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Abstract. Gender categorization, based on the analysis of facial appear-
ance, can be useful in a large set of applications. In this paper we investigate
the gender classification problem from a non-conventional perspective. In
particular, the analysis will aim to determine the factors critically affect-
ing the accuracy of available technologies, better explaining differences be-
tween face-based identification and gender categorization.

A novel challenging protocol is proposed, exploiting the dimensions of
the Face Recognition Grand Challenge version 2.0 database (FRGC2.0).
This protocol is evaluated against several classification algorithms and
different kind of features, such as Gabor and LBP. The results obtained
show that gender classification can be made independent from other
appearance-based factors such as the skin color, facial expression, and
illumination condition.

1 Introduction

It can be rather difficult to reliably categorize the gender of an unknown indi-
vidual from its exterior appearance. Humans can perform this task pretty well
on the basis of a number of independent features, not limited to the facial ap-
pearance. The tone of the voice, the gait, the hair style and dressing are all
factors which strongly affect our judgement of gender. Yet, in some cases, gen-
der categorization can be difficult for humans as well. For these reasons, gender
categorization, posed as a binary classification problem from a number of face
samples, is a very challenging task, but with a strong application potential [1J2].
A successful gender classification system can boost a large number of applica-
tions, such as search engines, surveillance systems, and interfaces, and it may
help to better tailor public services to the user’s needs. In the last two decades,
the computer vision community has proposed several approaches to face-based
gender classification. Starting from the seminal work of Golomb, Lawrence, and
Sejnowski [3], key contributions are due to Cottrell and Metcalfe [4] — who pro-
posed a multi-layer neural network approach — and Brunelli and Poggio [5], who
detailed in the early 90s a system based on HyperBF networks. More recently,
Moghaddam et al. [6] proposed a methodology based on Support Vector Ma-
chines (SVM). Mékinen and Raisamo [7] surveyed several methodologies based
on Multilayer Neural Network, SVM and Discrete AdaBoost. Lapedriza and
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colleagues [8] investigated the usage of boosting classifiers, like AdaBoost and
JointBoosting. Shobeirinejad and Gao [9] presented a technique in which a his-
togram intersection is used as a measure of similarity for classification.

Most of the contributions listed above agree on a generic processing scheme
composed of a preliminary feature extraction step, followed by a classification
algorithm. This scheme proved to be effective in face recognition and the exten-
sion to gender classification has been quite straightforward and equally effective.
In fact, these two steps are semantically very different: feature extraction has to
do with image signals which are considered relevant for the problem (for instance
the skin color could be extremely relevant for race detection) whilst classification
has to do with the optimal partition of the feature space, possibly taking into
account existing constraints.

In this paper we investigate gender categorization by means of an extended
empirical analysis on the Face Recognition Grand Challenge version 2.0
(FRGC2.0) dataset [I0]. To this extent, a first contribution concerns the
proposal of a challenging experimental protocol for gender categorization. In-
spired by the above feature extraction-classification dichotomy and from the
experiments detailed in [I0], a procedure is described based on exploiting the
dimensions embedded in the data collected in FRGC2.0 — i.e. identity, facial ex-
pression, skin color, and environmental conditions. The proposed protocol is for
general purpose, and it can be easily extended to other datasets and to different
features and classifiers.

A second, and more relevant contribution, concerns the application of
the proposed protocol to a significant set of features and classifiers, proving
that gender classification should be treated as a very different problem from
face classification. In our experiments 1-Nearest-Neighbour [11], Aggregation
Pheromone density based pattern Classification (APC) [12], and Support Vec-
tor Machines [I3] are used as classifiers. Feature extraction is based on Gabor
features — see, e.g., [14] —, Local Binary Patterns (LBP) [I5] and raw pixel values
with histogram equalization.

Notably external factors critically affecting the accuracy of face recognition
like race, expressions and environmental conditions, are almost irrelevant for
gender categorization. This fact is in agreement with the human ability to judge
a person’s gender from the facial appearance only. We also report interesting
insights related to the feature extraction step. Particularly, Gabor features turn
to be an effective choice in uncontrolled environment, while, in the case of con-
trolled environment raw pixel values perform equally well.

