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Abstract. This paper proposes a non-rigid registration formulation cap-
turing both global and local deformations in a single framework. This
formulation is based on a quadratic estimation of the registration dis-
tance together with a quadratic regularization term. Hence, the optimal
transformation parameters are easily obtained by solving a liner system
of equations, which guarantee a fast convergence. Experimental results
with challenging 2D and 3D shapes are presented to show the validity
of the proposed framework. Furthermore, comparisons with the most
relevant approaches are provided.

1 Introduction

The shape registration problem has been largely studied in the literature and
represents a fundamental problem in different computer vision and image pro-
cessing applications. It aims at recovering a set of transformation parameters
that brings a given data set as close as possible to the corresponding model set.
In the rigid case, also known as shape alignment, it involves rotations and trans-
lations. While in the non-rigid shape registration case, in addition to the rotation
and translation parameters it includes a deformation stage. The development of
formulations able to tackle the non-rigid registration case are attracting the in-
terest of the research community. They are capable of handling situations with
shape distortions due to deformation, noise or missing parts (e.g., [1], [2], [3]).

In general, most of the approaches proposed for non-rigid shape registration
follow a two step scheme, where first a global rigid alignment is performed and
then a local process deforms the shape of data set towards the given model
set. The differences between the methods in the literature mainly lie in the way
they formulate these two steps (most relevant approaches are summarized in the
next section). Variations to this global-rigid/local-non-rigid strategy have been
also proposed in the literature. For instance, an alternative has been recently
introduced in [4], where shape rigidity is firstly considered locally and then a
global shape deformation process is performed.
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On the contrary to previous approaches, the current work proposes to use a
single formulation to tackle both, global and local alignment and deformation.
The main features of the current work are as follow: (i) a robust distance approx-
imation based on local curvature information is used for non-rigid registration;
(ii) the proposed objective function is in the linear least squares form, hence it
can be solved by a linear system of equations; (iii) the proposed method cap-
tures all deformation from rigid to non-rigid by the same framework; there is
no need to use different steps to capture global and local deformations sepa-
rately; (iv) unlike the sign distance field, the proposed function is not discretely
approximated.

The rest of the paper is organized as follows. Section 2 presents the most
relevant related works. The proposed technique is presented in Section 3. Section
4 gives experimental results using 2D and 3D shapes; additionally comparisons
with state of the art are presented. Finally, conclusions and future work are
detailed in Section 5.

2 Related Work

During the last decade several approaches have been proposed in the literature
to tackle the non-rigid shape registration problem (e.g., [5], [6], [7], [8], [9]).
These approaches can be classified into different categories according to: i) the
way in which the distance between the data and model sets is approximated
(e.g., point wise [10], distance field [1]); ii) the transformation used for mapping
data set towards model set (e.g., Thin Plate Splines (TPS) [11]; Free Form
Deformations (FFD) [1]; Laplacian deformation [12]); iii) the approach used to
compute the best set of transformation parameters (e.g., iterative algorithm [13],
global optimization [8]).

Chui and Rangarjan in [11] present a Robust Point Matching (RPM) for
non-rigid registration using TPS. Their proposed method is based on a soft as-
signment technique to avoid the correspondence search. This technique addresses
the common problem in feature based matching when there is no counterparts
for some points. They propose an algorithm to devote appropriate weights to
describe the correspondence of each data point as a linear combination of the
points in the model set. Moreover, it includes an annealing parameter that allows
to control the influence domain of points to each other.

Jian and Vemuri in [14] present a probabilistic model for point set registration.
They describe both data set and model set by mixture of Gaussians and the
problem is treated as an alignment problem between two density functions. This
modeling provides a more robust method for non-rigid registration through TPS.
Although the formulation they provide avoids the correspondence search like the
ICP kind algorithm ([13], [10]) and the gradient information can be explicitly
derived and exploited in an optimization stage, it considers all the combinations
between the data points and the model points which is quite expensive.

