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Abstract. In the paper we propose a novel dual decomposition scheme
for approximate MAP-inference in Markov Random Fields with sparse
high-order potentials, i.e. potentials encouraging relatively a small num-
ber of variable configurations. We construct a Lagrangian dual of the
problem in such a way that it can be efficiently evaluated by minimiz-
ing a submodular function with a min-cut/max-flow algorithm. We show
the equivalence of this relaxation to a specific type of linear program and
derive the conditions under which it is equivalent to generally tighter LP-
relaxation solved in [1]. Unlike the latter our relaxation has significantly
less dual variables and hence is much easier to solve. We demonstrate its
faster convergence on several synthetic and real problems.

Keywords: Markov random fields, energy minimization, MAP-inference,
dual decomposition, high-order potentials.

1 Introduction

Markov random fields (MRFs) are a popular approach for analyzing interde-
pendent data. Its main advantage is the ability to express the joint distribution
over the whole set of hidden variables in terms of a product of potentials usu-
ally dependending on small subsets of the variables. Small-order MRFs became
very wide-spread in many tasks that arise in computer vision mainly for regular-
ization purposes since they allowed to take the context (or neighborhood) into
account. However, recently it has been shown that the use of high-order terms
can improve the accuracy in many vision problems (see, e.g. [2]).

One of the most important tasks in any MRF is the search of most probable
configuration, also known as MAP-inference. In this paper we will describe this
task in terms of minimizing the negative log-likelihood of MRF (energy).

Recently, the minimization of MRF energies with high-order potentials has at-
tracted a lot of attention. One line of research is to develop reductions of general
high-order energies to equivalent pairwise ones. The drawback of this approach is
that the resulting minimization problem can be exponentially large [3]. However,
for some classes of high-order potentials this transformation can be performed
efficiently: Rother et al. in [4] show that sparse or pattern-based potentials (po-
tentials that encourage small number of predefined node configurations) can be
efficiently transformed into pairwise ones.

A. Fusiello et al. (Eds.): ECCV 2012 Ws/Demos, Part III, LNCS 7585, pp. 305–314, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



306 A. Osokin and D. Vetrov

A popular way to minimize energies with high-order potentials without a
reduction is applying a specialized version of α-expansion algorithm [5] that
takes those potentials into account on each expansion-step. This approach can
be applied only for specific type of high-order potentials: Pn Potts potentials [6]
and their robust version [2] encourage all the nodes in a specific area to take
the same label, label costs [7] penalize the total number of labels used in the
solution. Although sometimes being efficient in practice this approach usually
does not give any guarantees on the solution and can get stuck in local minima.

Another approach to minimizing energies with high-order potentials is to gen-
eralize the dual decomposition scheme proposed in [8]. The most obvious gener-
alization adds a subproblem per each high-order potential (in what follows we
refer to this approach by clique-wise decomposition, CWD)1. As any dual decom-
position method CWD ends up with a convex non-smooth dual problem and is
guaranteed to solve a specific LP-relaxation of the initial problem. The main
drawback of CWD is its high computational complexity induced by two factors:
the dual problem is non-smooth and its dimensionality is high. Komodakis and
Paragios in [1] show that in case of pattern-based potentials it is possible to clev-
erly combine multiple high-order potentials in one subproblem and thus improve
both the convergence speed and tightness of the relaxation.

In all dual decomposition methods the final optimization problem is convex
but non-smooth and thus quite difficult to solve. The most standard way to
tackle it is to use different subgradient-based schemes (see [8] for review). This
methods are intuitive, produce almost zero computational overhead, but are
not robust and are very sensitive to parameter choice. Finding better ways to
optimize the dual is an area of active research (see e.g. [9,10]).

In this paper we try to reduce the dimensionality of the dual problem and
thus make it easier to solve. We propose a quite general framework that is based
on a Lagrangian decomposition that extends recently proposed Submodular De-
composition method (SMD) [11]. Our approach in theory deals with arbitrary
high-order potentials but is practical only for pattern-based potentials and their
robust versions (including (robust) Pn Potts and label costs). We provide the
theoretical analysis of our approach and its empirical evaluation.

The rest of the paper is organized as follows: we present submodular relaxation
algorithm in section 2; section 3 explores its theoretical properties including
convergence points, persistency property and considers an important special case
of permuted Pn Potts potentials; in section 4 we provide experiments and and
finish with a conclusion in section 5.

