Flow Counting Using Realboosted
Multi-sized Window Detectors

Hakan Ardo, Mikael Nilsson, and Rikard Berthilsson

Lund University, Cognimatics AB

Abstract. One classic approach to real-time object detection is to use
adaboost to a train a set of look up tables of discrete features. By uti-
lizing a discrete feature set, from features such as local binary patterns,
efficient classifiers can be designed. However, these classifiers include in-
terpolation operations while scaling the images over various scales. In
this work, we propose the use of real valued weak classifiers which are de-
signed on different scales in order to avoid costly interpolations. The use
of real valued weak classifiers in combination with the proposed method
avoiding interpolation leads to substantially faster detectors compared to
baseline detectors. Furthermore, we investigate the speed and detection
performance of such classifiers and their impact on tracking performance.
Results indicate that the realboost framework combined with the pro-
posed scaling framework achieves an 80% speed up over adaboost with
bilinear interpolation.

1 Introduction

Object detection and tracking are central problems to computer vision. Finding
objects from a specific object class and keeping track of them is often a first
step that other computer vision tasks rely on. It is therefore important to find
a solution to the problem that is fast, accurate and robust to the changes that
naturally occur in real photographic situations. Preferably the method should
also allow for low memory consumption and use only fix-point operations. This
is a challenging task that allows the detector to be embedded within modern
surveillance cameras that still typically lack floating point units. Concerning
speed, most often the number of objects from the object class is several orders
of magnitude lower than the number of objects not belonging to the class. This
is for example the case for face detection and pedestrian detection. Here, the
object classifier normally uses a sliding window that is scaled to different sizes
and placed at all possible locations in the image. For each instance, the classifier
should output true or false. It follows that the object detection must process
several thousands of instances for a single image, and it is desired to process
several such images per second.

In this paper we investigate object detectors connected to temporal tracking,
in order to perform flow counting. In particular, counting of humans and bicycles.
These kind of flow counts are often used by, for example, traffic planers and
scientists to asses how public infrastructure is used.

A. Fusiello et al. (Eds.): ECCV 2012 Ws/Demos, Part III, LNCS 7585, pp. 193-B0Z] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

194 H. Ardo, M. Nilsson, and R. Berthilsson

Next section presents the flow counting framework. Section 3 presents the ob-
ject detection and corresponding classifier design. Section 4 discusses the tem-
poral tracking employed. Section 5 presents experimental results.

2 Flow Counting Framework

The framework utilized here goes from video input to a flow counting report,
see Fig.[Il The first step, which typically is the main bottleneck processing-wise,
is the object detection. In this paper, we will investigate three classifiers used
for object detection. Following the detection is temporal tracking conducted in
order to achieve consistency over the temporal domain. The tracker employed
is the classical Kalman filter. That means a linear model is used to model the
dynamics. It fits nicely when modelling the motion of, for example, bicycles
traveling along a straight road. However, it might be a more crude approximation
when modelling, for example, the motion of faces in a general video.

IE Object. Temporal Flow
1deo Detection Tracking Counting

Fig. 1. Overview of framework for track counting in order to estimate flows. Images
from Youtube faces database [I].

3 Object Detection

An early and successful approach to construct real-time detectors is to use a
sliding window and a cascade of classifiers [2]. The detector use a set of Haar-
like features, that can be computed relatively fast by using an integral image. The
features are used as weak classifiers to train a cascade of adaboost [3] detectors.
One problem is that the integral image requires a lot of memory. Furthermore,
the features are sensitive to local changes in lighting. A later and more promising
result was achieved by using features with a higher degree of invariance such as
local binary patterns (LBP) [4] or local successive mean quantization transform
(SMQT) [5l6]. These features take values from some discrete and finite set. Both
use a sliding window as above and can be used in cascades. Compared to Haar-
like features [2], they do not require any integral image and need fewer operations
to compute feature values. Whereas, the detector in presented by Viola and Jones
[2] can run on different scales, the LBP detector is however locked to one scale
and the image itself has to be resized to different scales.

