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Abstract. Matrices that collect the image coordinates of point features
tracked through video — one column per feature — have often low rank,
either exactly or approximately. This observation has led to many ma-
trix factorization methods for 3D reconstruction, motion segmentation,
or regularization of feature trajectories. However, temporary occlusions,
image noise, and variations in lighting, pose, or object geometry often
confound trackers. A feature that reappears after a temporary track-
ing failure — whatever the cause — is regarded as a new feature by
typical tracking systems, resulting in very sparse matrices with many
columns and rendering factorization problematic. We propose a method
to simultaneously factor and compact such a matrix by merging groups
of columns that correspond to the same feature into single columns.
This combination of compaction and factorization makes trackers more
resilient to changes in appearance and short occlusions. Preliminary ex-
periments show that imputation of missing matrix entries — and there-
fore matrix factorization — becomes significantly more reliable as a result.
Clean column merging also required us to develop a history-sensitive fea-
ture reinitialization method we call feature snapping that aligns merged
feature trajectory segments precisely to each other.

1 Introduction

Many problems in computer vision require tracking point features through video
sequences. Classical examples include three-dimensional geometric reconstruc-
tion, motion segmentation, and motion compression. Features are distinguished
from each other by the appearance of small image windows centered around
the points of interest, and are tracked by correlating descriptors of appearance
across consecutive frames. The resulting image coordinates are often arranged
in a measurement matrix M with one column per point. If the world is sim-
ple — perhaps characterized by one or a few rigid motions, or by an articulated
body — the matrix M has been shown to be low rank, and its factorization
argming, g ||[M — LRT|| in some norm yields important information about the
scene and its motions.
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However, tracking point features is brittle, because the appearance within a
feature window can change as a result of many factors including image noise, vari-
ations in lighting or viewpoint, or object deformations. In addition, the window
being tracked may become occluded (hidden from view), perhaps to reappear
several frames later. Although many tracking failures are short-lived, a reap-
pearing feature is typically viewed as an entirely new feature, and a new column
is added for it to the matrix M. This causes M to be extremely sparse, with
only a small fraction of known entries in each column, and makes finding a good
factorization a challenge.

In this paper, we propose a method to simultaneously factor and compact
the measurement matrix M into a smaller and denser matrix M by merging
groups of columns of M that correspond to the same feature into single columns
of M. Specifically, we formulate a mixed integer program that factors M while
simultaneously merging together columns that are temporally, photometrically
and geometrically consistent with each other. Two columns are temporally con-
sistent with each other if their known entries come from disjoint time intervals.
They are photometrically consistent if the corresponding feature windows look
similar to each other. The two columns are geometrically consistent if the trajec-
tories that they represent align well in the image. The resulting integer program
is intractable, and we solve it approximately by alternating between factoriza-
tion and compaction until convergence. In so doing, we lose guarantees of con-
vergence to a global optimum, but our experiments show satisfactory results
nonetheless.

Two (or more) columns can be merged when they correspond ezactly to the
same point. However, standard trackers initialize new features independently of
past history, so it is unlikely that a new feature is found to coincide perfectly
with an old one. To address this difficulty, we propose a history-sensitive feature
reinitialization method, in which the image coordinates of newly defined features
are snapped whenever possible to image positions that maximize the photometric
and geometric similarity with a previously seen feature.

The proposed method yields a compacted matrix M that is denser than its
original counterpart M. Our preliminary experiments show that this greater
density in turn leads to better generalization, in the sense that the missing
entries that the compact factorization LRT imputes in M are more accurate
than those that the sparse factorization LR imputes in M.

In summary, our main contributions are (1) a method for coupling matrix
compaction and factorization using chronological, geometric and photometric
evidence, and (2) a history-sensitive feature reinitialization method we call fea-
ture snapping that precisely aligns merged feature trajectories to each other.

The rest of the paper is organized as follows. After a review of related lit-
erature, Section [3] presents our formulation of the combined factorization and
matrix compaction problem. Section [ discusses our technique for solving the
resulting optimization problem. Section [ describes feature snapping, and the
experimental results in Section [6] show the benefits of our method. Section [7]
concludes with summary, a discussion of limitations, and future work.
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2 Related Work

Matrix factorization with missing data is an active area of research both within
and outside computer vision. For example, collaborative filtering problems such
as the Netflix Prize [1] require imputing missing entries of a measurement matrix
and assume that the latter is low rank. In this paper, we focus on prior work on
matrix factorization for tracking or Structure-from-Motion (SfM).

