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Abstract. We present a technique for estimating intrinsic images from
image+depth video, such as that acquired from a Kinect camera. Intrin-
sic image decomposition in this context has importance in applications
like object modeling, in which surface colors need to be recovered with-
out illumination effects. The proposed method is based on two new types
of decomposition constraints derived from the multiple viewpoints and
reconstructed 3D scene geometry of the video data. The first type pro-
vides shading constraints that enforce relationships among the shading
components of different surface points according to their similarity in
surface orientation. The second type imposes temporal constraints that
favor consistency in the intrinsic color of a surface point seen in different
video frames, which improves decomposition in cases of view-dependent
non-Lambertian reflections. Local and non-local variants of the two con-
straints are employed in a manner complementary to local and non-local
reflectance constraints used in previous works. Together they are formu-
lated within a linear system that allows for efficient optimization. Exper-
imental results demonstrate that each of the new constraints appreciably
elevates the quality of intrinsic image estimation, and that they jointly
yield decompositions that compare favorably to current techniques.

1 Introduction

Intrinsic image decomposition aims to separate an image into its reflectance and
shading components. The reflectance component contains the intrinsic color,
or albedo, of surface points independent of the illumination environment. On
the other hand, the shading component consists of various lighting effects that
include shadows and specular highlights in addition to shading. Decomposing
an image into reflectance and shading can benefit computer vision algorithms
such as segmentation and texture map recovery which are designed to analyze
one of these components but are degraded by variations in the other. However,
intrinsic image decomposition remains a difficult problem as it is highly under-
constrained, with two quantities (reflectance and shading) to estimate at each
pixel from a single input value (pixel color).
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1.1 Previous Work

Various approaches have been employed for intrinsic image estimation. Many
works are based on local analysis of image derivatives. In these methods, each
image derivative is attributed to either shading or reflectance change, and then
the derivatives of each type are integrated to obtain the shading and reflectance
images. A simple and common approach for derivative classification is to at-
tribute large intensity or chromaticity derivatives to reflectance changes, and
smaller derivatives to shading [143]. This approach presumes that scenes have
piecewise constant reflectance and smooth shading variations, an assumption
that often does not hold in natural scenes. Reflectance and shading derivatives
have also been distinguished using classifiers trained on labeled edge data [4, [5].
However, an accurate classification may not always be possible from the local
appearance of an edge.

Several works employ decomposition cues that extend beyond local analysis.
In [6, 7], decompositions at a local level are constrained to be consistent globally
to a plausible model of a simple scene. In [8], points from different parts of
an image are constrained to have the same reflectance if they have the same
local texture. The additional constraints from non-local analysis can lead to
improved intrinsic image decompositions, but the availability of this additional
information may be limited in many scenes. A couple of recent works employ
a global constraint on the solution by assuming a sparse number of distinct
reflectances in the scene [9, [10]. User interaction may alternatively be used to
relate shading or reflectance among different image points |10-12], but may not
be suitable as a preprocessing step for automatic computer vision algorithms.

Instead of estimating a decomposition from a single input image, some pre-
vious methods address the less ill-posed problem of estimating intrinsic images
from a sequence of images captured at a fixed viewpoint and with multiple light-
ing conditions [13-16]. With the extra data from an image sequence, these meth-
ods generally produce decompositions of higher quality than from single-image
techniques. However, these methods are applicable only in certain scenarios, e.g.,
outdoor cameras capturing image sequences or video over a long time period.

1.2 Our Approach

In this work, we address the problem of intrinsic image decomposition for a
different type of image sequence — video from a moving image+depth camera
— that provides multiple viewpoints and reliable 3D scene reconstruction. We
show that such input contains information particularly useful for estimating the
shading and reflectance components of the scene, and exploit this data to improve
intrinsic image decomposition via new shading and temporal constraints.

Shading Constraints. Intrinsic image methods conventionally assume smooth-
ness in shading and/or reflectance to constrain the solution. Smoothness con-
straints on reflectance often are relaxed when there exist chromaticity differences
between adjacent pixels, as this often indicates a change in albedo [2, 13, [8]. How-
ever, there lacks such a cue for reducing smoothness in shading. This can lead to
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significant errors in image areas where both shading and reflectance are discon-
tinuous, such as at object and surface boundaries. We address this issue using
surface normal data computed from the input sequence. Locally, we use this
information to deemphasize shading smoothness between adjacent pixels with
different surface normals, which are differently exposed to the scene’s lighting.
On the other hand, our method promotes shading smoothness when adjacent
pixels have similar surface orientations.

Similarity in shading components may exist not only locally between adjacent
pixels with similar surface normals, but also non-locally between other pixels in
the image with the same surface orientation. This consistency can be enforced
by constraining such pixels to have similar illumination components. These non-
local shading constraints between possibly distant points in an image are com-
plementary to the non-local constraints on reflectance proposed in [§]. Both
forms of non-local constraints can be employed together in solving for the two
intrinsic image components. Unlike the non-local reflectance cues which relate
points within the same texture region, our non-local shading cues can also relate
points between different texture regions. This is especially important when pro-
cessing a scene containing separate objects, since their decompositions cannot
be made consistent to each other (e.g., in terms of illumination intensity) using
only texture or smoothness constraints.

