizing
the sky and the ground. These features are computed as shown in table 1 in [14].
We donate X! the feature vector for superpixel S}.

3.3 Temporal Depth Features

In this subsection, we first describe some mathematical foundations and camera
model. Then we explain how to perform sparse depth estimation which will be
integrated in the probabilistic model given in subsection

We use a monocular camera mounted on a moving vehicle. We assume that

rror
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Fig.1. (a) Acquiring geometry: Camera installed on a moving vehicle with Z axis
coincides with forward motion direction. (b) Illustration for how to compute the error
in depth between the estimated value and the depth for a given «;

the Z axis of the camera coincides with the forward motion of the vehicle as
shown in figure [[{a). Based on pin-hole camera model and camera coordinate
system, a given 3D point M (X,Y, Z) is projected on the 2D image as m(x,y)

by a perspective projection:
z|  f X
RN ®

When the vehicle moves, which is equivalent to fixed camera and moving world,
the relationship between the velocity of a 3D point [XY Z]T and the velocity
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of its 2D projection [# 9|7 is given as the time derivative of equation [l Then,
based on the well-known optical flow equation X = —T — 2 x X, and assuming
a rigid scene, we decompose the 3D velocity into translational T and rotational
velocity 2 [2]. Hence we obtain equation 2] which is the essence of most optical
flow based SfM methods

b=z ) %ﬁ by " % ©)

83

Based on this equation, we proceed in computing a sparse depth. We estimate the
relative camera motion between two adjacent frames by first performing SIFT
feature points matching [8]. Next we estimate the fundamental matrix using
RANSAC [11] and bundle adjustment. Then, given camera intrinsic parameters,
we can obtain the Essential matrix that encodes the rotation and translation
between the two scenes. Which represent also the relative camera motion pa-
rameters [T £2]. The left hand side of equation [2 is basically the optical flow
computed between two frames. In our implementation it is obtained using the
well-known Lucas-Kanade with multi resolution and sub-pixel accuracy. More-
over, we benefit from the estimated Fundamental matrix to reject outliers in
the optical flow. At this point, we could compute an approximate depth for the
selected feature points.

Besides, given the specific camera setup as shown in figure [[[(a), the motion of
the camera is not totally free in the 3D space (motion of a vehicle). Therefore,
we could add some constraints that express the feasible relative camera motion
between two frames. For instance, limitation in T}, and {2, velocities. However,
due to the absence of essential physical quantities, precise constraints on camera
(or vehicle) motion could not be established theoretically. Instead, we evaluate
experimentally possible camera transactions estimated from a set of video se-
quences acquired in different scenarios. As a result, we could establish some roles
to spot outliers in the newly computed values for relative camera motion [T" {2].
This way we improve the relative camera motion estimation in our case as we
regularly have degenerated configurations (due to small baseline variations and
dominant forward motion as mentioned earlier).

3.4 Occlusion Boundaries Estimation

When the camera translates, close objects move faster than far objects, and
hence this causes to change the visibility of some objects in the scene. Although
this phenomenon is considered as a problem in computer vision, it provides an
important source of information about 3D scene structure. In our approach, we
benefit from motion to infer occlusion boundaries. We use the method proposed
in [7] to generate a soft occlusion boundaries map from two consecutive image
frames. The method is based on supervised training of an occlusion detector
thanks to a set of visual features selected by a Random Forest (RF) based
model. Since occlusion boundaries lie close to surfaces edges, we use the classifier
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output as an indicator to the relationship between two superpixels if they are
connected or occluded. Hence we add a penalty term in our MRF that forces
the connectivity between superpixels. This term is inversely-proportional to the
obtained occlusion indicator.

3.5 MRF for Depth Fusion

Markov Random Field (MRF) is becoming increasingly popular for modelling
3D world structure [I][5] due to its flexibility in terms of adding appearance
constraints and contextual information. In our problem, we formulate our depth
fusion as an MRF model that incorporates certain constraints with variable
weights so they are jointly respected. Furthermore, we preserve the convexity of
our problem such as in [I] to allow solving it through a linear program rather
than probabilistic approaches for less computation time. We have seen earlier
how to obtain temporal depth information, monocular features and occlusion
boundaries. Figure[2shows a simplified process flow for the proposed framework.
We formulate our energy function which includes all of these terms as:

E(at|Xt>O7E7at_1;'9) = sz(af) +Zi/)i]'(a$7()é;) +Z¢lk(af>d}c) +Z¢i(a$7a§_l)
i ij ik i
~ ~

~ 7 ~ . o~ ~ - ~ i
spatial depth connectivity temporal depth time consistency
term term term term

3)
Where the superscripts ¢ and ¢t — 1 refer to current and previous frames. X
is the set of superpixels feature vectors. O is a map of occlusion boundaries
computed from the frames ¢t and ¢ — 1. The estimated sparse depth is D, while
d}c is the estimated depth value for pixel k in superpixel i. «; is superpixel &
plane’s parameters and « is the set of parameters for all superpixels. 6 are the
learned monocular depth parameters. We now proceed in describing each term
in our model (In the first three terms we will drop down the superscript of frame
indicator ¢ as they are the same).