Tomasi and Kanade [2] introduced the original factorization formulation for
SfM of a rigid object. Since then, it has been extended to multi-body [3] and
non-rigid |4, |5] motions. Early approaches often ignored the problem of missing
data, or greedily stitched together a solution to the full problem by considering
a number of smaller problems on full sub-blocks of the measurement matrix.

Later research focused on the full missing-data factorization problem M =
LRT without using imputed values for missing entries during optimization. Tech-
niques can be separated into alternation [5-7], where one iterates between solv-
ing for L with R fixed and vice versa, and non-linear minimization that considers
all unknowns simultaneously. Buchanan and Fitzgibbon [8] provide an excellent
summary of many alternation techniques and present a damped Newton method
for factorization with missing data.

Many of these techniques find what is believed to be the globally optimal
solution on standard datasets (although convergence to the global optimum is
not guaranteed), but exhibit poor generalization performance because rank con-
straints alone are insufficient to constrain the problem fully. This implies that the
objective function must be modified. In this vein, Buchanan and Fitzgibbon re-
port experiments where a prior that enforces orthonormality of the motion factor
L increases the per-pixel reconstruction error on the observed entries but results
in visually more satisfactory tracks in terms of generalization performance. Tor-
resani and Hertzmann [9] embed the problem in a probabilistic framework and
propose adding priors on both L and R to improve performance. Gotardo and
Martinez |10] and Olsen and Bartoli |11] add temporal smoothness priors by
either including an explicit penalty on the temporal derivative of columns of
L [11], or by building L from a pre-defined basis with a desired level of smooth-
ness [10]. Del Bue et al. [12] and Olsen and Bartoli [11] also include shape priors
on the matrix R.

Surprisingly, the SfM literature rarely considers the opportunity for matriz
compaction, in which different columns that correspond to the same feature are
merged together during factorization. In most prior work, it is assumed that
correct correspondences are provided by the tracker throughout. Some work on
robust matrix factorization |11, [13] allows for individual correspondences to be
flagged as outliers and discarded. This is the reverse of the problem we focus on,
as we look for tracks that should have been merged and were not, rather than
associations that were made and should not have. Work by Delleert et al. [14] is a
notable exception. The authors assume that no correspondences are known at all,
and propose a Monte Carlo approach for sampling possible correspondences and
then solve for structure and motion using the full-perspective bundle adjustment
formulation [15]. Our approach differs in three ways. First, we assume that some,
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but not all, correspondences are known; that is, we assume that a point-feature
tracker often works. We use a more general low-rank matrix model in place of
rigidity, making our approach applicable to multi-body or non-rigid motions.
Finally, we allow the photometric appearance of tracks in the video to inform
the predicted associations, while Delleert et al. use geometric information only.

Our work is also related to the “track gluing” experiment reported by Olsen
and Bartoli [11]. Their paper considers merging tracks only after the fact and
relies only on geometric information to decide when two tracks should be merged
into one. In contrast, we interleave matrix compaction with matrix factorization,
and include the appearance of tracks in the decision about compaction.

3 Simultaneous Compaction and Factorization

Let M be a 2m x n real measurement matriz with missing entries. Starting all
indices at 1, the  coordinate of point ¢ in frame f is entry (2f —1,4) of M, and
the corresponding y coordinate is just below, at (2f,4). The term track i denotes
the trajectory traced by the known entries in column ¢. Entry (f,4) of an m x n
binary fill matriz F' is 1 if and only if a measurement for point ¢ is available at
frame f, so M has a measurement wherever the 2m x n matrix Fp = F x [1 1]
has a 1. In this expression, ‘x’ denotes the Kronecker product. For convenience,
we fill missing entries of the M with a value of zero.
Without compaction, factorization of M can be written as follows:

argmin | F, © (M — LRT)|[% (1)

where the subscript F' denotes the Frobenius norm and ‘®’ is the Hadamard
(i.e., entry-by-entry) product. The two real matrices L and R have sizes 2m x r
and n x r, where r is an upper bound on the rank of the ideal measurement
matrix.