2 Submodular Relaxation

Consider hypergraph G = (V , C) where V is a set of nodes and C is a set of
hyperedges. Let xi ∈ {1, . . . ,K} = K, i ∈ V be a discrete variable (label) asso-
ciated with each node. Consider a problem of minimizing the following energy
(negative log-likelihood of an MRF up to a constant):

1 In [1] this approach was referred to as “generic optimization”.
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E(X) =
∑

i∈V
φi(xi) +

∑

c∈C
φc(xc), (1)

where φi(xi), φc(xc) are unary and high-order potentials, xc = (xic1
, . . . , xic

L(c)
)

is a labeling of nodes incident to hyperedge c; L(c) stands for the order of
hyperedge c. Energy (1) can be rewritten in terms of indicator variables yik ∈
{0, 1} (yik = 1 ⇐⇒ xi = k):

E(Y ) =
∑

i∈V

K∑

k=1

φi(k)yik +
∑

c∈C

∑

k∈KL(c)

φc(k)

L(c)∏

l=1

yicl kl
. (2)

Unconstrained minimization of energy (1) over multi-label variables X is equiv-
alent to minimization of energy (2) over binary variables Y under consistency
constraints:

K∑

k=1

yik = 1, ∀i ∈ V . (3)

Note that by adding constant term we may always ensure φc(k) ≤ 0 for all c. In

this case we can use identity
(
−∏L

l=1 yil

)
= minz∈{0,1}

(
(L− 1)z −∑L

l=1 yilz
)

to transform high-order energy (2) into pairwise energy in such a way that
minY ∈(3) E(Y ) = minZ,Y :Y ∈(3) E(Y, Z)2.

Note that for general high-order potentials φc(xc) function E(Y, Z) depends
on exponentially many variables Z. In what follows we assume the pattern-
based (or sparse) form of φc(xc), i.e. most of values are equal to zero and others
are negative. Specifically, denote labelings of potential c that we encourage by
Dc = {dc} = {(dc1, . . . , dcL(c))}3. Using this notation E(Y, Z) can be written as
follows:

E(Y, Z) =
∑

i∈V

K∑

k=1

φi(k)yik−
∑

c∈C

∑

dc∈Dc

φc(d
c)

⎛

⎝(L(c)− 1)zc,dc −
L(c)∑

l=1

yic
l
dc
l
zc,dc

⎞

⎠ .

(4)
Energy E(Y, Z) is submodular w.r.t. variables Y and Z and thus in absence of
additional constraints can be efficiently minimized by min-cut/max-flow algo-
rithms [12]. Adding and relaxing constraints (3) to the minimization of (4) gives
us the following Lagrangian dual:

D(Λ) = min
Y,Z∈{0,1}

L(Y, Z, Λ) = min
Y,Z∈{0,1}

(
E(Y, Z) +

∑

i∈V
λi

(
K∑

k=1

yik − 1

))
. (5)

2 This transformation of binary high-order function (2) is in fact equivalent to a special
case Type-II binary transformation of [4], but in this form it was proposed much
earlier (see e.g. [3] for review).

3 All the remaining derivations in this section can be generalized to a robust version
of pattern based potentials using robust Type-II transformation of [4].
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Function D(Λ) is a lower bound on energy (1) and is concave but non-smooth.
Thus, it can be maximized e.g. by subgradient algorithms. Note that L(Y, Z, Λ)
remains submodular w.r.t. (Y, Z) for all Λ allowing us to efficiently evaluate D
at any point. We refer to this approach as submodular relaxation (SMR).

It is worth emphasizing that in contrast to CWD and PatB methods of [1]
number of dual variables in our approach does not depend on the number of
high-order potentials (always equals to |V|). In CWD dual there areK

∑
c∈C L(c)

variables. PatB reduces this number by combining multiple high-order potentials
in one subproblem but will still have in at least in a factor of K more variables
than SMR for the case when high-order potentials densely cover all variables.
SMR can be naturally combined with SMD [11] and include pairwise potentials
without the increase of the number of dual variables but for both CWD and
PatB this modification will require additional subproblems thus increasing the
dimensionality of the dual even further.

3 Theoretical Properties

In this section we explore some properties of the relaxation that is solved by max-
imizing lower bound D(Λ) and address some practical issues of its application
to inference problems.