Huang et al. [1] propose a region based algorithm to measure the similarity
between distance fields of each data set and model set. They used FFD to capture
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Fig. 1. The proposed method (SD-FFD): (a) initial configuration of the data set (blue)
and the model set (red); (b) result with λ = 105 (at iteration 15); (c) result with
λ = 1 (at iteration 22); (d) the optimal FFD control lattice results in a very dense
correspondence, not only on the boundary but over the whole space.

the non-rigid deformation. The final similarity function is described in a form of
a double integral over the region. The smoothness term in the formulation can be
analytically computed, but the data term should be done numerically over the
region. The data term compares the model distance field and the data distance
field after applying the deformation; however, theoretically, it is not a distance
field anymore. Finally, the whole similarity distance is optimized through the
gradient descent algorithm. This method is later extended by Taron et al. [5] to
consider the uncertainty of the point sets encoded in the covariance matrix.

Signed distance fields (SDFs) are used in [4] to capture the local transfor-
mation in small sampling grids. These sampling grids are defined by the FFD
control lattice. Their proposed algorithm uses the local rigid transformation in
these grids to define the global deformation over the whole region. These local
rigid motions are firstly found by optimizing a non-linear function that measures
the differences between the two SDFs. Then, the translation and rotation param-
eters in the sampling grid are used to guide the FFD control lattice. This method
is computationally expensive since it performs many non-linear optimizations in
each iteration to find the local motions. Moreover, no global regularization term
can be applied on the FFD control lattice.

As mentioned above there have been different approximations of the distance
between model and data sets. Choosing a proper error term leads to a precise
and fast registration algorithm. Most of the methods previously reviewed result
in a non-linear error term, which must be iteratively optimized. In the current
work we exploit a quadratic distance approximation in the non-rigid registration
problem. The presented objective function is in the linear least squares form and
can handle both rigid and non-rigid deformations with the same framework. Fig-
ure 1 illustrates how the proposed method handles both the rigid alignment (Fig.
1(b)) and the non-rigid deformation (Fig. 1(c)) just by relaxing the regularization
term. This term controls the rigidity of deformation during the evolution. Thanks
to the proposed objective function each iteration is linearly solved. Hence, the
whole framework has a fast convergence. Furthermore, the optimal deformation
provides a dense correspondence between the given data and model set.
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3 Proposed Approach

This section presents the main elements of the proposed framework. Firstly, in Sec-
tion 3.1, the approximation error used to estimate the distance between the current
data set andmodel set is presented. This distance is a quadratic term based on the
curvature information of the points in the model set. Our contribution is to use
this distance to capture both rigid and non-rigid deformations bymeans of the Free
Form Deformation. In Section 3.2 this deformation space is defined. Finally, Sec-
tion 3.3 details how both rigid and non-rigid registration problems can be solved in
the same framework. In this section we propose a novel objective function to find
the deformation parameters. This function is in the least squares form and it can
be easily optimized by solving a linear system of equations.

3.1 Registration Error (SD)

All the registration methods seek for the best transformation parameters to
move the given data set (source shape) S = {si}Nd

1 close to the model set (tar-
get shape) T = {ti}Nm

1 . As mentioned in the previous Section, all registration
methods can be classified based on the distance used to measure the closeness,
the transformation to move the data set, and the optimization method that finds
the best transformation parameters. The first and most important matter is how
to choose a proper and precise distance to define the registration error term.

Approaches using the precise geometric distance between model and data sets
have been proposed in the literature. For instance, a well known example is the
Iterative Closest Point (ICP) algorithm. It moves the data set in each iteration
based on a simple criterion: for the given data point it searches for the closest
corresponding model point (or foot-point). Therefore, the distance used by ICP
is a point-to-point distance and ICP performs a Point Distance Minimization
(PDM) in each iteration to find the best transformation parameters. Figure 2(a)
illustrates a simple case where ICP is stuck in a local minima. Some of the
data points in the figure lie on the curve passing through the model set; hence
their distance to the model set must be quite low, but ICP devotes a quite high
distance to these points since the model set is quite sparse. If there could be a
better approximation for the distance, the ICP would devote more weights to the
data point which are still far from the model point. More elaborated approaches
have been also proposed using ICP philosophy [15]; in [10] ICP is used in a
Tangent Distance Minimization (TDM) framework.