To express compaction, we introduce a third unknown, the n x n binary sym-
metric compaction matriz C' with entries ¢;; = 1 if and only if track ¢ and
j correspond to the same world point and therefore should be merged into the
same column. Because the compaction matrix defines an equivalence relationship
between track fragments, its entries are required to obey the transitive property.
The compact version M of M consists of the unique columns of the matrix
MC'. We encourage compaction by adding a term to the standard factorization
objective function () that is proportional to the number of zeros in C.

We add additional constraints and heuristics to ensure that the recovered
compaction is plausible. First, two tracks i,j are temporally consistent if they
do not overlap in time. So, the fill matrix F after compaction cannot have entries
greater than 1 and C' must satisfy the constraint || F'C||« = 1.

Second, two tracks are photometrically consistent if small image windows
around them look similar. Specifically, let I; and I; be the image frames halfway
through track ¢ and track j, with ¢ > j. We define the n x n, lower-triangular
photometric discrepancy matriz @ to collect the sum of squared differences be-
tween windows W centered at the coordinates x; and x; of features 7 and j in I;
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and I; after an affine geometric correction |16] to allow for slight deformations
over time:

%:AGRQX%{TGRQ“;||1¢(X_M)_Jj(A(x_xj)+b)||% for i>j. (2)

We then encourage photometric consistency by adding to the penalty function
in () a term proportional to

¢'c where ¢ =vec(®) and c = vec(O). (3)

The expression vec(C') for a matrix denotes the column vector obtained by listing
all the entries of C' in an arbitrary but fixed order.

Finally, tracks fragments that are merged must be geometrically consistent,
meaning that the same reconstructed track can approximate the observations
from both track fragments. We can enforce this by adding a constraint that
¢ij(rie — i) = 0 for all 4, j, k with ¢ > j. In words, either track ¢ and j are kept
separate so that ¢;; = 0, or they are merged, in which case the corresponding
rows of R from () must be identical.

In summary: Simultaneous compaction and factorization of the 2m X n real
measurement matrix M amounts to computing the

arger}_xi’nCHFgG)(MfLRT)H%Jr)\l 171 —c)+ X op'c (4)

with L € R?™*" R e R, C €{0,1}"*", and subject to the constraints

c=c" (5)
(I—ciy) + (T —cju) = (1 —can) Vi, j, k (6)
[FClle =1, (7)
cij(rik — i) =0 Vi, 5, k. (8)

The coefficients A1 2 can be found experimentally by cross validation, and ¢, c
are defined in equation (3).

In this paper, the approximate rank r of M is assumed to be given. If r is
not known, our method could be coupled with a model selection process that
estimates it. Our experiments with synthetic data suggest that adding com-
paction during factorization improves performance even when the true rank is
overestimated, reducing the importance of the model selection step.

The constraints above ensure that the associations proposed are valid, as dis-
cussed earlier. Figure[I] shows an example of a valid compaction for a particular
measurement matrix fill pattern.

4 Optimization

The mixed integer quadratically constrained quadratic program (@) is intractable
and solving it exactly is impractical for typical problem sizes. We find an ap-
proximate solution by alternating between matrix factorization with a fixed com-
paction and finding a new candidate compaction matrix.
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(a) (b) (c)

Fig. 1. A typical measurement matrix fill pattern (left). These tracks belong to points
on the moving car from the car-segmented sequence. White indicates no observation;
other colors indicate an observation. Colors in the fill pattern correspond to connected
components (columns) of the compaction matrix C' (center). Color in this matrix in-
dicates ¢;; = 1, with each connected component artificially colored. After collapsing
columns by selecting unique columns of MC' (right), we achieve an impressive reduc-
tion in the fraction of missing data. The percentage of missing data in the original
matrix M is 84% while in the collapsed matrix it is just 45%.

With compaction fixed, only the first term of the objective function and the
last constraint remain. We enforce the constraint by collapsing M into M and
performing factorization on the smaller matrix using a standard method for SfM
with missing data. The solution to this step is not unique, as LRT leads to the
same penalty value as LHH “1RT where H is any invertible 7 X r matrix. This is
a standard issue in SfM, and we rely on standard techniques to select a solution.
We recover R by duplicating rows of R according to the associations defined in
the compaction matrix.