The paper is structured as follows. In Section [2] we introduce the notation
used and we give a brief description of the FRGC2.0 dataset. We also briefly
introduce both the classification algorithms and the feature extraction methods
herewith employed. In Section [B] we describe our experimental setup, detailing
the experimental protocol. Section @ shows the results of the experimental pro-
tocol applied to a selected set of features and classifiers. Finally, in Section
conclusions are drawn.
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Fig. 1. Images samples from the FRGC2.0 database. Neutral, smiling and different light
conditions images from the same person are depicted in the first row. In the second row,
they are depicted images related to the different races, namely Asian, Asian Middle
Eastern, Asian Southern, Black or African American, Hispanic, and White.

2 Data, Algorithms, and Features

2.1 The FRGC2.0 Dataset

The proposed computational analysis of gender categorization is based on pro-
cessing 2D face images comprised in the Face Recognition Grand Challenge
dataset, version 2.0. The dataset is composed of more than 50,000 images (see
Figure[ll), divided into a training and a validation set [I0], denoted as I" and X,
respectively.

As both I' and X' include all subjects (males and females) involved in the
images collections, the FRGC2.0 training set can be regarded as a set I’ =
{’yl, e ,’yn}, with n = 291 (the total amount of involved subjects), in which
each 7, denotes the pool of images related to the subject j. Each image v, C Y

is characterized by a tuple of three elements < C, E, R >, where:

— C = {c2l,¢3l,u} denotes the types of control, i.e., controlled images with
two or three studio lights (¢2l and ¢3l, respectively), and uncontrolled images
(denoted as ).

— E = {BlankStare, Happiness} denotes the facial expressions in the dataset
images, i.e., neutral and smiling, respectively.

- R={A,AME,AS,BAA, H,U, W} denotes the race of the subject, where,
following the categorization of FRGC2.0, A stands for “Asian”, AMFE for
“Asian Middle Eastern”, AS for “Asian-Southern”, BAA for “Black or
African American”, H for “Hispanic”, while U stands for “Unknown”, and,
finally, W denotes “White” race.

The same categorization can be applied to the test set ¥ = {oy,...,0,}, with
n =466.

2.2 Algorithms

In this paper, gender categorization is modeled as a binary pattern classification
problem. In binary classification, a set of patterns is given, i.e., input vectors
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X = {z,,... 2} with z; € R™, and a corresponding set of labels, i.e., output
values Y € {0, 1} — in this case, male and female. The labels as generated by some
unknown function f : R™ — {0,1} applied to the patterns, i.e., f(z;) = y; for
1€ {l,...,k} and y; € {0,1}. The task of a binary classifier ¢ is to extrapolate
f given X and Y, i.e., to construct ¢ from X and Y so that when given some
x* € X, c(x*) will equal f(z*); such task can be achieved training an inductive
model of c.

In the following, the classifiers applied for gender categorization analysis are
briefly reviewed.

— 1-nearest-neighbor (1-NN): this classifier yields the label of the training
instance which is closer to the given test instance, whereby closeness is eval-
uated using some proximity measure, e.g. Euclidean distance; we use the
method described in [I1] to store the training instances for fast look-up.

— Aggregation Pheromone density based pattern Classification
(APC): this is a pattern classification algorithm modeled on the ants colony
behavior and distributed adaptive organization in nature. Each data pattern
is considered as an ant, and the training patterns (ants) form several groups
or colonies depending on the number of classes present in the data set. Each
colony releases a quantity of pheromones proportional to the population of
ants. A new test pattern (ant) will move along the direction where the aver-
age aggregation pheromone density (at the location of the new ant) is higher
and eventually it will join that colony [12].

— Support Vector Machines (SVM): this is a supervised learning algorithm
used for both classification and regression tasks. Roughly speaking, the basic
training principle of SVMs is finding an optimal linear hyperplane such that
the expected classification error for (unseen) test patterns is minimized [13].

2.3 Features

Different input vectors X are extracted from I" and X either as raw pixel values,
Gabor or LBP features. In order to avoid registration errors, all images are first
aligned according to the positions of the eyes.

