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Abstract. In this paper we are interested in the saliency of visual con-
tent from wearable cameras. The subjective saliency in wearable video is
studied first due to the psycho-visual experience on this content. Then
the method for objective saliency map computation with a specific con-
tribution based on geometrical saliency is proposed. Fusion of spatial,
temporal and geometric cues in an objective saliency map is realized by
the multiplicative operator. Resulting objective saliency maps are eval-
uated against the subjective maps with promising results, highlighting
interesting performance of proposed geometric saliency model.

1 Introduction

Since recently, the focus of attention in video content understanding, presenta-
tion, and assessment has moved toward incorporating of visual saliency informa-
tion to drive local analysis process. Hence in the paper from A. Benoit [1], the
task is to classify animated movies from low motion content. The global saliency
is therefore expressed by rhythm and other motion descriptors. In another task
such as content viewing on a mobile screen, the most salient regions are selected
according to the perceptual model of L. Itti and C. Koch [2]. If we simplify
the concept of saliency to its very basic definition, we can reasonably say that
visual saliency is what attracts human gaze. Numerous psycho-visual studies
which have been conducted since the last quarter of 20th century uncovered
some factors influencing it. Considering only signal features, the sensitivity to
color contrasts, contours, orientation and motion observed in image plane has
been stated by numerous authors [3,4]. Nevertheless, only these features are not
sufficient to delimit the area in the image plane which is the strongest gaze at-
tractor. In [5], the author states, for still images, that observers show a marked
tendency to fixate the center of the screen when viewing scenes on computer
monitors. The authors of [6] come to the same conclusion for dynamic general
video content such as movies and Hollywood trailers. This is why the authors
of [7] propose the third cue which is the geometrical saliency modelled by a 2D
Gaussian located at the image center. While signal based cues remain valuable
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saliency indicators, we claim that geometrical saliency depends on global motion
and camera settings in the dynamic scene. Nowadays, the attention of computer
vision community is more and more turned to the new forms of video content:
such as wearable video cameras, or ”egocentric” view of the world [8,9]. Some
attempts to identify visual saliency mainly on the basis of the frequency of rep-
etition of visual objects and regions in the wearable video content have recently
been made in [10]. We are specifically interested in building visual saliency maps
by fusion of all cues in the pixel domain for the case of ”egocentric” video content
recorded with wearable cameras. Hence in this paper, we propose an automatic
method of spatio-temporal saliency extraction for wearable camera videos with
a specific accent on geometrical saliency dependent on strong wearable camera
motion. We evaluate the proposed method with regard to subjective saliency
maps obtained from gaze tracking.

The rest of the paper is organized as follows. In section 2 we will introduce the
context and motivation of our work. In section 3 we report the method and our
psycho-visual experiments for reference subjective saliency map construction.
The objective saliency map will be presented in Section 4. The evaluation of the
latter will be described in Section 5. Section 6 will conclude our work and outline
its perspectives.

2 Motivations

The context of actual work is the multi-disciplinary research on Alzheimer dis-
ease [11,12]. The goal here is to ensure an objective assessment of the capacity of
patients to conduct the IADL (Instrumental Activities of Daily Living). In [11]
the framework for video monitoring with wearable camera was designed. The
wearable camera is fixed in an ergonomic position on the patient’s shoulder (see
Fig. 1) and the recording is realized at patient’s home. The computer vision task
consists in an automatic recognition and indexing of IADLS from a taxonomy
proposed to patients in each recording. We seek to limit the automatic analysis
of the observed dynamic scene to the area of interest which is visually salient
for the medical practitioner. Hence in the next section we study the subjec-
tive saliency of this type of content. Then we propose an automatic, objective
saliency model from video data and assess it with regard to the built subjective
saliency ground truth.

3 Subjective Saliency Map

In this section we present our approach for subjective saliency extraction on
wearable video.

3.1 Eye-Tracker Experiment

The subjective saliency maps expressing user attention are obtained on the basis
of psycho-visual experiment consisting in measuring the gaze positions on videos
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Fig. 1. Wearable camera setup Fig. 2. Subjective saliency map example

from wearable video camera. The map of the visual attention has to be built on
each frame of these videos. Videos from wearable camera differ from traditional
video scenes: the camera films the user point of view, including his hands. Unlike
traditional videos, wearable camera videos have a very high temporal activity
due to the strong ego-motion of the wearer.