Implicit descriptions like distance fields provide another metric to measure
the distance between the data and model sets. In these techniques both model
set and data set [1], or only the model set [17], are described by signed distance
fields at first. Then, the registration error is measured through these distance
fields instead of the point sets. Unfortunately, these methods require expensive
computation to build the distance fields over the whole region. In addition, since
the distance fields are made discretely, the precision is up to a specific point.
Finally, using distance fields for non-rigid registration results in a non-linear
optimization function, which is usually solved by a gradient descent algorithm.
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Fig. 2. (a) Illustration of a point-to-point distance based approach (e.g., ICP [10]). (b)
Local quadratic approximation [16] used in current work.

In this paper we use a quadratic approximation of the geometric distance
in order to define the registration error term in the least squares form. This
distance is based on the curvature information in the model sets. Consider the
data point si with its closest corresponding model point tj . Then the Squared
Distance (SD) of si to the whole model set T can be approximated as follows:

SD(si, T ) =
d

d− ρ
[(si − tj).Tj ]

2 + [(si − tj).Nj ]
2, (1)

where Tj and Nj are the unit tangent and unit outer normal, respectively,
defined in the Frenet frame at tj . The value ρ is the curvature radius at the
model point tj and d is the signed distance between the data point si and the
model point tj . The sign of d is positive if si and Nj lie on the same side and is
negative otherwise [16].

The distance approximation in (1), referred to as SD, works with the Frenet
frame at the foot-point tj . It projects the data point on the normal and tangent
vectors firstly and the final approximation will be quadratic with respect to these
projections. This final property of SD is very important and fits our need, since it
results in a least squares form. In the special case, where the data point is along
the normal at the foot-point, the first quadratic term vanishes and the distance
will be equal to |si−tj|2, which is the squared point to point distance. In another
special case, where the curvature of model set at tj is zero, the first quadratic
term vanishes again, and the projection of the data point on the normal will be
the SD approximation of quadratic distance. Figure 2(b) shows an illustration
depicting quadratic approximations for a few points of a given 2D shape.

3.2 Deformation Space (FFD)

Rigid transformation is able to align the global appearance of the objects. Hence,
in order to capture the local deformation we should use a more flexible family of



Non-rigid Shape Registration: A Single Linear Least Squares Framework 269

transformations. In the current work we propose to use a Free Form Deformation
(FFD) to describe any transformation from global (rigid) to local (non-rigid).
FFD has been already used in the computer vision and graphics communities in
the form of iFFD (incremental FFD); in other words, they were considered only
for capturing local deformation. In this work, thanks to the metric selected in
Section 3.1, a single framework is used to apply FFD to describe the deformation
space; without loss of generality let us consider the 2D case, where the FFD
describes a deformation field by means of the control lattice {Pij}M×N in 2D:

L(x, y) =

M∑

i=1

N∑

j=1

Pi,jBi(x)Bj(y), (2)

where {Bi(x)Bj(y)} are cubic spline basis functions to guarantee C2 continuity.
In our implementation we use a square control lattice (M = N) covering the
unit square [0, 1]2. The B-Spline knot sequence is uniform with a step of Δ =
1/(N − 3).

Since we consider a square control lattice, both sets of basis functions behave
similarly. Having considered a row-by-row order, we can represent the control
lattice and the basis functions in a vector form:

L(x, y) =

[
pT
xm(x, y)

pT
y m(x, y)

]
=

[
pT
x

pT
y

]
m(x, y), (3)

where m(x) is the vector form of the monomials {Bi(x)Bj(y)}, and px, py are
the vector form of the x and y components of control lattice.

The FFD definition in (2) can be simplified through the blending functions
which are cubic patches on [0, 1], which builds up the B-Spline basis function by
assembling together:

b0(u) = (1− u)3/6, b1(u) = (3u3 − 6u2 + 4)/6,
b2(u) = (−3u3 + 3u2 + 3u+ 1)/6, b3(u) = u3/6.

(4)

Then an equivalent definition of FFD will be achieved that is computationally
useful:

L(x, y) =

3∑

r=0

3∑

s=0

Pi+r,j+sbr(u)bs(v), (5)

where the indices start from:

i = �x/Δ�+ 1, j = �y/Δ�+ 1, (6)

and the given coordinates in XY will be mapped in UV as:

u = x/Δ− �x/Δ�, (7)

v = y/Δ− �y/Δ�.