To apply this non-local shading constraint between a pair of points, they not
only must have consistent surface normals, but also must share the same lighting
condition (i.e., angular distribution and intensities of incident illumination). Un-
like neighboring pixels processed with the local shading constraint, distant pixels
in the non-local case often have inconsistent lighting conditions due to different
occlusions of light by objects in the scene. We address this issue by again taking
advantage of reconstructed 3D scene geometry to determine whether the non-
local points have similar wvisibility toward potential lighting directions, as well
as similar surface normals, before enforcing the non-local shading constraint. In
addition, the light sources are assumed to be distant from the examined scene
areas, such that all points in the scene would have the same lighting condition
if unoccluded.

Temporal Constraints. In single-image methods, view-dependent reflectance
effects such as specular highlights cannot be processed correctly since Lamber-
tian reflectance is typically assumed in their formulations. In our multi-view
scenario, we make use of temporal consistency in each surface point’s reflectance
component throughout the video to identify outliers caused by specular high-
lights that shift in image position for different viewpoints. Decomposition errors
that would normally result from specular highlights in one image are avoided
by discarding these outliers with respect to the other images. Since a signifi-
cant change in viewpoint generally exists only between temporally distant video
frames, we refer to this use of reflectance consistency as a non-local temporal
constraint. We moreover incorporate local temporal constraints on reflectance
consistency among neighboring frames to reduce the effects of imaging noise on
decomposition solutions.



330 K.J. Lee et al.

We note that reflectance consistency over time is also utilized in techniques
based on image sequences with fixed cameras and moving light sources [13-15].
However, since these methods act on reflectance derivatives between adjacent
pixels, they are susceptible to the effects of biased illumination sampling as ex-
plained in [15]. Biased sampling is not an issue in our work, since we utilize
moving cameras instead of moving light sources, and define the temporal con-
straints directly on individual surface points instead of on their derivatives.

To demonstrate the significance of the proposed shading and temporal con-
straints, we use the non-local texture method of 8] as a baseline algorithm and
show that adding these new constraints to it leads to improvements in intrinsic
image decomposition. Experiments are presented on several challenging scenes.

We note that the intrinsic colorization method of |17] also estimates intrin-
sic images from a set of images taken from different viewpoints. Specifically, it
utilizes photographs of famous landmarks downloaded from the internet, which
generally are captured by different cameras, from different viewpoints, and under
different illumination conditions. However, [17] does not take advantage of the
additional information available from multiple views for intrinsic image estima-
tion. Instead, it merely aligns image regions taken from different viewpoints, and
utilizes differences in lighting conditions among the images in a manner similar
to [13].

2 Background

Intrinsic image estimation may be expressed as the decomposition of an image
I into the product of a shading image S and a reflectance image R:

I, = S,R, (1)

where p denotes a point in the image space. In the logarithmic domain, this
equation becomes
ip = Sp+Tp (2)

where the lowercase labels denote the logarithms of image values. As evident
in this formula, intrinsic image estimation is an ill-posed problem, with two
unknowns (s, ) at each pixel and only one measurement (7).

To obtain a solution, most intrinsic image estimation methods employ a
Retinex approach that models s and r as being smooth except between pix-
els where there exists a large difference in intensity and/or chromaticity [143].
For color images, an image derivative with a significant chromaticity change is
attributed to a change in reflectance. With this local reflectance constraint and
smoothness in s and r, a decomposition is solved using an energy function such

as
r . . 2
> |G = 50+ wpg (ip = 5) = (i = 5)°] (3)
(p,q)ER
where -
r_Jwur f(1-6"6) <7
“pa = {0 otherwise ’ (4)
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Here, XN is the set of all adjacent pixel pairs in i, ¢, denotes the 3 x 1 normalized
color vector of pixel p, w, is a constant weight, 7,. represents a given threshold,
and w, 4 represents a weight for reflectance smoothness.

In [18], this model is supplemented with non-local reflectance constraints [§]
that are obtained through an examination of surface texture. If two pixels have
matching local neighborhoods with respect to chromaticity values, their intrinsic
reflectance values are considered to be the same. This property is derived from
the theory of Markov Random Fields [19]. Pixels in an image are thus grouped
according to their local neighborhoods, and the reflectance of all pixels within a
group are constrained to be the same, i.e.,

rqg =rp if ¢ € Gy(p) (5)

where G,.(p) denotes the reflectance group of p as determined by clustering of
local chromaticity textures. In practice, we implemented this by adding the fol-
lowing term to Eq. @):

Do D [t (i = 5) = g = 0))°] (6)

PES? g€Gr(p)

where (2 denotes the set of image pixels and w,,;,- represents a constant weight.
We use this model of reflectance constraints as a baseline algorithm to show
the contribution of the proposed shading and temporal constraints.