The gaze positions are recorded with an eye-tracker. We used HS-VET 250Hz
from Cambridge Research Systems Ltd. This device is able to record 250 eye
positions per second. The videos we display in this experiment have a frame-
rate of 29.97 frames per second. A total of 28 videos filming the activities of
daily living of patients and healthy volunteers are displayed to each participant
of the experiment. This represents 17 minutes and 30 seconds of video. The
resolution of the videos is 1280x960 pixels and the storage format is raw YUV
4:2:0. The experiment conditions and the experiment room is compliant to the
recommendation ITU-R BT.500-11 [13]. Videos are displayed on a 23 inches LCD
monitor with a native resolution of 1920x1080 pixels. To avoid image distortions,
videos are not resized to screen resolution. A mid-gray frame is inserted around
the displayed video. 25 participants were gathered for this experiment, 10 women
and 15 men. For 5 participants some problems occurred in the eye-tracking
recording process. So we decided to exclude these 5 records.

After looking at gaze position records on video frames, we stated that gaze
anticipated camera motion and user actions. This phenomenon has been already
reported by M. Land et al. in [14]. They state that visual fixation does precede
motor manipulation, putting eye movements in the vanguard of each motor act,
rather than as adjuncts to it.

Nevertheless, gaze positions cannot directly be applied as ground truth to
compare automatic saliency model we aim at. They must be processed in order
to get the subjective saliency map. The next section describes how to build
subjective saliency maps from gaze tracking records.

3.2 Subjective Saliency Map Build Method

Any objective human visual perception model has to be validated and evaluated
with regard to a ground truth. The ground truth is the subjective saliency in this
case. The subjective saliency is built from eye position measurements. There
are two reasons for which eye positions cannot be directly used to represent the
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visual attention. First, the eye positions are only spots on the frame and do not
represent the field of view. Secondly, to get accurate results, the saliency map is
not built with the eye tracking data from one subject, but from many subjects.
So the subjective saliency map should provide an information about the density
of eye positions.

The method proposed by D. S. Wooding [15] fulfils these two constraints. In
the case of video sequences, the method is applied on each frame I of a video
sequence K. The process result is a subjective saliency map Ssubj(I) for each
frame I. With this method, the saliency map is computed in three steps. In
the first step, for each eye measure m of frame I, a two dimensional Gaussian is
applied at the center of the eye measure (x0, y0)m. The two dimensional Gaussian
depicts the fovea projection on the screen. The fovea is the central retina part
where the vision is the most accurate. In the Sensibility to Light [16] book chapter
from D.C. Hood and M.A. Finkelstein (1986), the authors stated that the fovea
covers an area from 1.5◦ to 2◦ in diameter at the retina center. D.S. Wooding
proposed to set the Gaussian spread σ to an angle of 2◦.

For the eye measure m of the frame I, a partial saliency map Ssubj(I,m) is
computed (1).

Ssubj(I,m) = Ae
−
(

(x−x0m )2

2σ2
x

+
(y−y0m )2

2σ2
y

)

with σx = σy = σ and A = 1

(1)

Then, at the second step, all the partial saliency maps Ssubj(I,m) of frame SiI
are added into Ssubj ′(I) (2).

Ssubj ′(I) =
NI∑

m=0

Ssubj(I,m) (2)

where NI is the number of eye measures recorded on all the subjects for the
frame I. Finally, at the third step, the saliency map Ssubj ′(I) is normalized by
the highest value argmax of Ssubj ′(I). The normalized subjective saliency map
is stored in Ssubj(I). An example of a subjective saliency map is presented in
Fig. 2. Subjective saliency maps cannot be used for real-world applications in
video analysis, as requiring psycho-visual experiments for each video to process.
We are thus interested in an automatic objective saliency maps. The subjective
saliency maps will be used as the ground truth to asses the objective maps
automatically built.

4 Objective Saliency Map

To delimit the area of video analysis in video frames to the regions which are
potentially interesting to human observers we need to model visual saliency
on the basis of video signal features. Here we follow the results of community
research we reported in Section 1 proposing fusion of spatial, temporal and
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geometric cues. We extend the state-of-the art approaches by a specific modelling
of geometrical saliency and propose multiplicative fusion of all three cues.