With factorization fixed, we replace the geometric consistency constraint and
the first term of the objective function with an upper bound on the additional
fitting error required if we were to enforce the geometric consistency constraint
during the factorization step. We define a lower-triangular geometric discrepancy
matriz G to have entries

gij = min(D(¢,7), D(j,4)) for i>j (9)

where

D(i,5) = 3" Fa(f.) (L(f.)R(, )T — M(f, 7)) (10)
f

using the Matlab notation L(f,:) to denote row f of matrix L. In words, the
distance term D(i, j) is the total distance between the imputed version of track
7 and the observed version of track j over the frames in which track j is visible.
The minimum of D(4,5) and D(j,7) yields a symmetric distance function and
represents an additional penalty that would be paid if the factorization proce-
dure selected the best of the two current reconstructions to use for both track
fragments. This upper bounds the actual additional penalty that will be paid
in the optimal data error with the equality constraints enforced. We solve the
integer linear program

argngnch—&—)\l 171 -c)+ X o’c (11)
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with C' € {0,1}™*", and subject to the constraints

c=0" (12)
(1 —cij) + (1 —cjx) > (1 —cir) Vi, g,k (13)
[FCllee = 1. (14)

We iterate until the proposed compaction matrix C' stabilizes, and the solution
with the smallest value of the original penalty function from (@) encountered so
far is returned. Because of the approximation that replaces the geometric con-
sistency constraint, some compactions may be missed. We search for additional
compactions that may have large estimated geometric consistency by greedily
performing additional compactions until none are left that decrease the value
of the penalty function. Although this procedure does not guarantee a global
minimum, our experiments show good results in practice.

5 Feature Snapping

When a standard tracker such as Lucas and Kanade |L7] loses a significant frac-
tion of feature points, it is standard practice to start a new set of tracks (thereby
adding new columns to M) based on a stateless analysis of the current frame.
Points surrounded by sufficient texture are found, and a predefined distance
threshold is used to retain points that are far enough from each other and from
the live points that are still being tracked [16]. Since this approach to reinitial-
ization only looks at the current frame, new features may be detected at image
locations that are close to those of features that had been lost earlier and have
now reappeared, but not necessarily identical to them. In other words, different
tracks to be merged may be slightly misaligned.

To address this difficulty, we introduce a history-sensitive form of feature reini-
tialization that we call feature snapping that positions new tracks preferentially
at points that had been previously seen but were lost for a short amount of
time. To this end, we maintain a record of the temporally averaged image patch
around each live feature. With the record, we also store the current position
of the feature. When a track dies, we move its patch and position record to a
catalog of lost patches.

At reinitialization time, we first form a list of feature candidates with the
traditional, stateless method. We then compute the affine motion [16] between
each candidate in the list and the features in the catalog whose stored positions
are close to that of the candidate and that were lost for a short amount of time.
If such a motion is found with a small photometric residual, the candidate is
replaced with the feature from the catalog, that is, the position of the candidate
feature is snapped to one of the predicted feature positions. Candidate features
that cannot be snapped are also retained for further tracking.

Importantly, when snapping occurs, we do not assume that a new feature and
the one it is snapped to are to be merged. Instead, we leave that decision to the
compaction algorithm, which uses the stronger constraints from rank, geometry,
and photometric appearance to determine if merging is appropriate.
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In future work, we plan to extend the effectiveness of feature snapping to
longer occlusion intervals by replacing the stored position of each feature in the
catalog with the parameters of a dynamic system estimated from the visible
portion of the image trajectory. Combined with a model of growing position
uncertainty in the absence of data, this dynamic system allows predicting feature
position over longer periods of time.

6 Experiments

We present experimental results on four sequences examining our ability to re-
cover a correct compact matrix M and the resulting improved generalization
performance. The results presented below were computed using the Column
Space Fitting (CSF) algorithm of Gotardo and Martinez [10] as the internal
factorization routine and parameters Ay = 30, Ay = 1. Our choice of CSF for
factorization is not crucial. We could easily replace it with other standard matrix
factorization algorithms.

We test our method on four different sequences containing varying motions.
The first two sequences, shoe and bears contain non-rigid deformations but lim-
ited occlusions. The remaining two sequences contain points tracks from a cars
sequence. The first, car-segmented, contains only point tracks from a moving
vehicle. The second, car-full, contains tracks from the vehicle as well as the
independently-moving background. Point tracks for each sequence were gener-
ated using our feature snapping technique. Column splitting in our measurement
matrices is a result of feature loss and automatic reacquisition; we do not arti-
ficially split any tracks. We generate ground truth entries of the measurement
matrix by hand tracking the acquired points, and we also determine ground
truth associations for tracks. For the first two experiments, we assume known
ranks. See Figure [2] for more details on the sequences.