The most elementary features used are the raw pixel values (denoted as PV),
extracted from the image matrix (re-scaled to 64x64 pixels) and aligned in a
mono-dimensional vector. To compensate for illumination changes, histogram
equalization is first applied.

Gabor features are extracted by applying a standard bank of Gabor kernels
with 5 scales and 8 orientation. For each image, a feature vector of 2560 elements
is extracted by sampling the filters outputs on the 64 nodes of a uniform 8 x 8
grid. All processing is based on the Feature Extraction Library (FELib) [16].

A modified version of the original Local Binary Pattern operator (LBP) has
been also applied. The LBP operator is denoted as LB Pp g, where P is the num-
ber of sampling points on a circle of radius R. An interesting extension of LBP
takes into account the bitwise transitions of the obtained binary pattern [15]. In
order to obtain a good trade-off between description performance and feature
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Table 1. Synopsis of training, validation and test sets. The table is structured as
follows. The first column shows the name of set (in the case of test sets, we report
groups only), and it is followed by three columns. The first column (“#”) reports the
total amount of images in the set, while the remaining two (“F” and “M”) report the
percentage of the images in the set, labeled as female and male, respectively.

# F M
I, 1027  42.65%  57.35%
Y, 1202 43.19%  56.61%
Y. 1262 45.01%  54.99%
S, 1958 50.56%  49.45%
Y. 1958 50.56%  49.45%

vector length, the LBPg3 operator has been used [17]. Each image is divided
into a a uniform 7 x 7 grid and the LBPéf% is applied to each resulting sub-
window. The histograms are computed within each window independently and
concatenated. The resulting histogram has size m x n where m is the number of
windows (49 in this case) and n is the length of a single LBP¢'3 histogram (10
in this case). Therefore, the total histogram is composed of 490 buckets.

3 Experimental Setup

In order to evaluate the gender categorization capability of the chosen classifiers
on the given feature sets, an experimental protocol has been devised, based on
the FRGC2.0 dataset. The dataset is composed of about 40,000 images from 466
subjects of different races, 43.93% are female and 56.07% are male. Images were
taken at different illumination conditions, and with different facial expressions.

The aim of the experimental trial is to compute the classification models
trained on data having specific values of C, E, and R. Towards this end, the algo-
rithms described in Section are trained selecting controlled images — two stu-
dio lights — related to “Caucasian” subjects (the most recurrent in the FRGC2.0)
showing a neutral expression. In other words, the classifiers are trained on a set
I'; in which, for each subject j, |v;| is equal to the total amount of images
vk C yj such that (C = c2l) A (E = BlankStare) A (R =W).

It is well-known, from machine learning literature, that classifiers performance
may vary with different parametrization tunings. In order to provide a fair com-
parison among classifiers, the FRGC2.0 validation set X' is divided into two
parts. The first part is composed of the images related to the 291 subjects also
occurring in I'. This partition — denoted as X, — is used just for parameter
tuning. Y, is established with the same criteria applied for I":

Xy :for each subject j, 0, C o such that (C'=c2l) A (E = BlankStare) AN (R=W)
Concerning the test set, we consider the partition of X composed of the images

from the 175 subjects not occurring in I'. Nine different test sets are extracted
and organized in three groups:
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— X, for each subject j, Vo, C o; € X such that v; ¢ I' and (E =
BlankStare) A (R = W). The rationale is to have the same facial expression
and race of the training set, in order to have a baseline for the comparisons.
This group is composed of three test sets, i.e., Xg co1, Xg,c31, Xau, T€pre-
senting test sets in which oj; has a value of C' equal to c2l, 3, and wu,
respectively.

— Xy for each subject j, Yo, C o; € X such that v, ¢ I’ and (F =
BlankStare). In this group are involved images that are not constrained
to a particular value of R. The rationale is to compare the accuracy of the
classifiers with respect to the race. Also this group if composed of three test
sets, i.e., 257021, Eb,c3l7 Eb,u-

— X for each subject j, Vo, C o; € X such that v; ¢ I’ and (F =
Happiness). The rationale is to compare the accuracy of the classifiers with
respect to different facial expressions. Also this group is not constrained by
a particular value of R. It is composed of three test sets: X co1, Xc c31, Yeu-

Cardinalities and label distributions of the sets are reported in Table [l

4 Experimental Results

The first experimental trial is aimed to train a gender categorization model
based on 1-NN, APC, and SVM. A parameter grid search involving both APC
and SVM is performed, as follows:

— Concerning APC, we explore the parameter § related to the pheromone
intensity as described in [12].

