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Abstract. We consider a framework for learning additive classifiers
based on regularized empirical risk minimization, where the regulariza-
tion favors “smooth” functions. We present representations of classifiers
for which the optimization problem can be efficiently solved. The first
family of such classifiers are derived from a penalized spline formulation
due to Eilers and Marx, which is modified to enabled linearization. The
second is a novel family of classifiers that are based on classes of orthog-
onal basis functions with othogonal derivatives. Both these families lead
to explicit feature embeddings that can be used with off-the-shelf linear
solvers such as LIBLINEAR to obtain additive classifiers. The proposed
family of classifiers offer better trade-offs between training time, mem-
ory overhead and classifier accuracy, compared to the state-of-the-art in
additive classifier training.

1 Introduction

Additive classifiers are a generalization of linear ones and arise naturally in many
applications. These include SVM classifiers based on additive kernels, i.e., kernels
of the form,K(x,y) =

∑
i Ki(xi, yi). Such classifiers frequently arise in computer

vision applications where images are represented as a histogram or counts of
low-level features, such as color or texture, and a similarity measure, such as
the intersection kernel or the χ2 kernel [2–4] is used to compare them. Although
these non-linear kernels provide significant improvements in accuracy over their
linear counterparts, it often comes at the expense of higher computational and
memory requirements during training and testing.

In recent years, methods for training kernel SVMs that are based on train-
ing linear SVMs on feature maps that approximately preserve the kernel dot
product have become popular. This includes the work of Rahimi and Recht [5]
who proposed such feature maps for shift-invariant kernels, such as the Gaus-
sian kernel. For additive kernels the scheme is easier since the one dimensional
decomposition of the kernel allows independent computation of feature maps in
each dimension. This direction has been explored by us in our earlier work [3]
to construct approximate feature embeddings for the min kernel that results
in a piecewise linear approximation of the function in each dimension. For γ-
homogenous additive kernels [6] Vedaldi and Zisserman [4] propose feature maps
that enable similar efficient training. The resulting efficiencies during training
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and testing make additive classifiers the classifiers of choice for many computer
vision applications.

In this work we revisit the additive modeling literature to obtain feature
maps that enable similar efficient training. The Penalized-Spline (P-Spline) for-
mulation due to Eilers and Marx [1] has emerged as a practical approach for
training additive models for the regression setting ever since Generalized Addi-
tive Models (GAMs) were introduced by Hastie and Tibshirani [7]. However, it
does not directly apply to the classification setting, nor does it scale to the size
of datasets and features typical in computer vision applications. Nevertheless,
we show that with a small modification to the original formulation, one can de-
rive feature maps that can be directly used with fast linear SVM solvers, such as
LIBLINEAR, to solve the optimization problem in the classification setting. These
feature maps inherit the advantages of the P-Spline formulation, which is that
it allows explicit control over the smoothness of the estimated function.

The perspective of learning smooth additive classifiers offers a general recipe
for learning. Consider a scheme where the functions in each dimension are ex-
panded using an orthonormal basis set, and smoothness is ensured by penalizing
the norm of the function derivatives. We identify a family of orthogonal basis
functions for which the additive learning problem reduces an equivalent linear
problem. These basis functions have an additional property that they are differ-
entiable and have orthogonal derivatives.

Experiments on various image classification datasets show that the proposed
techniques can offer orders of magnitude reduction in training time over standard
kernel SVM training, often with almost no memory overhead and within a small
constant multiple of the time required to train a linear SVM. These classifiers
offer better trade-offs between training time, memory overhead and classifier
accuracy, compared to the state-of-the-art in additive classifier training.

2 Generalized Additive Models

Given training data, (xk, yk), k = 1, . . . ,m with xk ∈ R
D and yk ∈ {−1,+1}, we

are interested in learning functions based on the following optimization problem:

min
f∈F

∑

k

l
(
yk, f(xk)

)
+ λR(f) (1)

where, l is a loss function and R(f) is a regularization term. In the classification
setting, a commonly used loss function l is the hinge loss function:

l
(
yk, f(xk)

)
= max

(
0, 1− ykf(xk)

)
(2)

When, f(x) = wTx and R(f) = wTw, this reduces to the standard linear SVM
formulation. In the additive modeling setting, a typical regularization is the
norm of the dth order derivative of the function, i.e., R(f) =

∑
i

∫∞
−∞ fd

i (t)
2dt.