4.1 Spatial Saliency Map

The spatial saliency map Ssp is mainly based on color contrasts [17]. We used
the method from O. Brouard, V. Ricordel and D. Barba [7]. The spatial saliency
map extraction is based on seven color contrast descriptors. These descriptors
are computed in the HSI color space. On the contrary to RGB color system, the
HSI color space is well suited to describe color interpretation by humans. The
spatial saliency is defined according to the following seven local color contrasts V
in the HSI domain : the Contrast of Saturation, Contrast of Intensity, Contrast
of Hue, Contrast of Opponents, Contrast of Warm and Cold Colors, Dominance
of Warm Colors, and Dominance of Brightness and Saturation.
The spatial saliency value S′

sp(I, i) for pixel i from frame I is computed by mean
fusion operator from seven color contrast descriptors (3) :

S′
sp(I, i) =

1

7

7∑

ς=1

Vς(I, i) (3)

Finally, S′
sp(I, i) is normalized between 0 and 1 to Ssp(I, i)according to its max-

imum value.

4.2 Temporal Saliency Map

The objective spatio-temporal saliency map model requires a temporal saliency
dimension. This section will describe how to build temporal saliency maps. The
temporal saliency map St models the attraction of attention to motion singu-
larities in a scene. The visual attention is not grabbed by the motion itself. The
gaze is attracted by the motion difference between the real motion scene and
the global motion scene. The motion difference is called the residual motion. O.
Brouard et al. [7] and S. Marat [18] propose a temporal saliency map model that
takes advantage of the residual motion. In this paper, we have implemented the
model from O. Brouard et al. [7].

The temporal saliency map is computed in three steps. The first one is the
optical flow estimation. Then the global motion is estimated in order to get the
residual motion. Finally a psycho-visual filter is applied on the residual motion.

To compute the optical flow, we have applied the Lucas Kanade method from
OpenCV library [19]. The optical flow was sparsely computed on 4x4 blocks, as
good results were reported in [20] when using 4× 4 macro-block motion vectors
from the H.264 AVC compressed stream. The next step in temporal saliency
computation is the global motion estimation.

The goal here is to estimate a global motion model to differentiate then lo-
cal motion from camera motion. In this work, we follow the preliminary study
from [20] and use a complete first order affine model (4) :

dxi = a1 + a2x+ a3y
dyi = a4 + a5x+ a6y

(4)
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Here θ = (a1, a2, . . . , a6)
T is the parameter vector of the global model (4) and

(dxi, dyi)
T is the motion vector of a block. To estimate this model, we used

robust least square estimator presented in [21]. We denote this motion vector
V θ(I, i). Our goal is now to extract the local motion in video frames i.e. residual
motion with regard to model (4). We denote the macro-block optical flow motion
vector V c(I, i). The residual motion V r(I, i) is computed as a difference between
block motion vectors and estimated global motion vectors.

Finally, the temporal saliency map St(I, i) is computed by filtering the amount
of residual motion in the frame. The authors of [7] reported, as established by
S. Daly, that the human eye cannot follow objects with a velocity higher than
80◦/s [22]. In this case, the saliency is null. S. Daly has also demonstrated that
the saliency reaches its maximum with motion values between 6◦/s and 30◦/s.
According to this psycho-visual constraints, the filter proposed in [7] is given
by (5).

St(si) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
6V r(I, i), if 0 ≤ V r(I, i) < v1

1, if v1 ≤ V r(I, i) < v2

− 1
50V r(I, i) +

8
5 , if v2 ≤ V r(I, i) < vmax

0, if vmax ≤ V r(I, i)

(5)

with v1 = 6◦/s, v2 = 30◦/s and vmax = 80◦/s. We follow this filtering scheme
in temporal saliency map computation.

4.3 Geometric Saliency Map

As stated in the introduction, many studies have showed that the observers
are attracted by the screen center. In [7], the geometrical saliency map is a
2D Gaussian located at the screen center with a spread σx = σy = 5◦. In our
psycho-visual experiments we stated that in a shoulder-fixed wearable camera
video the gaze is always located in the first upper third of video frames, see the
scattered plot of subjective saliency peaks in Fig. 3. Therefore, we have set the
2D Gaussian center at x0 = width

2 and y0 = height
3 . The geometrical saliency Sg

map equation is given by (6).

Sg(I) = e
−
(

(x−x0)2

2σ2
x

+
(y−y0)2

2σ2
y

)
(6)

However, this attraction may change with the camera motion. This is explained
by the anticipation phenomenon [14], see section 3.1. Hence we propose to
simulate this phenomenon by moving the 2D Gaussian centred on initial ”ge-
ometric saliency point” in the direction of the camera motion projected in the
image plane. A rough approximation of this projection is the motion of image
center computed with the global motion estimation model, equation (4), where
x = width

2 and y = height
2 .