This definition provides us with the computational efficiency useful for calculat-
ing the monomial matrix. Note that the value br(u).bs(v) will be accumulated
in the proper cell of the monomial m(x, y) corresponding to Bi+r(x).Bj+s(y).
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The Free Form Deformation in (2) has 2N2 degrees of freedom due to the free
movement of the control lattice. It should be indicated that this movement should
be controlled in order to have a meaningful deformation. Otherwise we will have
only a 2D to 2D mapping. Moreover, using this FFD formulation together with
the SD may lead us to a singularity problem in the Least Squares solution
presented in the next section. In order to avoid these problems a regularization
term must be considered as well.

In the current work a global tension term is considered to regularize the control
lattice. On the contrary to the conventional regularization term used in iFFD,
which measures the first order changes of iFFD, we use a second order term.
This term, similarly to [18], is computed by measuring the curvature of L over
the whole domain:

T (P) =

∫∫

XY

‖Lxx‖2 + 2‖Lxy‖2 + ‖Lyy‖2dxdy. (8)

Since the vector field L(x, y) is a linear function of P, the whole regularization
term will be a quadratic function of P. Using the vector form of L in (3) the
regularization term can be simplified as follows:

T (P) = pT
xHpx + pT

y Hpy, (9)

where matrix H is a N2 ×N2 symmetric matrix including the integral of basis
functions’ derivatives:

H =

∫∫

XY

mxxm
T
xx + 2mxym

T
xy +myym

T
yydxdy. (10)

This matrix can be analytically constructed once the size of control lattice is
known. Hence it can be computed off-line and be used during the algorithm.

3.3 SD-FFD: A Novel Non-Rigid Registration

So far the registration error (SD) as well as the transformation model (FFD)
are defined, where the first one defines the fitting term to measure the external
energy and the second one defines the solution space to describe the deformation.
Assembling these two terms will result in a novel non-rigid registration method:

ϕ(P) =

Nd∑

i=1

SD(L(si), T ) + λT (P). (11)

Our proposed registration function is a function of the control latticeP consisting
of the data fitting term and the regularization term. As defined in the pervious
section, the regularization term T (P) is quadratic with respect to P. In addition,
since SD is quadratic with respect to the given coordinates and L(si) is linear
with respect to P, the whole registration function in (11) is linear in terms of
the control lattice coordinates.
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Thanks to vector form representation our proposed registration distance can
be reformulated as follows:

ϕ(px,py) =

Nd∑

i=1

ωi[(

[
pT
x

pT
y

]
m(si)− tj).Tj ]

2

+

Nd∑

i=1

[(

[
pT
x

pT
y

]
m(si)− tj).Nj ]

2 + λ(pT
xHpx + pT

y Hpy). (12)

It is now clear that the function ϕ is quadratic with respect to px and py; hence

vanishing the partial derivatives ∂ϕ
∂px

and ∂ϕ
∂py

result in two linear system of

equations Axpx = bx and Aypy = by where:

Ax = λH+

Nd∑

i=1

(ωiT
x
j
2 +Nx

j
2)m(si)m(si)

T (13)

bx =

Nd∑

i=1

(ωiT
x
j
2 +Nx

j
2)(txj )m(si).

Similarly, the coefficient matrix Ay and the right hand vector by corresponding
to the y coordinate of the control lattice can be obtained.

Therefore, our proposed method, SD-FFD, finds the optimal control lattice
through solving two linear system of equations in each iteration. In order to con-
verge to the global minimum, we can start with a high regularization parameter
λ and decrease it gradually. It must be mentioned that SD-FFD, unlike other
methods, neither uses implicit distance field, which is computationally expen-
sive, nor relies on the single corresponding foot-point point. SD-FFD uses the
local curvature information around the foot-point and use this information to
build up a quadratic function.

