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Abstract. We present a novel, low-level scheme to analyze spatial and
temporal change within a local support region. Assuming available region
correspondences between two adjacent frames, we divide each region into
a regular grid of patches. Depending on the change of an image function
inside the patch over time, each patch is assigned weights for the fol-
lowing four labels: “C” for a constant patch, “O” when new information
originates from outside the support region, “I” for “inner” changes, and
“N” for information from neighboring patches. Our method goes beyond
optical flow, as it provides an additional semantic level of understand-
ing the changes in space-time. We demonstrate how our novel “COIN”
scheme can be used to categorize local space-time events in image pairs,
including locally planar support regions, 3D discontinuities, and virtual
vs. real crossings of 3D structures.

1 Introduction

In this paper we focus on discovering scene structure at a very low level (e.g. the
level of an interest point or a small image patch), assuming that a temporal
sequence of at least two frames is available. Changes in low-level appearance
over the course of two frames are encoded in a semantically meaningful descrip-
tor which assigns weights to the following hypotheses: constant, influenced by
neighbor, inner change, outer change. Using the descriptor, we are able to reason
about coplanarity, discontinuity and general stability of appearance of the region
of interest.

Analysis of low-level dynamic structure in video is related to several research
strands. One is spatiotemporal texture recognition. There, short video clips are
usually represented by generative statistical models [1]. A recent approach [2]
attempts to capture the spectrum of dominant image motions which arise for
instance when looking at the snow falling in the wind. Each video clip is repre-
sented by a 28 bin histogram containing evidence for a small predefined set of
image motions, such as e.g. “upward motion of two pixels per frame”.

Another related research strand includes the analysis of occluding boundaries
and video segmentation [3]. Many of the existing approaches are based on locat-
ing contrasting optical flow (e.g. [4, 5]). A promising approach which avoids the
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dependence on optical flow has been presented [6]. There, the occluding bound-
aries are detected as regions with high curvature of spatio-temporal contrast in
the frequency domain, much along the lines of the known Harris corner detector.

Finally, our work is related to sparse spatio-temporal features [7–12]. An early
treatise of this concept [7], proposes an interest point detector suitable for clas-
sifying actions such as eye opening or knee bending. A more advanced imple-
mentation of that concept has been proposed in [13], as a generalization of the
known HOG detector to the 3D case. A recent approach [14] has demonstrated
that sparse spatio-temporal features can be used to detect occlusion boundaries
as well.

In this work, we analyze changes in local appearance by dividing the region
of interest into a grid of patches and assigning weights to individual hypotheses
based on patch histograms in two consecutive frames. We avoid building on top
of optical flow, as dense optical flow can not be accurately computed in many
cases of practical importance. Optical flow approaches typically optimize some
kind of correspondence criterion: if the objective function is multimodal (such
as at an aliased texture) it is easy to get stuck at a wrong local maximum. In
contrast to the work of Derpanis and Wildes, [2, 6] our approach supports the
notion of emergent events of the low level structure in video, and can naturally
represent occurrences of uncovered texture behind the occlusion boundaries.

2 The COIN Descriptor

The COIN descriptor is a semantic descriptor of temporal change in local ap-
pearance of an image region. The observed region is divided into a regular grid
of m × n patches. The semantic description is obtained by studying patch ap-
pearance in two consecutive frames at times t1 and t2 > t1.

First, we model patch appearance by histograms of a particular image func-
tion. Then, the histogram of each patch in t2 is compared to the histograms
of the patch itself and the 4-neighborhood in t1. Based on the comparison and
the position of the patch itself within the grid, we assign weights to one of the
following four hypotheses: C - the patch remained constant in time, O - there
is new information in the patch which originated from outside the grid, I - the
patch changed “by itself”, i.e without outer influence, N - the information in
the patch originated from one of its neighbors from the previous frame.