3.1 General Case

Theorem 1. Maximum of the SMR dual function D(Λ) (5) is equal to the so-
lution of the following linear program:

min
Y,Z

Q(Y, Z) (6)

s.t. yik, zc,dc ∈ [0, 1], ∀i ∈ V , k ∈ K, c ∈ C,dc ∈ Dc (7)

zc,d
c

l ≤ zc,dc , zc,d
c

l ≤ yic
l
dc
l
, ∀c ∈ C,dc ∈ Dc, ∀l = 1, . . . , L(c) (8)

K∑

k=1

yik = 1, ∀i ∈ V (9)

where the target function Q(Y, Z) is defined as follows:

Q(Y, Z) =
∑

i∈V

K∑

k=1

φi(k)yik −
∑

c∈C

∑

dc∈Dc

φc(d
c)

⎛

⎝(L(c)− 1)zc,dc −
L(c)∑

l=1

zc,d
c

l

⎞

⎠ .

Proof. Denote

R(Λ) = min
Y,Z∈(7),(8)

(
Q(Y, Z) +

∑

i∈V
λi

(
K∑

k=1

yik − 1

))
.

Recall that φc(d
c) ≤ 0. In this case problem (6), (7), (8) is equivalent to the

standard (Schlesinger’s) LP-relaxation of binary submodular energy (4) which
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is known to be tight (see, e.g. [13]) and hence R(Λ) = D(Λ). Consider Λ∗=
argmaxR(Λ). Due to the strong duality in LP problems there exist primal and
dual variables such that

(Λ∗, Y ∗, Z∗) = argmax
Λ

min
Y,Z∈(7),(8)

(
Q(Y, Z) +

∑

i∈V
λ∗
i

(
K∑

k=1

yik − 1

))

= arg min
Y,Z∈(7),(8)

max
Λ

(
Q(Y, Z) +

∑

i∈V
λ∗
i

(
K∑

k=1

yik − 1

))
.

This implies that (Y ∗, Z∗) satisfy (9), i.e. R(Λ∗) is equal to the solution of the
problem (6)—(9). Finally, equality R(Λ∗) = D(Λ∗) completes the proof.

3.2 Permuted Pn Potts

Relaxation (6)-(9) is not the best possible LP-relaxation of initial problem. In [1]
the authors formulated a tighter relaxation with additional constraint responsible
for marginalization of higher order potential w.r.t all but one variable:

∑

k∈KL(c): kl=k0

zc,kl = yic
l
k0 , ∀c ∈ C, k0 ∈ K, l = 1, . . . , L(c). (10)

Definition 1. A higher order potential is called permuted Pn Potts iff

∀c ∈ C ∀i ∈ c ∀d′,d′′ ∈ Dc : d′ �= d′′ ⇒ d′i �= d′′i .

In permuted Pn Potts potentials all preferable configurations differ from each
other in all variables. Pn Potts potential described in [6] is a special case.

Theorem 2. If all higher-order potentials are permuted Pn Potts, then the max-
imum of dual function (5) is equal to the solution of LP (6)-(10).

Proof. The proof follows from the fact that in the case of permuted Pn potential
for each icl and for each k ∈ K there exists no more than one dc ∈ Dc such that

dcl = k. But each single zc,d
c

l = yic
l
kl

due to (8) and negative sign of φc(d
c).

3.3 Consistency

Now examine the properties of point Λ∗ = argmaxD(Λ). Denote

Zik(Λ) = Argmin
yik

[
min

Y \{yik},Z
L(Y, Z, Λ)

]
.

Definition 2. Point Λ is a weak agreement point if

∀i ∈ V ∃k : {1} ⊆ Zik(Λ), ∀k′ �= k, {0} ⊆ Zik′ (Λ).

Informally this definition means that at weak agreement point Λ means for each
node i of MRF there is at least one label k such that there exists unconstrained
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minimum of L(Y, Z, Λ) w.r.t. Y, Z ∈ {0, 1} such that yik = 1 and there exist
optimal configurations where all other yik′ = 0.

Theorem 3. Point Λ∗ satisfies weak agreement.

The proof is performed by contradiction and is almost identical to the proof of
theorem 4 in [11].

Definition 3. For a weak agreement point Λ define a strong agreement set:

S(Λ) =
{
i ∈ V

∣∣∣ |Zik(Λ)| = 1 ∀k
}
.