Motivated by the analysis in our earlier work [3], we consider representations of
the function f for which the optimization problem can be efficiently solved. For
further discussion, we assume that the features are one dimensional, because the
analysis can be done for each dimension independently for additive functions.
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3 Linearized Spline Embeddings

Eilers and Marx [1] proposed a practical modeling approach for GAMs where
they represent the functions in each dimension using a relatively large number of
uniformly spaced B-Spline bases. The smoothness of these functions is ensured
by penalizing the first or second order differences between the adjacent spline
coefficients. Let Φ(xk) denote the vector with entries Φi(x

k), the projection
of xk on to the ith basis function. The P-Spline optimization problem for the
classification setting with the hinge loss function consists of minimizing c(w):

c(w) =
λ

2
wTDT

d Ddw +
1

n

∑

k

max
(
0, 1− yk

(
wTΦ(xk)

))
(3)

where,w is a vector of weights for the basis functions representing the underlying
function. The matrix Dd constructs the dth order differences of w, Ddw = Δdw.
The first difference of w, Δ1w, is a vector of elements wi − wi+1. Higher order
difference matrices can be computed by repeating the differencing. For a n bases,
the difference matrix D1 is a (n − 1)× n matrix with di,i = 1, di,i+1 = −1 and
zero everywhere else.

To enable a reduction to the linear case, we modify the matrix D1 by adding
one more row to the top. Now D1 is a n × n matrix with si,i = 1, si,i−1 = −1.
The resulting difference matrices D1 and D2 = D2

1 are shown below:

D1 =

⎛

⎜
⎜
⎜
⎜
⎝

1
−1 1
−1 1

. . .
−1 1

⎞

⎟
⎟
⎟
⎟
⎠

,D2 =

⎛

⎜
⎜
⎜
⎜
⎝

1
−2 1

1 −2 1
. . .
1 −2 1

⎞

⎟
⎟
⎟
⎟
⎠

The first row of D1 has the effect of penalizing the norm on the first coefficient
of the spline bases, which plays the role of regularization in the linear setting
(e.g. ridge regression, linear SVMs, etc). Alternatively, one can think of this as
an additional basis at left most point whose coefficient is set to zero. The key
advantage is that the matrix Dd is invertible and has a particularly simple form
which allows us to linearize the whole system by re-parametrizing w by D−1

d w,
resulting in the following optimization problem :

c(w) =
λ

2
wTw +

1

n

∑

k

max
(
0, 1− yk

(
wTD−T

d Φ(xk)
))

(4)

Since the whole classifier is linear on the features Ψd(xk) = D−T
d Φ(xk), the

underlying additive classifier can be learned by using a fast linear solver on
the transformed feature space Ψ . The inverse matrices D−T

1 and D−T
2 are both

upper triangular – the matrix D−T
1 has entries si,j = 1, j ≥ i and D−T

2 has
entries si,j = j − i+ 1, j ≥ i. We will show in Section 5, that this structure can
be exploited in a custom solver to further reduce the memory and computational
requirements during training.
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Let us define the implicit kernel between data points as the dot product of
their feature maps Ψ = D−T

d Φ. For uniformly spaced B-Splines of degree d

denoted by Φd, with D1 regularization, the implicit kernel Kd = ΨT
d Ψd, where

Ψd = D−T
1 Φd, resembles the smooth versions of the min kernelKmin(x, y), where

Kmin(x, y) = min(x, y), as shown in Figure 1. In fact, in our earlier work [3]
we motivated the use of linear spline basis as an approximation to the min
kernel. Higher order regularizations lead to features that resemble the truncated
polynomial kernels [8, 9] which consist of uniformly spaced knots τ1, . . . , τn and
truncated polynomial features, Φi(x) = (x − τi)

p
+. However these features are

less numerically stable than the B-Spline basis (see [10] for a comparison).

Kmin K1 Kmin −K1 K2 Kmin −K2 K3 Kmin −K3

Fig. 1. Spline Kernels. Kmin(x, y), x, y ∈ [0, 1] along with Kd for d = 1, 2, 3 corre-
sponding to linear, quadratic and cubic B-Spline basis shown as a heat map (yellow is
high, black is low). Using 10 uniformly spaced bases, these kernels closely approximate
the min kernel.