— Concerning SVM, we consider a C-SVC with a Radial Basis Function (RBF)
kernel. In particular, we explore the parameter space related to both cost ¢
and the parameter g of the kernel RBF.

We test the obtained models on Y/,,, and the results of these experiments with the
best parameter configuration — in terms of accuracy — are shown in Table 21 For
all experiments described, when referring to APC and SVM, the parametrization
in Table 2] was applied.

In the next experiment, the performance of 1-NN, APC, and SVM, trained
on I} using PV features, and tested on the test sets described in Section [3] are
evaluated. The obtained results are summarized in Table [3

From table Bl SVM outperforms all classifiers, reporting an accuracy greater
than 90% on all test sets with C' = ¢2l and C = ¢3! in both groups X, and X.
SVM is also the best performing classifier for C' = u. Concerning ¥, c2;, the SVM
accuracy is more than 10% higher than both 1-NN and APC. The classification
results related to X, co; can be regarded as a reference, because it is composed
of images having the same value of C', F, and R used to compute I5.

Considering the results related to X, .3;, the accuracy of all classifiers is very
close to the one reported for X, co;. As a consequence, we can conjecture that
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Table 2. Parameter optimization for the considered algorithms. The table is organized
as follows: The first column shows the name of the algorithms, and it is followed by three
groups of columns, reporting the results of the optimization considering PV, Gabor and
LBP features. Each group of columns is composed of two subcolumns, reporting the
accuracy (column “Acc.”) of the computed model, and the related parameters (column
“Par.”).

Classifier PV Gabor LBP
Acc. Par. Acc. Par. Acc. Par.
1-NN 97.54% — 98.99% — 96.59% —
APC 95.90% 6 =2 99.07% & = 0.1 94.27% & = 50
SVM 98.80% c¢c=2,g=0 99.46% c=2,9g=2 97.29% ¢ =16, g = 2e-06

Table 3. Evaluation results using PV features. The table is composed of four columns.
The first one (“Test set”) denotes the test set on which classifiers has been evaluated.
The three following columns report the accuracy performance (in percentage) related
to 1-NN, APC, and SVM (columns “1-NN”, “APC”, and “SVM”, respectively).

Test set 1-NN APC SVM
Ya,cal 83.60% 84.86% 95.80%
Ya,cal 81.70% 84.15% 95.01%
Yo 64.10% 67.99% 76.39%
Xb,eat 81.31% 82.38% 91.37%
Xb,cal 81.10% 82.69% 91.78%
oo 63.89% 66.70% 75.49%
Yecatl 80.03% 80.54% 88.07%
Ye,esl 81.00% 81.15% 89.07%
e 65.83% 68.08% 78.19%

all considered classifiers are robust with respect to controlled illumination vari-
ations. From the results obtained from images captured in an uncontrolled envi-
ronment — Y, ,, —, the performances of the classifiers decrease. SVM still provides
the best classification performance, but its accuracy is about 20% lower than the
one reported for both X, ;o and X c3;.

Considering the results related to X, the same results described for X, hold:
SVM outperforms the other classifiers, and there is a lack of performance for
C' = u. The resulting accuracy of all classifiers is very close to that reported
for X,. However, as discussed in Section [3] the images comprised in such test
sets are not constrained from a particular value of R. As a consequence, we can
conjecture that classifiers performance are not affected by race variations. The
same conclusions can be drawn from the results related to the group X., in which
also E (facial expression) is not constrained.