Flow Counting Using Realboosted Multi-sized Window Detectors 195

3.1 Multi-sized Windows

To overcome this resizing limitation we propose to train three differently sized
detectors, with 16 x 16, 20 x 20 and 25 x 25 windows, respectively. All three
detectors are used to scan the test image at its original size. Then the image
is reduced to half its original size and all detectors are used again. This gives
more or less the same result as using a single detector and only reducing the
image size a factor 1.26 each time, but it operates faster. This is due to the fact
that only one third of the image resizing operations have to be performed and,
furthermore, no interpolation is needed here as the scale factor is exactly two.
Note that these three detectors can be trained simultaneously. Using different
window sizes or more than 3 sizes would be possible, but was not investigated.
However, note that as the window size gets larger the detector gets somewhat
slower. Also, the LBP features are local features and would pick up different
things at different scales.

3.2 Boosting Real Valued Functions

The LBP and SMQT methods use features that take values from some discrete
and finite set X. For the classical LBP X = {0,1,---,255}. Using a training set
consisting of pairs, (x;,¥;), ¢ = 1,...,m, where x; = (251, -+ ,ZTipn) € X™ are
feature vectors and y; € {—1, 1} the corresponding labels. Note that the feature
vectors consists of n features.

According to the anyboost framework [7], most boosting algorithms can be
described as a gradient descent optimization in a function space, lin (F), consist-
ing of all linear combinations of base classifiers f € F. Here, we will consider the
case when F consists of all real valued lookup tables of a single discrete feature,
X — R, such as LBP. The values of the lookup table f; € F will be denoted a ,
with fi (v) = at». The table f; will be used for feature number ¢ and we will use
the notation f; (x;) = fi (zi4).

The objective of the training is to find a detector function, F' € lin (F), that
as often as possible, classifies the training data correctly, i.e. y; = sign (F' (x;)).
The final detector is found by minimizing the cost function

1 m
C(F)= m ZC(%F(Xi))v (1)

i=1
where ¢ : R — R is a non-negative, decreasing function. Different boosting
algorithms can be derived by using different cost functions c¢. Adaboost uses
c(a) = e~®. Gradient descent is an iterative algorithm that in each iteration
updates its current detector function F' by finding the direction f € F in which
C (F + ¢f) most rapidly decreases. In the case of adaboost, a line search is
performed to find the optimal e, which is used to update the current detector

function F'.

According to the anyboost framework [7], the optimal direction is found as

the function, f, maximizing

—(VC(F),), (2)

196 H. Ardo, M. Nilsson, and R. Berthilsson

where (-,-) denotes the inner product

m

(F,6) =Y F(x)G (x))

on lin (F). This is only true if the optimization is restricted to functions f of
unit length, i.e (f, f) = 1. In the anyboost setting [7], a scaled version of (8]
is used so that (f, f) =1 for all f: X" — {—1,1}, which means that it is not
necessary to constrain the optimization. In the present case of f : X™ — R there
exists no scaled version of ([B]) with this property and the constraint has to be
considered during the optimization.

By introducing a set of weights or a distribution over the training samples,

c (yiF (x3))
Sy ¢ (yiF (xi))

the target function (2] can be written as (see [7] for details)

d; = (4)

> wef (). 6

In the anyboost case where f only takes values in {—1, 1}, the optimal direction
is the one that minimizes the weighted classification error

Yoo di (6)

yif(xi)=—1

i

Generalizing this result to the present case where f can take any real value is
done in Lemmalf2l For each fixed feature z;, 1 < t < n, Lemmal[Ilgives the optimal
coefficients of f;. Schapire and Singer [8] have provided the same result in form
of a closed form solution for a case that is equivalent to the single feature setting
here. That is, given a feature x¢, 1 < ¢t < n, how should the values a;, € R
be chosen? In Lemma [a different proof based on the anyboost [7] approach
is given. This alternative derivation also allow the design of an algorithm for
choosing the optimal feature ¢, 1 < ¢t < n, to add in each iteration, which is
presented in Lemma [2]

Lemma 1. Given a classifier F (x) =Y, fi(x) and a feature number, 1 <t <
n, the coefficients, a;.,, of a lookup table, fi(v) = at., that minimizes C(F + f;)
from () with c(a) = e~ is given by