COIN can be calculated for various spatial resolutions in three different sce-
narios: i) using a fixed grid over entire frames, we want to find semantically
interesting structures in a scene; ii) on the level of an interest point, we wish to
describe an interest point and answer questions such as is it stable, does it depict
a depth discontinuity or a planar surface; iii) on the level of an object of inter-
est, we search for spatio-temporal structure within a bounding box. While case i)
is “camera-centered”, cases ii) and iii) require frame-to-frame correspondences,
established by interest point or object tracking. In this paper we restrict the
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experimental analysis of the descriptor properties to the level of an interest point,
but the descriptor is well-suited to be applied to scenarios i) and iii) as well.

2.1 Calculating Patch Histograms

Without loss of generality, let us assume that we have two bounding boxes around
an image region of interest, one taken at time t1 and another at time t2 > t1.
We denote their widths and heights as (w1, h1) and (w2, h2), respectively. Each
bounding box is divided into a regular grid of m × n patches. The size of an
individual patch within the first boundig box is (w1/m, h1/n), while the size of
an individual patch within the second bounding box is (w2/m, h2/n). We denote
the patches within the grid at time ti as p

ti
1 , p

ti
2 , . . . , p

ti
m×n. For an illustration, see

Fig. 1, depicting COIN calculation on a series of synthetic images. The images,
shown in the first row of the figure, consist of a regular grid of diversely colored
rectangles. In dividing the images into a regular grid of 5×5 patches, each patch
will fall perfectly into one colored rectangle, and will contain a single dominant
hue plus the black rectangle border.

For each patch pt1i we calculate a patch histogram Ht1
i for a previously chosen

image function (hue, value, saturation, or gradient). The same is done for patches
pt2j . This step results in two collections of a total of m×n histograms (which we
call grids of histograms), one obtained in time t1 and another in time t2. Each
histogram represents a (w/m) × (h/n)-sized subregion of the image ROI. We

denote the histogram of i-th patch in time tj as H
tj
i .

After calculating image function histograms, they are normalized so that∑
bk = 1, bk ∈ H

tj
i , i.e. the values of all histogram bins sum to 1.

2.2 Assigning C, O, I, N Hypotheses

Having calculated an image function histogram of a patch in time t2, we want
to determine what happened to the patch, given its appearance in t1. To do
so, we use three operations: histogram intersection, Hi ∩Hj ; histogram subtrac-
tion, Hi\Hj; and histogram mass computation, μ(Hi). The result of histogram
intersection is a new histogram in which the value of each bin is the minimum
value from the two intersected histograms. Subtraction is achieved simply by
subtracting bin values, and mass computation by summing them.

We adhere to the normalized histograms paradigm adopted so far, and aim at
assigning each patch pt2k a four-dimensional, COIN function (C,O, I,N), which
is normalized, so that C+O+I+N = 1. The idea is to first calculate the change
in the appearance of the patch histogram which cannot be attributed neither to
its appearance in the previous frame nor to one of its neighbors. This change is
then labeled as inner or outer, and the remaining mass is distributed to constant
and neighbor hypotheses. We start by finding the patch pt1l among the patches in
4-neighborhood of pt2k for which μ(Ht2

k ∩Ht1
l ) is maximal. In other words, for the

patch in the current frame, we find the most similar 4-neighbor in the previous
frame based on the mass of intersection of their histograms. Note that here we
observe only the 4-neighborhood, assuming that we have sufficient spatial and
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Fig. 1. Our running example explaining all the steps of the COIN calculation process.
The descriptor components for each image patch are displayed in different colors and
in order: C,O, I,N . C occurs both in transition from frame 1 to frame 2 (they are
equivalent), as well as in the red area of the grid in the first three frames. O occurs
in the left column of frames 3 and 4. In frame 4, two red patches change to magenta.
Magenta was not seen within the grid before, therefore we assign O to the bottom right
patch and I to the center patch.

temporal resolution to capture interesting events under that constraint. Next,
by intersecting the current and the previous patch histogram, we get what these
two histograms have in common. If we then subtract that from the current patch
histogram,