As for Gabor features, the results of the performed experiments are summa-
rized in Table[dl Also in this case SVM outperforms the other classifiers, reaching
an accuracy greater than 90% on all test sets having C = ¢2l and C = ¢3l. SVM
is also the best performing classifier for C' = u. Concerning X, c9;, SVM accuracy
is more than 5% greater than APC accuracy, and about 9% greater than 1-NN
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Table 4. Evaluation results using Gabor features. The table is organized as Table [l

Test set 1-NN APC SVM
Va2l 82.88% 86.53% 91.92%
Ya,c3l 83.44% 87.48% 92.95%
Do 64.66% 68.70% 78.68%
Xb,cal 83.20% 86.57% 90.60%
X, eal 83.71% 87.13% 91.62%
b 65.37% 68.18% 77.99%
Y2 74.44% 80.75% 90.14%
Ye,eal 74.11% 81.61% 90.81%
Yew 63.48% 64.86% 71.12%

Table 5. Evaluation results using LBP features. The table is organized as Table [3

Test set 1-NN APC SVM
Ya,cal 79.63% 81.93% 90.89%
Ya,cal 81.30% 81.06% 91.36%
Do 53.80% 51.34% 51.98%
Xb,eat 82.79% 85.03% 91.73%
X, eal 82.53% 83.76% 92.13%
2o 49.08% 52.35% 54.44%
Y2 80.08% 81.97% 90.40%
Xe,esl 77.43% 78.65% 89.32%
e 56.84% 54.70% 55.41%

accuracy. Considering the results related to X, c3;, the accuracy of all classifiers
is very close to the one reported for X, .9;. Also for X, ., a lack of classifiers
performance is reported. SVM still produces the best classification results, but
its accuracy is about 14% smaller than the one reported for both X, co; and
XYa,c21- The performance of both 1-NN and APC also decrease of about 20%.
Considering the results related to X, the same results described for Y, hold:
SVM outperforms the other classifiers, and there is a lack of performance for
C = u. The accuracy reported for all classifiers is very close to that reported for
Xa.

The last experiment performed is similar to the previous one, but LBP features
were used instead of Gabor features. The obtained results are reported in Table[Bl

Also in this case, SVM is the best performing classifier — in terms of accuracy.
From the results related to X, X%, and Y., the same conclusions made for both
PV and Gabor features can be drawn. This fact confirm our conjecture that
gender classification is independent from the values of F (facial expression) and R
(race), and also from controlled illumination variations. However, differently from
the previous experiments, LBP features are almost useless in the uncontrolled
cases Yg u, L, and X .
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5 Conclusions

The gender categorization problem has been analyzed trying to understand
which factors critically affect the accuracy of available technologies. The pro-
posed protocol exploited the dimensions of the FRGC2.0 database, analyzing
the sensitivity of a two-steps feature extraction-classification approach with re-
spect to three different classifiers and three orthogonal types of features.

The results of our empirical analysis can be summarized as follows:

— Gender categorization is independent from the race of the subjects. Our
results show that training an inductive model on a set of images composed
of subject of only one race, the accuracy of the classifiers is about the same
if in the test set we involve subjects of different races.

— The accuracy in gender categorization does not change in a noticeable way
for controlled changes of illumination. We showed that, training classifiers
on FRGC2.0 controlled images with two studio lights, and testing them on
controlled images with three studio lights, the accuracy result is almost the
same of the test performed on controlled images with two studio lights.

— Different facial expressions do not influence in a noticeable way the gen-
der categorization accuracy applying SVM to Gabor and LBP features. A
marginal degradation is reported for PV features, starting from a 96% accu-
racy obtained for X, o.;. This fact is probably related to the iconic informa-
tion content of PV features, while both Gabor and LBP features are mainly
related to the frequency image content.

As a final comment, our analysis confirms that race, facial expression, and illu-
mination condition are almost irrelevant for gender categorization from human
faces. Obviously, relaxing the constraints for race and expression, the identifica-
tion performance decreases. But this finding is independent from both classifiers
and features.

Concerning the adopted classifiers, SVMs always outperform the other classi-
fiers. The analysis performed in this paper confirms that Gabor features are an
effective choice in the case of uncontrolled environments. Moreover, elementary
features such as raw pixel values can be usefully applied for gender categoriza-
tion.

As future work, we are planning to investigate additional dimensions of
FRGC2.0, e.g. age, and to extend our analysis to other datasets, including mask-
ing and face occlusions. In addition, we plan to extend our analysis to additional
feature representation and state-of-the-art gender classification methods, and
carefully consider the statistical significance of the classifier results.
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