Dilas=vyi=1 di

' (7)
Zi‘ﬁi,t=vyyi=— dl

1
Aty = 9 log

Proof. To find the coefficients of f; that minimizes the cost function

m

C(F+fi) =Y ciF (xi) +yife (xi)), (8)

i=1

Flow Counting Using Realboosted Multi-sized Window Detectors 197

the terms are reordered and grouped based on the feature value, which leads to

F+ft Z Z Xz +yzft(xz))- (9)

vEX i|x; 1=v

Now fi (xi) = ft(v) = at, is constant with regard to the inner sum. Each term
of the outer sum can thus be optimized separately as there are no dependencies
between them. Differentiating gives

ocC
dar . = >y (GF (%) + yiar) - (10)
t,'l} i|xi,t=v
Using the same cost function as adaboost, ¢ () = e, gives ¢’ (o) = —e™ %, and
@a Z yie —YiF(%i) =yt (11)
tv il =v

The sum can be separated into one sum for positive examples and one for nega-
tive. The factor depending on a;, can be factored out, so that

aC F(x F(x,
_ § e~ Yl (xi) gar,w _ § : e Vil'(xi) p=atv (12)
8at v . .
’ iz =v,y;=—1 il =v,y;i=1

Solving 8(3“0 = 0 for as, gives the optimal coefficients,

3. e~ YiF(xi)
izt =v,y;=1

7yF X *
Zilwi,t=vvyi=_1 emviFCx)

Anyboost maintains a set of weights, d;, or a distribution, over the examples,

1
o =, log (13)

" (yi i —yiF'(x3)
N s BT
Yitod (WiF (xi)) Lo emvift)

where the second equality holds for the adaboost cost function. Expressing at),
by using these weights, concludes the proof.
O

Lemma 2. The feature number, 1 < t* < n, for which the cost function (I}
decreases most rapidly is given by

2
(Zilmi,t:’v y'ld'l>
t* = argmax .

15
1<t<n » Zimi,t:v 1 ()

Proof. According to [7] the optimal t is found by mazimizing

;L > it (i) ds. (16)
i=1

198 H. Ardo, M. Nilsson, and R. Berthilsson

In the present setting where f; can take any real value, the optimization has to
be constrained to functions f; for which (fi, ft) = 1. The factor 1/m is constant
and does not affect the position of the maximum and can thus be dropped. The
terms of the remaining sum can be reordered and grouped based on the feature

values, yielding
S vifi(xi)di. (17)

veEX i|x; 1=v

The term fi (x;) = ft(v) = at,p is constant with respect to the inner sum and
can be factored out. That makes the inner sum constant and can be calculated
from the current weights and the labels of the training data. The constraint
(fis fr) = 1 implies that Y. | a7, , = 1. By denoting the number of training
examples with value v on feature t ¢;, = 1, the constraint can be writ-

iz =v
ten Y cx Cewai, = 1.
By introducing new coordinates, ., = \/Ctuvaty, it follows that ||& = 1,
where & = (0, 0,1, -+). Introducing the new coordinates into (I7) results in
Z v Z yzdz (18)
veEX \/Ct,v i|xge=v

Let the inner sum normalized by VCtw be denoted b;, and note that it can be
divided into megative and positive training samples. It follows that

d. d. d.
btﬂ} — yZ 7 — (3 _ (3 . 19)
z|m§:v \/Ct,v i|zi,tzv:,yi1 \/Ct,v i|zi,t%:yi \/Ct,v (
Equation (I8) is the scalar product between the vectors &, and by = (by o, b1,),
which can also be written ||&.|| ||b¢|| cos ¢, where ¢ is the angle between &; and
b.. The constraint (f, f) = 1 implies that ||a;|| = 1. Apart from that, &; can be
chosen freely, which means it can be chosen parallel to by in which case cos ¢
reaches its mazimum, 1. The only factor left to maximize is ||be||, which means
that the optimal feature t* can be found by

t* = argmax || by]| . (20)
t

Substituting by for its definition (I9) and removing the outermost square root
(which does not affect the position of the mazimum) concludes the proof.
d

A detector F' can now be trained by iteratively choosing a feature ¢ by using
Lemma 2 and then select coefficients a;,, for f; using Lemmal[ll The weights d;
are maintained in the same manner as with adaboost. They are initiated to 1/m
before the first iteration and then updated using d; := d;e™ “t=it¥i,

4 Temporal Tracking

To count the number of tracks, the single frame detections are tracked across
multiple frames. The tracking approach used is based on the Kalman filter.

Flow Counting Using Realboosted Multi-sized Window Detectors 199

It maintains one set of confirmed tracks and one set of tentative tracks. Both
kind of tracks are maintained using Kalman filters with the position and velocity
vectors as state and the position as observation.