Spatial Depth Term. This term is responsible for penalizing the difference be-
tween the computed plane parameters and the one estimated from spatial depth
features (based on the learned parameters 6). It is given by the accumulated er-
ror for all pixels in the superpixel. See [I8] P36-37 for details. For simplification,
let’s define a function 4(d, J}c) that represents one point fractional depth error
between an estimated value d; and actual value dé- given plane parameters «;.
This potential function is given as

Vi) = B ZV;ZXS( oo i) (4)

Where v}, is a learned parameter that indicates the reliability of a feature vector
X} in estimating the depth for a given point pj, see [I] for more details. 3; is a
weighting constant.
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Fig. 2. Graphical representation of our MRF; it takes as input an image sequence.
Occlusion boundaries and sparse SfM are estimated from two frames ¢ and ¢ + 1, while
monocular depth features are extracted from the current frame ¢, the MRF model
integrate this information in order to produce a joint result for 3D structure estimation

Connectivity Prior. This term is based on the map of occlusion boundaries
explained earlier. For each two adjacent superpixels, we compute an occlusion
boundary indicator by summing up all pixels located at the common border in
the estimated map. The obtained occlusion indicators are normalized so that
they are in the range [0..1]. We refer o;; for the indicator between superpixels ¢
and j. The potential function is computed for each two neighbouring superpixels
by choosing two adjacent pixels from each. The function penalizes the difference
in distance between each of them to the camera. We have

2
bijlai, o) = B oij > 8(dy,df) (5)
k=1=1

Where (s is a weighting constant. This potential function forces neighbouring
superpixels to be connected only if they are not occluded with the help of oc-
clusion indicator o;;. In comparison with the original method [1], we drop down
the co-planarity constraint as we believe that the included temporal information
and estimating occlusion boundaries indicator for motion provide an important
source of depth information about plane orientation. Therefore, we do not mis-
lead the estimation procedure with such approximation.

Temporal Depth Term. This term enforces some constraints that are es-
tablished from the set of points where the depth is known. It is evident that
with three non-collinear points we can obtain plane parameters «;. However, to
consider less or more number of points, we formulate this potential function to
penalize the error between the estimated depth d?« for a point pfc € S;, and the
computed depth given plane parameters «;. Figure [l (b) shows how this error
is computed. Hence we have

ik (0, dyy) = Bs(dj, — 1/c; "1},) (6)

Where 3 is a weighting constant. we compute absolute depth error rather than
fractional error since SfM is more confident than spatial depth estimation.
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Time Consistency Term. In case of more than two frames, the quality of the
3D structure estimation varies from one frame to another, and it depends highly
on the relative camera motion components (larger T, and 7T, translational mo-
tions results in better 3D structure estimation). Therefore we add some penalty
in order to guide depth estimation at time ¢ given the estimation at time ¢ — 1.
This smooths the overall estimated structure variations in time. Hence, for each
superpixel Sffl we find its correspondence S! based on the motion parameters
and the size of common area. Additionally, we consider some visual features such
as colour and texture. Eventually some superpixels will not have correspondence
due to changing the field of view. We select the point pfc at the centre of the
Sit*l and we form a ray from camera centre to this point. This ray intersects
with superpixel S! at point pz/. The formulated potential function penalizes the
distance across the ray between the two points

¢i(al,al™) = Byo(dy . dy) (7)

Here (4 is smoothness term. We intend to use only one point to leave some
freedom in plane orientation and for better 3D reconstruction refinement.

3.6 Parameters Learning and Inference

In our MRF formulation we preserve the convexity as all terms are linear or L
norm, which is solved using linear program. To learn the parameters, we first
proceed with the first two terms of equation [3l We assume unity value for the
parameters 31 and 3. The two parameters 6 and v are learned individually [I8§]
using a dataset with ground-truth. For the rest of the parameters, 5; and (s
defines how the method is spatially oriented, while large 83 turns the method
into conventional SfM. (4 allows previous estimation to influence the current
one. Hence the weighting constants 1. 4 depends on the context, although they
could be learned through cross-validation.

4 Discussion and Conclusion

We have presented a novel framework to perform 3D structure estimation from
image sequence, which combines both spatial and temporal depth information to
provide more reliable reconstruction. Temporal depth features are obtained using
a sparse optical flow based structure from motion technique. The spatial depth
features are obtained through a broad global and local feature extraction phase
that tries to capture monocular depth cues. Both approaches have been tested
independently on a wide set of images and proved to have good performance
(see [19] [20] for comparison). This is why we believe that our joint approach
gives better 3D structure estimation. Or at least, a performance similar to SfM
technique (when the weight fB5 is assigned a large value). Additionally, it is
adapted to our context where we regularly encounter a failure of certain depth
source. For instance, in case of pure rotation in SfM or abnormal colors and
appearance for some objects in spatial depth estimation.
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