4 Generalized Fourier Embeddings

Generalized Fourier expansion of the functions in each dimension provides an
alternate way of fitting additive models. Let Ψ1(x), Ψ2(x), . . . , Ψn(x) be an or-
thogonal basis system in the interval [a, b], wrt. a weight function w(x), i.e., we

have
∫ b

a Ψi(x)Ψj(x)w(x)dx = 0, i �= j. Given a function f(x) =
∑

i aiΨi(x), the
regularization can be written as:

∫ b

a

fd(x)2w(x)dx =

∫ b

a

⎛

⎝
∑

i,j

aiajΨ
d
i (x)Ψ

d
j (x)

⎞

⎠w(x)dx

Consider an orthogonal family of basis functions which are differentiable and
whose derivatives are also orthogonal. One can normalize the basis such that
∫ b

a
Ψd
i (x)Ψ

d
j (x)w(x)dx = δij . In this case the regularization has a simple form:

∫ b

a

fd(x)2w(x)dx =

∫ b

a

⎛

⎝
∑

i,j

aiajΨ
d
i (x)Ψ

d
j (x)

⎞

⎠w(x)dx =
∑

i

a2i

One again the problem of learning a regularized additive classifier reduces to a
linear classifier in the embedded space Ψ (x). We identify two such bases:
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Trigonometric Basis. The classic trigonometric basis functions:

{1, cos(πx), sin(πx), cos(2πx), sin(2πx), . . .} (5)

are orthogonal in [−1, 1], wrt. the weight function w(x) = 1. The derivatives are
also in the same family (except the constant function), hence are also orthogonal.
The normalized feature embeddings for d = 1, 2 are shown in Table 1.

Hermite Basis. Hermite polynomials are an orthogonal basis system with or-
thogonal derivatives wrt. the weight function e−x2/2. Using the following identity:

∫ ∞

−∞
Hm(x)Hn(x)e

−x2/2dx =
√
2πn!δmn (6)

and the property that H ′
n = nHn−1 (Apell sequence), one can obtain closed

form features for d = 1, 2 as shown in Table 1. It is also known that the family
of polynomial basis functions that are orthogonal with orthogonal derivatives
belong to one of three families: Jacobi, Laguerre or Hermite [11]. The extended
support of the weight function of the Hermite basis makes them well suited for
additive modeling.

Although both these bases are complete, for practical purposes one can ap-
proximate the scheme using the first few basis functions. The quality of approx-
imation depends on how well the underlying function can be approximated by
these chosen bases. For e.g., low degree polynomials are better represented by
Hermite basis.

Table 1. Trigonometric and Hermite embeddings Ψd penalizing the dth derivative

Trigonometric Hermite

x ∈ [−1, 1], w(x) = 1 x ∈ N(0, 1), w(x) = e−x2/2

Ψ1
n(x) = { cos(nπx)

n
, sin(nπx)

n
} Ψ1

n(x) =
Hn(x)√

nn!

Ψ2
n(x) = { cos(nπx)

n2 , sin(nπx)

n2 } Ψ2
1 (x) = Ψ1

1 (x), Ψ
2
n(x) =

Hn(x)√
n(n−1)n!

, n > 1

5 Learning Additive Classifiers

The proposed embeddings can be used with a fast linear SVM solver to train
the underlying additive classifier. However, when the embedded feature space is
large there can be a significant memory overhead in storing these features. For
better memory efficiency, one could compute the embeddings “on the fly”, i.e., in
the inner loop of the training algorithm. This scheme is particularly attractive
for the B-spline basis since it is relatively cheap to compute the embeddings.
Moreover, the sparsity structure of the basis functions and the regularization
can be exploited to further reduce the computational and memory overhead.
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Most learning methods are sequential – they repeatedly evaluate the classifier
at a point and update the classifier if the prediction is incorrect. The number of
classifier evaluations, wTD−T

d Φ(x), can be significantly larger than the number
of updates. Hence, it is computationally efficient to maintain wd = D−1

d w, and
use sparse vector multiplication to evaluate the classifier. Updates to the weight
vector w and wd are of the form:

w← w − ηD−T
d Φ(xk), wd ← wd − ηLdΦ(xk) (7)

Where η is a step and Ld = D−1
d D−T

d . Unlike the matrix DT
dDd, the matrix

Ld is dense. Hence, updates to wd can change all its entries. Even though Ld is
dense, one can compute LdΦ(x) in 2dn steps instead of n2 steps by exploiting
the structure of D−T

d . This can be done by initializing ai = Φi(x), and then
repeating step A d times, followed by step B d times, to compute LdΦ(x).

Step A : ai = ai + ai+1, i = n− 1 to 1

Step B : ai = ai + ai−1, i = 2 to n

For input features that are sparse and non-negative, which often arise in “bag-of-
words” representations of text documents or images, it is important to preserve
the sparsity of the features in the embeddings for computational and memory
efficiency. Formally, we need the property that Ψ (0) = 0. For the B-Spline basis,
one can achieve this by removing basis functions that have support at 0. For
the generalized Fourier features, one could consider an expansion using only the
bases that evaluate to zero when the input is zero, i.e., Ψ(0) = 0.