The detections from a new frame are first matched to the confirmed tracks
using the Hungarian method [9]. The Mahalanobis distance between the obser-
vation predicted by the Kalman filter and the detection is used as cost-function.
The detections not matching any of those are then matched to the tentative
tracks, again using the Hungarian method. New tentative tracks are produced
for the detections not matching any existing or tentative tracks.

When enough detections have been assigned to a tentative track it becomes
confirmed. If the variance of a track becomes too large it is considered lost and
is removed. If such a track was confirmed it is counted and accumulated into the
flow count report.

5 Experimental Results

Experiments were performed using a five stage cascade and a 3 x 3 neighborhood
LBP feature and executed on a 2.93 GHz Core 2 Duo. Three detectors were
trained using the classical adaboost (with binary weak classifiers) [3], realboost
as presented in Section 3.1 and split up SNoW [6]. All three produce detectors
of the same form, although the lookup tables produced by the classical adaboost
are more restricted as the week classifiers are only allowed the values of —1 or 1
and not any real value as is the case with the other two classifiers. The cascades
were formed by requiring a True Positive Rate (TPR) of 99.5% and a False
Positive Rate (FPR) of 5% for each step.

5.1 Face Detection

The training data consists of 10620 manually annotated faces and 1713 high
resolution images containing no faces. The test data consists of 1183 faces and
191 negative images. The test data described above was used to verify the de-
tection performance of the resulting detector, and the run time was evaluated
on a 6000 x 2585 imageﬂ Results are shown in Table 1l

Note that the realboost detector has similar accuracy to adaboost or the split
up SNoW, but it is more than 60% faster. This is a significant speedup, and
stems from the fact that fewer features can be used in the initial steps effectively
discarding a lot of negative examples at an early stage. Note that the exact same
implementation were used for each of the detectors. The only difference is the
values of the lookup-tables and the number of features used in each cascade step.

5.2 CMU-+MIT

The three detectors trained on our database was also tested using the CMU+MIT
test dataset (set A, B and C), with results presented in Table 2l This dataset

! http://www.flickr.com/photos/kitty-kat/6049220331/

http://www.flickr.com/photos/kitty-kat/6049220331/

200 H. Ardo, M. Nilsson, and R. Berthilsson

Table 1. Results comparing the performance of three different detectors. The number
of features used in each stage of the cascade is listed as well as the run time needed
to process an image. The true positive rate (TPR) shows the amount of faces detected
among the 1183 faces in the training database and the false positive rate (FPR) shows
the number of false detections made per mega-pixel.

Training Size Features Run time (s) TPR FPR
16 x 16 59 156 196 196 196 2.81
Adaboost 20 x 20 55 141 264 324 324 2.80 8.17 96.53 % 0.147 %

25 x 25 58 139 249 431 418 2.98
16 x16 81 57 44 14 0 3.00

Split Up SNoW 20 x 20 65 64 79 91 25 2.63 8.94 95.86 % 0.071 %
25 x 25 101 52 137 180 59 3.74
16 x16 36 81 159 196 196 1.76

Realboost 20 x 20 32 75 128 232 278 1.72 4.93 96.28 % 0.136 %
25x25 37 72 121 180 195 1.85

contain noisier images as compared to our training dataset, which seams to lead
to a high false negative rate as LBP is noise sensitive. However this test con-
firms the increased speed of the realboost approach, which here is 50% faster
than adaboost and 70 % faster than split up SNoW.

Table 2. The detection results from testing the trained detectors on our database on
the CMU+MIT database together with the runtime for processing the entire database.
In the Prop. columns results from using 3 window sizes and no interpolation, and in
the Bilin. columns results from using a single window size and bilinear rescaling are

shown.
True Positives False Negatives False Positives Runtime
Training Prop. Bilin. Prop. Bilin. Prop. Bilin. Prop. Bilin.
adaboost 373 407 137 102 11 4 9.65s11.56 s
split up SNoW 333 356 177 154 5 510.85s 14.9s
realboost 356 403 154 107 9 7 6.39s 7.59s

5.3 Single Sized Detector

The rescaling approach proposed was compared with the standard approach of
using a single window size and rescaling the image using bilinear interpolation.
A rescaling factor of 2'/3 ~ 1.26 was used together with a step size of 1/16 of
the window side. This gives approximately the same number of windows tested
in both cases. Results on the CMU+MIT dataset is presented in Table Bl Re-
alboost shows a 19 % speedup, split up SNoW 37 %, while adaboost is 20 %
faster.