For any node from the strong agreement set the consistent labeling (i.e. labeling
that satisfies (3)) can be restored from Zik(Λ). It is easy to show that if S(Λ) = V
then D(Λ) is equal to the optimal solution of (2) and the optimal labeling can
be extracted uniquely from Zik(Λ). A more interesting question is whether there
exists optimal labeling such that for each node from S(Λ∗) its labeling equals
the one obtained from Zik(Λ) (so-called, persistency property). Unfortunately,
the answer is generally negative even for maximal cliques of size two (see the
supplementary material 4 for a counter-example).

Note that this result is similar to the analogous result for tree-reweighted
message passing (TRW) for pairwise MRFs. In [13] it was proven that for binary
problems (K = 2) persistency holds for nodes strongly labeled with TRW, but
for K > 2 it does not hold. If K = 2 in pairwise MRF SMR is equivalent to
QPBO [14] method for which persistency is well-known to hold.

3.4 Getting a Primal Solution

Due to the lack of persistency property the question of a getting primal solution
after solving the dual is not trivial. We suggest the following post-processing
procedure. First assign yik = 1 if {1} ⊆ Zik(Λ) and �k′ < k : {1} ⊆ Zik′ (Λ)
and yik = 0 otherwise. Define

Ŷc = arg min∑K
k=1 yik=1

⎛

⎝
K∑

k=1

∑

i∈c

(φi(k) + λ∗
i )yik +

∑

dc∈Dc

φc(d
c)

L(c)∏

l=1

yic
l
dc
l

⎞

⎠ .

For each c ∈ C try to improve the current labeling Y by setting Yc = Ŷc. If E(Y )
is reduced we change the current labeling. Then we switch to next c until all
hyperedges have been considered. The process is repeated several times. This
procedure is similar to Iterated Conditional Modes and therefore we refer to it
as ICM.

4 http://bayesgroup.ru/wp-content/uploads/2012/01/

SMR HiPot12 supplementary.pdf

http://bayesgroup.ru/wp-content/uploads/2012/01/SMR_HiPot12_supplementary.pdf
http://bayesgroup.ru/wp-content/uploads/2012/01/SMR_HiPot12_supplementary.pdf
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Fig. 1. Energies/lower bounds produced by SMR and CWD on synthetic datasets.
All blue curves correspond to CWD, red curves – to SMR; solid lines show the lower
bounds, dashed lines — energies obtained via random agreement of the subproblems,
dotted lines – energies after 1 cycle of greedy improving via ICM (see sec. 3.4). (a)
corresponds to the dataset with high-order potentials of size 50, (b) – of size 500.

4 Experiments

In this section we present an empirical evaluation of SMR compare it against
CWD. We also evaluate the effect ICM-based postprocessing scheme on both
methods. We perform the comparison on two synthetic sets of energies and one
energy acquired from an image segmentation problem.

Both synthetic datasets consist of 20 energies depending on 10-label variables
that form 4-neighborhood grids graphs of 50x50 nodes. All unary potentials are
generated from gaussian distribution N (0, 10). The pairwise potentials are all
Potts: 0.1|cij|[xi �= xj ], where cij ∼ N (0, 1). Afterwards we add 50 Pn Potts
potentials. For the first experiment we add potentials connecting random 50
nodes each, for the second experiment – 500 random nodes each. The costs of the
potentials are generated from the uniform distribution on the segment [0, 100].

As an image segmentation problem we take segmentation of image (fig. 3a)
into three classes: “fern”, “ground”, “grass”. For each class we select a small
region (seeds) and fit a Gaussian mixture distribution with 5 components to col-
ors of selected pixels in CIELUV color-space. Negative log-densities form unary
terms, pairwise terms are Potts with weight 1, high-order potentials are posed
on mean-shift superpixels computed with EDISON5 system [15] with default
parameters, the weight of high-order potentials is 100.

In SMR we minimize submodular functions using Boykov-Kolmogorov max-
flow/min-cut algorithm [16]6. To implement CWD we make the following decom-
position of the energy: all pairwise potentials are separated into vertical and
horizontal chains, each high-order potential forms a separate subproblem, unary
potentials are evenly distributed between the horizontal and the vertical forests.