6 Experiments

Often on large datasets consisting of very high dimensional features, to avoid
the memory bottleneck, one may compute the embedding in the inner loop of
the training algorithm. We call this the “online” method. We modify LIBLINEAR

to enable this online computation, but other solvers such as PEGASOS [12], which
was used in our previous work [3], can also be easily modified to do the same.
The custom solver allows us to exploit the sparsity of embeddings (Section 5).

A practical regularization is D0 = I with the B-Spline embeddings, where I
is the identity matrix, which leads to sparse features. This makes it difficult to
estimate the weights for basis functions which have few data points, but one can
use a higher order B-Spline basis to somewhat mitigate this problem.

We present image classification experiments on two image datasets, MNIST [13]
and Daimler Chrysler (DC) pedestrians [14]. On these datasets, SVM classifiers
based on histogram intersection kernel outperform linear SVM classifiers [3, 15],
when used with features based on a spatial pyramid of histogram of oriented
gradients [2, 16]. The MNIST dataset has 60K instances and the features are
2172 dimensional and dense, leading to 130 million non-zero entries. The DC

dataset has three training sets and two test sets. Each training set has 19.8K
instances and the features are 656 dimensional and dense, leading to 13 million
non-zero entries. These sizes are typical of image datasets, and training kernel
SVM classifiers requires several hours on a single machine.
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Effect of B-Spline Embedding Parameters. Table 2 shows the accuracy
and training times as we vary the number of basis functions, regularization
Dd, (d = 0, 1, 2), and the B-Spline degree ∈ {1, 2, 3} on the first split of the DC
pedestrian dataset. We set C = 1 and the bias term B = 1 for training all the
models. On this dataset, we find that D0 and D1 regularization is as accurate
and significantly faster than D0. This suggests that first order smoothness is
sufficient for this dataset. In addition, D0 regularization leads to sparse features,
which can be directly used with any linear solver that can exploit this sparsity.
The training time for B-Splines scales sub-linearly with the number of basis
functions, hence better fits can be obtained without significant loss in efficiency.

Table 2. The effect of spline parameters on training time/test accuracy on DC dataset

Regularization
Spline D0 D1 D2

5 basis functions
Linear 6.60s (89.55%) 20.27s (89.68%) 41.60s (89.93%)

Quadratic 8.74s (90.45%) 30.47s (90.20%) 80.25s (89.94%)
Cubic 11.68s (90.03%) 49.85s (89.93%) 143.50s (88.57%)

10 basis functions
Linear 5.61s (90.42%) 23.06s (90.86%) 77.99s (89.43%)

Quadratic 8.10s (90.69%) 29.97s (90.73%) 126.03s (89.23%)
Cubic 11.59s (90.48%) 42.26s (90.67%) 193.47s (89.14%)

20 basis functions
Linear 5.96s (90.23%) 32.43s (91.20%) 246.87s (89.06%)

Quadratic 7.26s (90.34%) 34.99s (91.10%) 328.32s (88.89%)
Cubic 10.08s (90.39%) 42.88s (91.00%) 429.57s (88.92%)

Effect of Fourier Embedding Parameters. Table 3 shows the accuracy and
training times for various Fourier embeddings on DC dataset. The raw features,
are first normalized so that the data in each dimension ∈ [−1, 1]. The experiments
are performed by precomputing the embeddings and using LIBLINEAR to train
various models, as it is relatively more expensive to compute the embeddings
online. The training times and accuracies are similar to that of B-Spline models.

Comparison of Various Additive Models. Table 4 shows the accuracy
and training times of various additive models compared to linear and the more
expensive min kernel SVM on all the 6 combinations of training and test sets
of the DC dataset. The optimal parameters were found on the first training and
test set. The additive models are up to 50× faster to train and are as accurate
as the min kernel SVM. The B-Spline additive models significantly outperform
a linear SVM, require a small additional training time and almost no memory
overhead.