Flow Counting Using Realboosted Multi-sized Window Detectors 201

5.4 Tracking Faces

The output of the three detectors described above were passed to the Kalman
tracker framework in order to perform face tracking. The Youtube faces [I]
database were used for testing. It consists of 3425 video clips with one face
trajectory marked out in each clip. In total there are 619139 frames. The tracks
produced by the tracker were matched to the ground truth tracks as favorably
as possible and the number of frames where the tracker placed the correct ob-
ject close to the ground truth object were considered correct and counted. The
results are presented in Table Bl

Table 3. The number of frames in which the detector detected (Matches) or missed
(Misses) the annotated face as well as the same data after tracking. After tracking, the
id-number of the detection also has to be correct for a frame to be considered matched.

Detector Tracker
Training Matches Misses Matches Misses Runtime
Adaboost 592723 28403 602503 16636 29.54 h
Split Up SNoW 580385 40741 599301 19074 29.17 h
Realboost 589174 31952 601142 17662 26.16 h

Note that while the number of frames where the realboost detector misses
a face have increased with 11% as compared with the adaboost. However, the
number of frames where the tracker misses a face have only increased by 5% as
the tracker is able to fill in some missing detections.

5.5 Counting Bicycles

The proposed framework were tested on a bicycle counting scenario where a
bicycle road was filmed for two days. The bicycles from the first day were marked
manually and the detectors trained on that data. The bicycles from the second
day was counted both manually and automatically and the results are compared
in Figure Pl Processing 1000 frames required 10.76 s for realboost, 13.25 s for
adaboost and 16.97 for the single window bilinear scaled adaboost. The mean
absolute counting error over 30 min parts is 17.6 % for realboost, 9.8 % for
adaboost and 12.3 % for bilinear scaling.

—Manual Counts
= RealBoost Counts
° AdaBoost Counts

8 8

All Counts

|
Time

Fig. 2. Comparing automatic and manual bicycle counts

202 H. Ardo, M. Nilsson, and R. Berthilsson

6 Conclusions

In this paper we present a novel approach to speed up real time object detec-
tions. This by exploring real valued weak classifiers and detectors with multiple
sized windows. Results indicate that the realboost framework archives a 65%
speedup over adaboost and a further 19% speedup by utilizing the proposed
scaling framework compared to the common bilinear interpolation. In a tracking
scenario the proposed solution can run close to 60% faster than standard ad-
aboost implementation, with only a 5.3 percentage points loss in performance.

It should be possible to improve on those results by also optimizing over
the window size of the detector, the number of window sizes used as well as
the parameters of the Kalman filters. Also, in many flow counting applications,
especially traffic studies, somewhat lower accuracy can be compensated for by
increasing the amount of measurements.

References

1. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with
matched background similarity. In: IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pp. 529-534 (2011)

2. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple fea-
tures. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 1, pp. 511-518 (2001)

3. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learn-
ing and An Application to Boosting. In: Vitdnyi, P.M.B. (ed.) EuroCOLT 1995.
LNCS, vol. 904, pp. 23-37. Springer, Heidelberg (1995)

4. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures
with classification based on kullback discrimination of distributions. In: Proceedings
of the 12th TAPR International Conference on Pattern Recognition - Conference A:
Computer Vision Image Processing, vol. 1, pp. 582-585 (October 1994)

5. Nilsson, M., Dahl, M., Claesson, I.: The successive mean quantization transform.
In: IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 4, pp. 429-432 (March 2005)

6. Nilsson, M., Nordberg, J., Claesson, I.: Face detection using local smqt features and
split up snow classifier. In: IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) (April 2007)

7. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient
descent. In: NIPS, pp. 512-518 (1999)

8. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Mach. Learn. 37, 297-336 (1999)

9. Kuhn, H.-W.: The hungarian method of solving the assignment problem. Naval Res.
Logistics Quart. 2, 83-97 (1955)

	Flow Counting Using Realboosted Multi-sized Window Detectors
	Introduction
	Flow Counting Framework
	Object Detection
	Multi-sized Windows
	Boosting Real Valued Functions

	Temporal Tracking
	Experimental Results
	Face Detection
	CMU+MIT
	Single Sized Detector
	Tracking Faces
	Counting Bicycles

	Conclusions
	References