Γ = Ht2
k \(Ht1

k ∩Ht2
k ), (1)

what remains is the histogram of change in appearance of the patch. This change
either arrived from a neighbor, or the patch was changed by inner/outer influ-
ences. We can now compute the joint weight of inner and outer hypotheses,

ωIO = Γ\(Γ ∩Ht1
l ), (2)

following the same logic as in the computation of Γ .
The value μ(ωIO) is the mass of the total change in appearance of the his-

togram which cannot be attributed to a neighbor. There are two cases that can
happen: (i) there is information which was not seen before, and it originated
within the patch itself, or (ii) there is change which originated from outside the
bounding box. To distinguish between these cases, we use a prior: a m×nmatrix
of values from 0 to 1, where the value αk at the position of the studied patch
k denotes the probability of the inner hypothesis. We usually choose values of
αk to reflect that outer change is more likely to occur closer to the border of
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the bounding box than inner change. We might, for instance, consider using a
Gaussian kernel or a similar matrix. The values of I and O are then:

I = αkωIO, O = (1− αk)ωIO (3)

As ωIO is always smaller than 1, we can find the rest of the mass which is to be
assigned to constant and neighbor hypotheses as:

ωCN = 1− ωIO (4)

We denote the intersection mass between the histogram of the current patch and
the histogram of the previous patch as

ωC = μ(Ht2
k ∩Ht1

k ), (5)

and the intersection mass between the histogram of the current patch and the
histogram of the most similar neighbor as

ωN = μ(Ht2
k ∩Ht1

l ) (6)

Both ωC and ωN are between 0 and 1. We would like to proportionally dis-
tribute the remaining mass ωCN to ωC and ωN to obtain the weights of C and
N hypotheses. We do so in the following manner:

C =
ωC

ωC + ωN
ωCN , and N =

ωN

ωC + ωN
ωCN (7)

Following the computation outlined above, we obtain the values C, O, I, N
which form the COIN function of the patch pt2k . By concatenating values of
COIN functions for each patch in the grid, we obtain the COIN descriptor. As
an example, consider the first two frames in Fig. 1. The two frames are exactly
the same. Calculated COIN descriptors between frames are shown in the third
row of the figure. They are represented as m× n 4-bin histograms, where each
histogram represents the weights C,O, I, and N . Due to the nature of COIN
computation, all weights sum to 1. As the first two frames are equal, we might
expect C = 1 for all patches of the COIN descriptor, but this is the case just
for histogram 10. Notice that every patch except patch 10 has a twin neighbor,
i.e a neighbor which looks exactly like it. Therefore, it might be the case that
the patch and the neighbor have switched places, even though apparently the
image is unchanged. Thus, all patches but patch 10 have C = N = 0.5. Patch
10 has no twin neighbors, resulting in C = 1. In the two top rows for transitions
from frames 2 to 3 and 3 to 4 we see N = 1. This is due to colored patches
moving to the right. Finally, we see inner and outer change in the second and
the third COIN descriptor. In the second COIN, we see that patches near the
left edge bring in new information. In the third COIN, we additionally see I = 1
in the center patch, outer change in the bottom right corner. Here, we used a
simple prior of αk = 0 for all the patches at the border of the bounding box,
αk = 1 otherwise. Of course, in real scenarios inner change could also happen at
the border of the bounding box (a person suddenly appearing in a window, or a
semaphore changing its signal), but this should then be covered by an adequate
selection of the prior.
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Fig. 2. An 8 × 8 grid superimposed on frames 3 and 4 and the calculated COIN
descriptor

3 Experiments

In our experiments, we highlight and analyze various properties of our novel
COIN descriptor. We start (3.1) with some more analysis on the synthetic images
used in section 2 regarding parameter settings (i.e. grid size). Next (3.2), we
present results on real image sequences taken in our lab. In these experiments
we concentrate on space-time semantics that can be deduced from COINs. To
highlight these semantic aspects of COINs, we have chosen a colorful world that
can be well represented by histograms of hue. Finally (3.3), we show results in
discriminating different types of low-level structure on a sequence from the DTU
Robot Data Set.