4 Experimental Results

The performance of the proposed approach has been evaluated and compared
with state of the art algorithms. Several 2D and 3D shapes, obtained from public
databases ([19], [20] and [21]), have been registered. In all the cases the data set
corresponds to a deformed shape of the model set; as an exception, Fig. 3(bottom)
shows the result when shapes from different objects are registered together—data
set corresponds to a Donkey 2D shape, while model set to a Cat 2D shape. Figure
3 shows seven illustrations of 2D shapes registered with the proposed approach.
Figure 3(a) presents the initial configurations where not only deformation but
also rotations and translations between model and data sets can be appreciated.
In the current implementation the regularization parameter (λ), which somehow
represents the registration rigidity, was automatically tuned. It starts with a high
regularization value (λ = 105, see illustrations in Fig. 3(b)), which is mainly
devoted to tackle the alignment problem. Once the ratio of registration error
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between consecutive iterations is below a given threshold λ is divided by 10; this
relaxation is performed till λ = 1. Figure 3(c) depicts intermediate results, while
Fig. 3(d) presents results after convergence is reached.

All the 2D examples presented above (Fig. 1 and Fig. 3) have been used to
compare the results from the proposed approach with two state of the art algo-
rithms (i.e., [1] and [4]). Additionally, the performance of the proposed frame-
work is evaluated by using a point wise based approach. In other words, instead
of using the quadratic approximation of the geometric distance (Section 3.1) a
precise point-to-point distance is considered. This second approach is only im-
plemented for comparisons and will be referred to as ICP-FFD. This ICP-FFD
has been chosen since it is simple and can be derived from SD-FFD as a special
case. During the comparisons, the techniques iterate till the maximum number of
iterations (#Iter=50) is reached or the relative registration error is smaller than
a given threshold (in the current implementation ε < 0.001); relative registration
error is defined as: ε = |Et −Et−1|/Et, where Et refers to the registration error
between the model and data set at iteration t. The registration error is used as
a quantitative value for the comparisons and it is computed by accumulating
the residual error, in a point wise manner, from data set to a reference model
set. The reference model set corresponds to a highly detailed description of the
model set (it contains on average ten times the number of points in the model
set). Residual errors are computed by finding the nearest point in between the
registered data set and the reference model set. Table 1 depicts the number of
points in the data set (Nd), the number of points in the model set (Nm), the
registration error (Error) and the number of iterations (#Itr) for all the algo-
rithms tested during the comparisons. It should be highlighted that the proposed
approach reaches the best registration in the lowest number of iterations.

Figure 4 illustrates a qualitative comparison between the four different tech-
niques mentioned in Table 1. In the case of Camel all other techniques get stuck
in a local minima. The first two methods [1] and [4] are based on distance fields
and the ICP-FFD is based on the point to point distance. Since our method

Table 1. Comparisons of non-rigid shape registration algorithms

Huang et Fujiwara et Comp.: Prop. App.:
al. [1] al. [4] ICP-FFD SD-FFD

Figure Nd Nm Error #Itr Error #Itr Error #Itr Error #Itr

Fig. 1 341 341 7.39 37 3.05 32 0.72 48 0.24 37
Fig. 3(1strow) 415 361 2.02 29 1.92 26 1.52 31 1.21 27
Fig. 3(2ndrow) 297 293 2.25 25 1.78 29 1.29 38 1.17 27

Fig. 3(3rdrow) 272 253 1.74 21 1.72 27 1.85 39 1.76 12

Fig. 3(4throw) 376 299 2.69 24 1.87 27 1.14 37 1.11 31

Fig. 3(5throw) 417 358 1.89 32 1.22 28 1.13 30 1.10 22
Fig. 3(6throw) 598 535 5.97 32 4.52 28 13.37 51 2.38 43

Fig. 3(7throw) 485 361 3.71 25 2.89 32 2.51 55 2.09 38
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(a) (b) (c) (d) (e)

Fig. 3. Registration results of 2D shapes ([19], [20]) using the proposed approach (SD-
FFD): (a) initial configurations of data sets (blue) and model sets (red); (b) results
with λ = 105; (c) results with λ = 102; (d) results with λ = 1; (e) the obtained FFD
control lattice results in a very dense correspondence over the whole region.
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(a) (b) (c) (d)