6.1 Accuracy of Compaction

Table [1l shows our results on the compaction (data association) task. We com-
pare our technique to two baseline association techniques: one that uses only
geometric evidence and one that uses only photometric evidence. For the base-
line appearance-only metric, we compute the photometric discrepancy matrix
& and associate two tracks if they are respective best-matches (i = argmin; ¢;;
and j = argmin; ¢;;) with ¢;; below a threshold. We use our parameter A; as the
threshold. This method is limited as it cannot merge more than two columns. For
the geometry-only method, we implement a version of the procedure described
in Olsen and Bartoli [11]. We impute entries of the matrix using factorization
without compaction, and then merge temporally consistent tracks with geomet-
ric discrepancy g;; below a threshold corresponding to an average geometric error
of one pixel per observation. We report error rates as the percentage of entries
in C' that are incorrect.

Our algorithm recovers the true associations more successfully than the base-
line alternatives. In fact, for the segmented car sequence, we recover the true
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Fig. 2. Example frames and matrix fill patterns before compaction for the sequences
we use. Tracking points through the 71 frames of the shoe sequence @ generates 96
observations of 25 unique features. (M is 142 x 96; the true compact measurement ma-
trix, M*, is 142 x 25.) 85% of the entries in the measurement matrix are missing before
compaction. Correct compaction reduces the percentage of missing data to 42%. The
bears sequence@ is the same as is used in Olsen and Bartoli |11]. It contains a total of
105 frames, and we track 69 unique features split into 131 columns. Before compaction,
62% of the entries in the measurement matrix are missing; after compaction only 28%
are missing. The two cars sequences use tracked points from the same 31-frame
image sequence. In car-full, there are 115 columns from 60 unique tracks. We extract
the 49 tracks that correspond to features on the car to form the car-segmented set.

associations exactly. For the shoe and bears sequences, our only errors are a few
missed associations. Figure shows an example missed association. We fail
to group the track fragment on the right with the group containing the track on
the left, likely due to the extreme deformation that occurs.

The worst association mistake we make is in the car-full sequence. Here, the
tracks following the backs of the front and rear wheels of the car are each split
into five separate track fragments. In the compaction matrix we recover, the
last fragment from the back of the back wheel (left in Figure is merged
with the group containing the tracks from the back of the front wheel (right).
The temporal consistency constraint keeps us from merging the correct track
fragment once this erroneous association is made.

6.2 Generalization Performance

Our ultimate goal is to be able to recover missing entries of the matrix M while
simultaneously accurately reconstructing observed entries. The accuracy with
which we can reconstruct observed entries is the fitting error:

. { S5 Ba(£,0) (LU )R )T = M(£,i))° } |
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Table 1. Accuracy of compaction, measured as the percent of the compaction matrix
containing errors. Our technique returns a more accurate estimate of the track frag-
ments to associate than relying on photometric or geometric information alone does.

Sequence Percent of compaction matrix C' incorrect
Photometric only Geometric only Compaction
shoe 3.27% 3.86% 0.13%
bears 0.79% 0.65% 0.09%
car-segmented 4.93% 5.27% 0.00%
car-full 0.95% 1.37% 0.24%

(a) Missed association (shoe)

(é)if’atches in [(a)] (d) ‘pétc‘he‘s in 7

Fig. 3. Example of a missed association and an incorrect association during com-
paction. The full image pairs @ and [(b)| show the location of track fragments in
the first frame in which they are tracked. The remaining image pairs and @ show
the local patches used to compute photometric discrepancy. In the shoe sequence, two
track fragments are on the tongue of the shoe and should be merged but their pho-
tometric discrepancy is too great. In the car-full sequence, the local patches appear
nearly identical although the tracks are actually on two different wheels. Decreasing the
allowed rank from six to five eliminates this error but does not leave enough freedom
in the reconstruction to accurately capture the full motion in the scene.