5 http://coewww.rutgers.edu/riul/research/code/EDISON/
6 http://pub.ist.ac.at/~vnk/software/maxflow-v3.02.src.tar.gz

http://coewww.rutgers.edu/riul/research/code/EDISON/
http://pub.ist.ac.at/~vnk/software/maxflow-v3.02.src.tar.gz
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In such decomposition the dual function depends on |V|K(1+h) variables. Here
h is an average number of high-order potentials incident to individual nodes.
The dual function in SMR depends on |V| variables. For synthetic experiments
the CWD’s dual has 50000 and 275000 variables respectively, the SMR’s dual
has 2500 variables. For image segmentation experiment the duals have 675000
(CWD) and 112500 (SMR) variables. As an oracle for SMR we use Boykov-
Kolmogorov max-flow algorithm [16]; for CWD we use dynamic programming
to perform MAP-inference in each row and column and follow [1] in inferring in
high-order cliques. In our experiments oracles in CWD and SMR run roughly
for the same time, and to exclude the issue of efficient implementation of the or-
acles we measure the algorithm complexity in number of oracle calls. Note, that
more sophisticated version of CWD, PatB [1], could potentially improve the per-
formance only when the high-order potentials intersect. For our first synthetic
dataset high-order potentials almost do not intersect, for image segmentation
example the do not intersect at all.

An important part of experimental comparison is the choice of the optimiza-
tion method used to solve the dual problems. Originally [1] discusses two strate-
gies: subgradient ascent and averaging of min-marginals. Min-marginal aver-
aging corresponds to coordinate ascent and can get stuck in arbitrary poor
coordinate-wise optimum of the dual [17,11]. Subgradient ascent technics are
in theory guaranteed to converge to the optimum but our experiments (con-
firmed by the recent research [9]) show that the subgradient schemes are un-
stable and sensitive to parameter choice, and their convergence can be very
slow. To exclude the aspect of parameter choice in all experiments we use an
off-the-shelf HANSO optimization system v2.017. HANSO system consists of a
specific version of BFGS algorithm that is applicable to non-differentiable func-
tions [18] and a robust gradient sampling method [19] that is used to adjust
the solution at the end of the process. The computation overhead for HANSO
system (time spent not on evaluating the function, but on inner manipulations)
is non-zero and increases with the growth of the dimensionality of dual vari-
ables, but in all our experiments it spends less than 5% of total running time.
We are aware that recently there’ve been much research in developing fast and
robust methods to solve such duals (e.g. [9,10]). We believe that at least some
of these technics can be applied to improve SMR as well and leave this as future
work.

Figures 1 and 2 present the evaluation on synthetic and segmentation datasets.
Figure 3 shows the initial image (a),(b) and the resulting segmentation with
(c) and without (d),(e) high-order terms. In all cases we observed that SMR
converges faster than CWD in terms of the value of the dual and obtains better
primal discrete solution. Our experiments show that ICM postprocessing greatly
helps CWD but has very little effect on SMR, even slowing it down in terms of
time.

7 http://www.cs.nyu.edu/overton/software/hanso/

http://www.cs.nyu.edu/overton/software/hanso/
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Fig. 2. Comparison of SMR and CWD on the image segmentation experiment. Both
plots show energies/lower bounds against number of oracle calls. (b) is a zoomed version
of (a). Note that both SMR and CWD were able to achieve the global maximum of the
lower bound, and SMR was able to retrieve the global minimum of the initial energy
as well (the duality gap is zero).

(a)

(b) (с)

(e)(d)

Fig. 3. (a) – the initial image; (b) – the zoomed part of the initial image; (c) – the result
of SMR with high-order cliques, SMR found the global minimum; (d),(e) - the results
of segmentation without high-order potentials, computed with α-expansion algorithm.

5 Conclusion

In the paper we suggest a new type of approximate inference algorithm for the
case of sparse higher-order potentials that encourage few configurations of vari-
ables. Our method (SMR) is based on relaxation of the energy by making it sub-
modular. Such relaxation corresponds to the solution of specific LP-relaxation of
the discrete problem. Although in general this relaxation is less tight then clique-
wise decomposition (CWD) we have derived an important case when they are
equivalent. In comparison to CWD and its improved version PatB our method
(SMR) requires less Lagrangian multipliers, converges faster and the process of
obtaining primal solutions is easier. These properties make SMR a promising
tool for training and MAP-inference in MRFs with higher order potentials.



314 A. Osokin and D. Vetrov

Acknowledgments. This work was supported by the Russian Foundation for
Basic Research (projects 12-01-00938, 12-01-31254, 12-01-33085).

References

1. Komodakis, N., Paragios, N.: Beyond pairwise energies: Efficient optimization for
higher-order MRFs. In: CVPR (2009)
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