Fig. 4. Visual comparison: registration results of a 2D shape [20] using: (a) distance
field [1]; (b) locally rigid globally non-rigid [4]; (c) ICP-FFD; (d) proposed approach
(SD-FFD)

(a) (b) (c) (d) (e)

Fig. 5. Noisy case: registration results of a noisy 2D shape [20] using the proposed
approach (SD-FFD); λ ∈ {105, 103, 102, 1} from (b) to (e) respectively

(a) (b) (c) (d)

Fig. 6. Registration results of 3D shapes using the proposed approach (SD-FFD): (a)
initial configurations of data sets (green) and model sets (red); (b) results with λ = 104;
(c) results with λ = 102; (d) Final registration results showing the blending of the two
shapes (data & model)
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exploits the curvature information it has a better estimation on the distance
and converges to a better results. Moreover, this measurement can tolerate noise
disruption on the data. Figure 5 presents a 2D data (Misk) disrupted by 5%
Gaussian noise. As in the previous examples, we, we start with a high regular-
ization (λ = 105) that easily tackles noise and then it decreases gradually. It
should be mentioned that in our implementation we use a local quadratic fitting
to approximate the curvature value.

The proposed approach has been also evaluated using public 3D shapes from
[19]. Figure 6 presents three examples of model sets, together with their corre-
sponding deformed data sets, which were registered with the proposed approach
(SD-FFD). Data sets were obtained by deforming the given model sets. In the
case of the hand Fig. 6(top), the data set was obtained by opening the model set
using a Laplacian deformation [12]; the data set corresponding to the eight-like
shape Fig. 6(middle) has been obtained by twisting and deforming the model
set’s shape; finally, in the case of Bunny [21], the data set corresponds to a
Laplacian deformation that moves down both ears and several distortions of
body’s parts from the model set (mainly on the back side). Figure 6(a) shows
the initial configurations where data sets are rotated and translated from the
model set, in addition to the deformations mentioned above. Intermediate re-
sults, obtained with λ = 104 and λ = 102 are presented in Fig. 6(b) and Fig. 6(c)
respectively. Final registration results are depicted in Fig. 6(d). The accuracy of
the registration from the proposed approach (SD-FFD) can be appreciated from
the blending of the two surfaces.

(a) (b) (c)

(d) (e) (f)

Fig. 7. 3D case: registration results of a deformed 3D shape [19] using the proposed
approach (SD-FFD); (a) initial configuration with the corresponding feature points;
(b) result in iteration 2 with (λ = μ = 103); (c) iteration 5 with (λ = 102); (d) iteration
10 with (λ = 10); (e) iteration 15 (μ = 102); (f) iteration 25 with (λ = 1, μ = 10)
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In all the implementations above no feature constraints are used, but despite
that our proposed method converges to the optimal configuration. Our proposed
formulation in (12) can follow previous works to incorporate feature constraints.
A feature constraint forces the FFD to move some special source points {ŝk}
to their corresponding target points {t̂k}. Figure 7(a) shows 8 feature points
and their correspondences with the same color. The feature term can be easily
formulated as μ

∑
k ‖L(ŝk) − t̂k‖2 where μ is the feature parameter. This term

is quadratic with respect to the FFD parameters, hence adding it to (12) results
in a quadratic term that can be minimized through a linear least squares form.
Figure 7 depicts the evolution of SD-FFD starting from a high regularization
(λ = 103) and a high feature parameter (μ = 103). Moreover, it shows how these
parameters gradually decrease to give more importance to the distance term.

5 Conclusions

This paper presents a novel formulation to tackle the non-rigid shape registration
problem. It is based on both a quadratic estimation term, which measures the
registration distance and a quadratic regularization term, which controls the
deformation of the data set towards the model set. The whole formulation can
be solved in a single least squares framework. In summary, in this work: (i)
a robust distance approximation based on local curvature information is used
for non-rigid registration; (ii) the proposed objective function can be solved
by a linear system of equations; (iii) all deformation from rigid to non-rigid are
captured by the same framework; there is no need to use different steps to capture
global and local deformations separately. Experimental results and comparisons
with challenging 2D and 3D shapes are provided showing the validity of the
proposed approach as well as the speed of convergence.
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