The fitting error is the same as the traditional RMS pixel error and is determined
by how well the rank assumption is satisfied. In this work, we are uniquely
focused on the missing elements of the measurement matrix so we measure
reconstruction accuracy on the missing rather than the observed entries. The
accuracy with which we can impute unknown entries of M is the generalization
error:

[ 2,0 Ba(f) (L(f,)RG )T — M (f,1)°
GE‘Z{ 31— Fa(f,1) } 1

where M™* contains the coordinates of the ground-truth tracks. Because we ex-
pect generalization to be easier over short distances, we consider generalization
error as a function of the temporal distance to the nearest observation in M.
For example, if the last observation in the ith column of M was at time ¢, the
missing entry at time ¢ + f has a temporal generalization distance of f.

%
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We again compare our results to two baseline methods. The first demonstrates
overall difficulty of the imputation task by using the true compaction matrix to
form M and then factoring (true compaction). The opposite extreme is a stan-
dard method that performs no compaction before factoring (no compaction).
Generalization performance should be best for the true compaction method be-
cause the added geometric consistency constraint forces the reconstruction to be
close to the observed location of a point any time it is observed, which is poten-
tially many frames removed from the last observation of one of the corresponding
fragments. Our results on the four sequences with known rank are summarized in
Figure @ with the performance of our algorithm (estimated compaction) shown
in green. In every case, our technique significantly increases imputation accuracy
over the standard approach.
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Fig. 4. Mean generalization error as a function of distance from nearest observation.
Blue shows the baseline algorithm with no compaction. Red performs factorization after
applying the ground-truth compaction. Our algorithm (green) estimates compaction
and factorization simultaneously and results in improved performance over an algo-
rithm without a compaction step. In the red and green lines are identical because
compaction recovers the true compaction matrix.

6.3 Performance with Incorrect Rank Estimation

Our last experiment investigates factorization performance when the rank of
the true measurement matrix is overestimated. We shatter synthetic tracks into
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five track fragments, putting the first, third, and last fragment into individual
columns and discarding the remaining two. Each original track is associated with
a random patch from an image. We corrupt both the shattered measurement
matrix and the local image patches with Gaussian noise. The true compact
measurement matrix has 32% of the entries missing. After moving each track
fragment to its own column, the percentage of missing data increases to 77%.

The true rank of (the noise-free) M is four. Figure [l shows the generaliza-
tion error with and without compaction for this sequence when factorization is
allowed to use matrices of rank four, six, and eight. Without compaction, gener-
alization error increases significantly with distance from the closest observation
and with the rank of the reconstruction. Merely overestimating the rank by two
increases the generalization error by an order of magnitude. With compaction
applied, our algorithm is able to correctly impute even true missing entries of the
measurement matrix (the discarded second and fourth segments of our original
tracks, corresponding to generalization distances up to 30 frames) with errors
on the order of the added geometric noise. More importantly, we maintain our
accurate imputations as the rank is increased to six and then eight.

——rank 4, no compaction
= rank 4, compaction
—+—rank 6, no compaction
=+—rank 6, compaction
—=—rank 8, no compaction
=8~ rank 8, i

mean generalization error (log scale)

1 #of lramesz?rom closestagbservation 40 =0

Fig. 5. Generalization error on a synthetic sequence of rank four using incorrect rank
estimates. Without compaction (thin lines), generalization error increases rapidly with
rank. With compaction (thick lines), performance is maintained even though the rank
doubles. Generalization errors up to a distance of 30 frames correspond to imputations
of true missing data. At distances beyond 30 frames, observations exist but have been
incorrectly considered independent tracks in the shattered measurement matrix.

7 Conclusion

We have introduced a method for simultaneously compacting and factoring a
matrix of measurements from feature tracking, as well as a feature snapping
technique that ensures precise alignment of those feature tracks that are merged
during compaction. Preliminary experiments are promising. We successfully as-
sociate tracks across significant temporal gaps, and show improved imputation
performance.
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Our method is limited mainly by the local nature of the optimization algo-
rithm and by the restriction of feature snapping to short-lived tracker failures.
Our algorithm would not perform well if the tracker generates numerous outlier
tracks as the interior factorization algorithm we used here, CSF, is not robust
to outliers. We eliminated severe outliers by using conservative tracker parame-
ters, relying on compaction to reconnect shattered track fragments. Also, while
algorithm parameters can be determined in principled ways — mainly through
cross-validation from training examples — we have not done so systematically in
this paper. We plan to ease these limitations in future work.

Another limitation concerns the lack of extensive benchmark data for evaluat-
ing performance. We have shown results on several sequences from the literature,
and we plan to continue developing our own validation database that we intend
to share with the community.
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