Table 5 shows the accuracies and training times of various additive models
on the MNIST dataset using the online method. We train one-vs-all classifiers
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Table 3. The effect of Fourier parameters on training time/test accuracy on DC dataset

Trigonometric Hermite
d = 1 d = 2 d = 1 d = 2

#Basis Accuracy Time Accuracy Time Accuracy Time Accuracy Time

1 88.94% 07.0s 88.94% 07.0s 84.17% 02.8s 84.17% 02.8s
2 89.59% 10.2s 89.64% 10.2s 88.01% 04.6s 88.01% 04.6s
3 88.99% 12.7s 89.77% 12.8s 88.22% 07.7s 88.70% 09.9s
4 89.77% 16.0s 89.84% 15.9s 89.00% 12.6s 89.05% 11.9s

for each digit, and the classification scores are normalized to ∈ [0, 1] by Platt’s
scaling. During testing, each example is assigned the label of the classifier with
the highest response. The optimal parameters for training were found using 2-fold
cross validation on the training set. Once again, the additive models significantly
outperform the linear classifier and match the accuracy of the min kernel SVM,
while being 50× faster. The spline embeddings once again perform the best,
requiring a small multiple of the time required to train a linear SVM, without
requiring additional memory since the features are computed online.

Table 4. Training time/test accuracy of various additive classifiers on DC dataset

Method Test Accuracy Training Time

SVM (linear) + LIBLINEAR 81.49 (1.29) 3.8s
SVM (min) + LIBSVM 89.05 (1.42) 363.1s

online batch

B-Spline (D0, Linear, n = 05) 88.51 (1.35) 5.9s -
B-Spline (D0, Cubic, n = 05) 89.00 (1.44) 10.8s -
B-Spline (D1, Linear, n = 10) 89.56 (1.35) 17.2s -
B-Spline (D1, Cubic, n = 10) 89.25 (1.39) 19.2s -

Fourier (d = 1, n = 4) 88.44 (1.43) 159.9s 12.7s (4× memory)
Hermite (d = 1, n = 4) 87.67 (1.26) 35.5s 12.6s (4× memory)

Table 5. Training time/test error of various additive classifiers on MNIST dataset

Method Test Error Training Time

SVM (linear) + LIBLINEAR 1.44% 6.2s
SVM (min) + LIBSVM 0.79% ∼ 2.5 hours

B-Spline (D0, Linear, n = 20) 0.88% 31.6s
B-Spline (D0, Cubic, n = 20) 0.86% 51.6s
B-Spline (D1, Linear, n = 40) 0.81% 157.7s
B-Spline (D1, Cubic, n = 40) 0.82% 244.9s

Hermite (d = 1, n = 4) 1.06% 358.6s
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7 Comparison to Previous Work

The spline embeddings proposed in this work are a generalization of our earlier
work [3](MB). The φ2-sparse and φ2 classifiers proposed in MB are equivalent
to the embeddings obtained by using a linear spline basis with D0 and D1

regularization respectively. The family of spline embeddings offers finer-grained
control over the training time and accuracy than MB. For example, one can
use D0 regularization with quadratic B-Spline basis to obtain a classifier with
intermediate accuracy and training time as the φ2-sparse and φ2 classifiers as
seen in Table 4. The other approach related to our work is that of Vedaldi and
Zisserman [4] (VZ). We compare our approach to theirs in terms of memory
overhead and training time, since the accuracies of all these methods are similar
to the exact kernel SVM classifier.

Memory Overhead. The VZ method has similar memory overhead as the
Fourier embeddings since both these result in dense embeddings of similar di-
mension. When used in the offline case, i.e., with precomputed embeddings, this
can lead to an order of magnitude increase in memory requirement, which may
be impractical for large datasets. In comparison, the spline embeddings have
lower memory overhead since the projected features are sparse regardless of the
number of basis functions. The Fourier and VZ methods can be easily modified
to compute features online to reduce their memory overhead, but this comes at
the expense of training time.

Training Time. The training times of Fourier embeddings and VZ are simi-
lar, both for the online and offline case, since both these embeddings are dense
and involve similar computations. Even though the B-Spline basis can be much
higher dimensional, the training time remains small because of the optimiza-
tions we presented in Section 5. If we restrict ourselves to the online case, which
is of practical importance, the training time is dominated by the time taken
to compute the embeddings. The B-Spline embeddings are the fastest to com-
pute as they involve fewer arithmetic operations than trigonometric functions or
higher order polynomials. The Fourier embeddings or VZ can be sped up using
precomputed tables, but are unlikely to be faster than the B-Spline embeddings.

8 Conclusion

Motivated by the additive modeling literature, we propose two families of em-
beddings that enable efficient learning of additive classifiers. Spline embeddings
can be derived by a simple modification of the P-Spline formulation of Eilers
and Marx [1] and generalize our earlier work [3]. These classifiers can be trained
using a custom solver, with almost no memory overhead, and within a small
constant multiple of the training time compared to a linear classifier, and are
as accurate as an additive kernel SVM classifier. We also propose a family of
generalized Fourier features that can be used with an off-the-shelf linear solver
such as LIBLINEAR to efficiently train additive classifiers.
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