3.1 Further Experiments on the Synthetic Image Sequence

In section 2 we used a simple synthetic sequence as our running example. The
sequence consists of colored rectangles, and in our previous discussion we used a
grid of 5× 5 patches, which aligned perfectly with the grid present in the image.
But what if we were to use a finer grid, where patches would contain multiple
colors? Would the underlying behavior still be visible? Fig. 2 illustrates a grid
of 8 × 8 patches superimposed on synthetic images in frames 3 and 4, and the
COIN descriptor calculated on that grid. All other parameters, including the
inner prior, were the same as in the previous example. What is apparent from
this simple experiment is that the COIN descriptor generates a semantically
correct description of what happens in time even if we use unfavorable grid
sizes. In the first column of the 8× 8 grid we clearly see outer change, the same
as in the first column of the 5× 5 grid (see Fig.1). We can also notice that both
the inner and the outer change of red to magenta are still reflected within COIN
histograms, although now distributed through four cells in the grid instead of
one. This is because magenta rectangles now span through four image patches,
insted of corresponding perfectly to a single patch. It is interesting to notice the
first two rows within the fifth column of the histogram grid. There, we would
expect to see maximum weight assigned to the neighbor hypothesis, but it is
instead assigned to the inner and outer hypotheses. If we have a look at the fifth
patch in the first row in frame 1, it is mostly light-blue, with a little bit of green.
Its first neighbors are either light blue or green, the nearest dark blue neighbor
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is 2 places in the grid away. In frame 2, the patch receives a lot of dark blue.
As we analyze only the 4-neighborhood of the patch, the neighbor hypothesis
gets weighted down and the outer hypothesis dominates, which is a reasonable
behavior. If undesirable, it could be tuned out by modifying the parameter αk.

3.2 The Color World Experiments

Verifying that the COIN concept works on simple synthetic images, we moved
on to testing it on real images. For that purpose, we created the experimental
setup depicted in Fig. 3. The background is an 80 × 30 cm poster comprised
of 1 × 1 cm squares. While all squares have maximum saturation and value in
HSV space, the hue of each square is random. In the foreground, we have placed
several arrangements of 10 × 10 cm targets, including homogeneous as well as
random colors, holes in a target, and real as well as “virtual” crossings. In all
cases, the camera has been translated from right to left, frontoparallel to the
background, at a distance of approx. 1 m. In these experiments, the observed
behavior of COIN descriptors was very similar to its behavior on synthetic data.
Due to space limitations, here we will briefly present just a descriptor of a real
crossing and a descriptor of a virtual crossing and discuss how the two might be
distinguished.

Fig. 3. Our experimental setup. (left): Camera taking a sequence. (middle and right):
Our experimental setup to capture the “real” and “virtual” crossings shown in Fig. 4.
The camera is translated parallel to the background target at a distance of 1m, using
a focal length of 100 mm and an aperture setting of 22. All targets show random hue
patches of maximum saturation and value, foreground targets are 10 × 10 cm. For the
“virtual” crossing (Fig. 4 top), the two targets are placed at 22 cm, and 40 cm in front
of the background, while the“real” crossing (Fig. 4 bottom) is placed 15 cm in front of
the background.

The top row of Fig. 4 depicts two frames of two textured targets overlapping,
and the corresponding COIN descriptor calculated at the point where the tar-
gets cross. The overlap is virtual, meaning that in 3D the targets are apart. In
contrast, the bottom row of Fig. 4 depicts a case where the targets are touching.
Notice that in the case of the virtual crossing the front target is actually occlud-
ing the back target as time advances. This means that we would see a lot more
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Fig. 4. Two targets which do not overlap in 3D (“virtual crossing”, top) and two
targets which do overlap in 3D (“real crossing”, bottom), along with the corresponding
COIN descriptors built around the crossing. The COINs were built over a 6 × 6 grid,
using 10-bin hue histograms.