4.4 Saliency Map Fusion

In the previous sections we explained how to compute spatial temporal and
geometric saliency maps. In this section we describe the method that merges
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Fig. 3. Scattered plot of subjective saliency peaks for all database frames

these three saliency maps in the target objective saliency map. The fusion result
is a spatio-temporal-geometric saliency map. In [20], several fusion methods for
the spatio-temporal saliency without geometric component were proposed. We
have tested these fusion methods on wearable video database. The results show
that the multiplicative fusion performs the best. So for the full spatio-temporal-
geometric saliency we compute multiplicative Smul

sp−t−g (7).

Smul
sp−t−g(I) = Ssp(I)× St(I)× Sg(I) (7)

5 Evaluation

5.1 Normalized Scanpath Saliency

In this section, we compare the objective spatio-temporal saliency maps with
subjective saliency map obtained from gaze tracking Ssubj .

Here, we use the Normalized Scanpath Saliency (NSS) metric that was pro-
posed in [18]. The NSS is a Z-Score that expresses the divergence of the sub-
jective saliency maps from the objective saliency maps. The NSS computation
for a frame I is depicted by (8). Here, SN

obj denotes the objective saliency map

Sobj normalized to have a zero mean and a unit standard deviation, X̄ means

an average. When Ssubj × SN
obj is higher than the average objective saliency, the

NSS is positive; it means that the gaze locations are inside the saliency depicted
by the objective saliency map. In other words, higher the NSS is, more objective
and subjective saliency maps are similar.

NSS =
Ssubj × SN

obj − Sobj

σ(Sobj)
(8)

The NSS score for a video sequence is obtained by computing the average
of NSS for all frames as in [18]. Then the overall NSS score on each video
database is the average NSS of all video sequences. Results are presented in the
next section.
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5.2 Results

In this section, we compare the correlation of three automatic saliency maps
with the subjective saliency. These three saliency maps are the spatio-temporal
saliency map, the spatio-temporal-geometrical without camera motion, and the
proposed method the spatio-temporal-geometrical with camera motion, express-
ing the anticipation phenomenon. The 28 video sequences described in Section
2 from wearable cameras are all characterized by strong camera motion which
is up to 50 pixels magnitude in the center of frames. As it can be seen from the
Fig. 4 the proposed method with moving of geometrical Gaussian almost sys-
tematically outperforms the base-line spatio-temporal saliency model and the
spatio-temporal-geometrical saliency with a fixed Gaussian. For few sequences
(e.g. number 2), the performance is poorer than obtained by geometric saliency
with a fixed Gaussian. In these visual scenes, the distractors appear in the field
of view. The resulting subjective saliency map then contains multiple maxima
due to the unequal perception of scenes by the subjects. This is more ”semantic
saliency” phenomenon (faces, etc) which can not be handled with the proposed
model. The average NSS on the whole database also shows the interest of pro-
posed moving geometrical saliency. The mean NSS scores are respectively 1.832
for spatio-temporal, 2.607 for spatio-temporal with still geometrical Gaussian,
and 2.791 with moving geometrical Gaussian. Which means 52.37% improvement
of correspondence with subjective visual saliency map, which was our goal.
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6 Conclusion

Hence in this work we proposed new objective visual saliency model and compu-
tation method by fusing spatial, temporal and geometric cues in video frames.
The method was proposed for video with a strong motion recorded with cam-
eras worn by subjects in the context of recording of Instrumental Activities of
Daily Living. To our knowledge, this is the first attempt to define saliency in
such a content taking into account psycho-visual models known for other types
of traditional video content. First of all, conducting psycho-visual experiment on
a representative set of test subjects, we stated the anticipation phenomenon in
gaze positioning which was obviously transmitted to the subjective saliency map
built according to Wooding method. While in previous research, the geometrical
saliency was systematically frame centred, we recorded experimental evidence of
the dependence of the geometric saliency of camera fixation on a body. Finally, in
order to incorporate the anticipation phenomenon into the automatic construc-
tion of objective saliency map we expressed it by moving geometric saliency
Gaussian in direction of camera motion projected into the image plane. These
results are encouraging. In some video sequences moving of geometric Gaussian
allows to improve the NSS up to 40% compared to fixed Gaussian and up-to
50% compared to base-line spatio-temporal psycho-visual saliency model. In the
future of this work we will work on incorporating distractors and on saliency
-based feature weighting in the problem of scene recognition.
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