inner change if we reversed the sequence. To illustrate, we’ve included an addi-
tional column in our representation of COIN descriptors, which we named Id,
for “inner disappearing”. Id is equal to I of the COIN of the reversed sequence.
Our regular I was renamed to Ia, for “inner appearing”. In the case of a real
crossing, we see dominating constant/neighbor hypotheses at the edge where the
targets cross, while in the case of a virtual crossing, we notice the appearance of
inner/outer change, which is, as expected, especially prominent with Id. Based
on this finding, we propose a simple measure of the level of spatio-temporal
discontinuity:

Σt2
I =

∑ Ia + Id
2

(8)

where Ia and Id are calculated for each patch pt2k within the grid at time t2.

3.3 Experiments on the DTU Robot Data Set

Having found that the COIN descriptor performs well on artificial scenes, we
tested whether it can discriminate between 3D discontinuities, coplanarities and
virtual crossings. To the best of our knowledge, there are not any publicly avail-
able datasets with suitably or similarly labeled video data. However, the recent
DTU Robot Data Set by Aanaes et al. [15] consists of 60 scenes and scene surface
data obtained from a structured light scan, so it has the potential for automated
groundtruth acquisition.

In the experiment reported here, we used the first 49 frames of scene number
14 from the DTU Robot Data Set. We manually labeled ten interesting structures
in the scene throughout all 49 frames: three small depth discontinuities, three
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Fig. 5. Points selected for manual experimental validation of COIN from the DTU
Robot Data Set (#014, frame number 24)

Table 1. Experimental results on classifying point types on the DTU Robot Data Set
sequence #14. Point IDs are the same as in Fig. 5.

small discontinuity large discontinuity virtual crossing coplanarity

ID 3 4 7 1 8 9 6 5 2 10

ΣI 0.20 0.19 0.23 0.62 0.63 0.52 0.71 0.39 0.00 0.04

large depth discontinuities, two coplanarities and two virtual crossings, as shown
in Fig. 5. Then, COIN descriptors were built using an offset of 5, i.e. between
frames 1 and 6, 6 and 11 etc. We used a grid of 5 × 5 patches and histograms
of hue with 10 bins. As a measure of the level of discontinuity within a grid,
we used ΣI (Eq. 8). Table 1 shows the average value of this measure for four
different categories of points. We can notice that the smaller and and the larger
depth discontinuities as well as coplanarities seem to be well separated by the
value of this measure. One virtual crossing has a very large value of ΣI , while
the other has a value in between the values for small and large discontinuities.
This is correct, because a virtual crossing is by definition a depth discontinuity.
It remains to be seen on a larger dataset whether we will be able to distinguish
virtual crossings from other discontinuities using ΣI only, or whether we will
need other more complex measures which would, for instance, take into account
the position of the inner change within the grid.
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4 Conclusion and Outlook

We have presented a quite novel scheme to describe and detect semantics of local
frame-to-frame appearance change. Aiming to extend the success of histogram /
appearance based methods in 2D to space-time, we devised a solid mathematical
framework for reliable computation of weights assigned to C, O, I, N hypotheses.
The applicability of the descriptor was confirmed by our experiments, which
have demonstrated how to use COIN for reliable labeling of coplanarity vs.
discontinuity and to distinguish between real and virtual crossings.

We plan to investigate the properties of COIN on a larger amount of data,
which will be obtained either by automated groundtruth acquisition or manual
labeling. We are also interested in using COIN to distinguish other kinds of local
structures, e.g. convexities or concavities. Using COINs inside bounding boxes
of more complex image events, e.g. articulated object motion, should provide
excellent means to classify complex motion patterns. Furthermore, aggregating
COINs to sequences of COINs over video might provide a higher semantic level.
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12. Wang, H., Ullah, M.M., Kläser, A., Laptev, I., Schmid, C.: Evaluation of local
spatio-temporal features for action recognition. In: Proc. BMVC, p. 127 (2009)
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