3 Shading Constraints

From the image+depth video, we formulate new decomposition constraints com-
plementary to those described above for reflectance. The first of these impose
relationships among shading components based on the orientations of surface
points. To obtain these surface normals, we reconstruct the 3D geometry of
the scene from the depth video, using the KinectFusion algorithm [20]. Though
3D reconstruction could instead be computed by structure-from-motion using
only the image video, we found surface normal estimates by KinectFusion to be
appreciably more accurate and reliable.

The local shading constraint accounts for the similarity in shading between
adjacent pixels with matching normal orientations, as they both share the same
incident lighting. We model this analogously to the local reflectance constraint
in Eq. ), based on an inner product of surface normals instead of chromaticity
vectors:

s - {ws if (1 — 1y 1ig) < 75 )
p.q 0.1ws otherwise

where 7, is a threshold, and ws is a constant weight. This factor is used with
the shading smoothness term in Eq. @), giving a larger weight between adjacent
pixels that have similar normal orientations. In contrast to Eq. [), here we allow

some amount of shading smoothness even if there is some difference in normal
directions, as ambient illumination can contribute to smoothness in shading in
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Fig. 1. Results of applying local shading constraint: Top left original scene image.
Top center & right albedo & shading image from baseline algorithm. Bottom left
normal maps used in the constraint. Bottom center & right albedo & shading image
with the constraint.

such cases. Fig. [Il presents results of applying this constraint to the baseline
algorithm. Improvements are found in the shading image, with sharper shading
boundaries at object edges with significant surface normal variation.

A similar relationship may also exist between non-adjacent pixels that share
the same surface normal direction. For this, we formulate a non-local shading
constraint analogous to the mon-local reflectance constraint, but operating on
grouped neighborhoods of surface normals instead of chromaticities:

sq = sp if g€ Gs(p) and |[V(g) = V(p)ll <7 (®)

where G,(p) denotes the shading group of p computed by clustering of local
surface normal neighborhoods, V' represents the visibility of a pixel, and 7, is
a threshold. In computing shading groups, we opt to compare local neighbor-
hoods rather than individual pixels to reduce the influence of measurement noise.
Our implementation considers 11x11 patches and limits the search for matching
patches to a 101x101 neighborhood to avoid substantial processing. Also, we
consider the visibility of each point to account for differences in lighting con-
dition due to occlusions. Here, the visibility at each surface point is computed
from the reconstructed scene geometry by sampling different lighting directions
and testing whether the light from that direction would be blocked by objects
in the scene. This visibility test can be done efficiently by shadow mapping, a
standard computer graphics technique that compares the actual depth of the
point and the corresponding depth map value towards that point as seen from
the lighting direction, illustrated for one direction in Fig. 2l In our experiments,
we sample all combinations of polar and azimuth angles (0, ¢) from —7/4 to /4
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Fig. 2. Calculating visibility: Left captured depth map. Center synthesized depth
map from a sampled lighting direction. Right visibility of points in the original depth
map to the sampled light direction, where black indicates pixels that are blocked.

at intervals of 7/12, except for (0,0), and organize the visibility results into a
48-D binary feature vector for each pixel.
To compute distance between the binary vectors, we use the Hamming dis-

tance, i.e.,
V(g) = V(D) = Z Viq ()|

where V; denotes the i*" element of a vector.

Fig. B shows the effect of incorporating visibility into the non-local shading
constraint. Utilizing normal groups without visibility can improve shading con-
sistency among disjoint surfaces that share the same normal orientation, such as
the wall sections separated by brackets. However, not accounting for visibility
may lead to over-smoothing in the shading component (which causes shading
effects to appear in the reflectance image as highlighted by the red boxes), since
the difference in lighting condition between two points with the same normal
is not taken into account. Adding visibility into the constraint helps to include
cast shadows in the shading image while maintaining shading consistency among
disjoint surfaces.

The grouping of shading values is incorporated into the energy function in a
manner analogous to the non-local reflectance constraint, by adding the following

term to Eq. @)):
Z Z {wnls Sq)z] 9)

PENR qeGs(p)

where wy;s represents a constant weight. This establishes relationships between
the shading components of distant points that otherwise might not be preserved.

4 Temporal Constraints

The second set of constraints make use of the multiple observations and view-
points captured in the video over time. The first of these, the local temporal
constraint, aims to reduce degradation in the decomposition solution caused by
imaging noise. This is done by first identifying the correspondences for each
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Fig. 3. Effect of visibility in non-local shading constraint: Top left shading groups for
several sampled pixels, without considering visibility. Top center & right resulting
albedo & shading image without visibility. Bottom left shading groups constrained
by visibility. Bottom center & right resulting albedo & shading image.

point in the preceding ten frames, and then using the average color among the
corresponding points for processing in the decomposition algorithm:

1
)= 1, D Colt—h) (10)
k=0..10

where ¢,y is the 3x1 color vector of a point p in frame ¢, and ¢, (t—k) is the point
corresponding to p in frame ¢t — k. In computing the correspondences, we make
use of the reconstructed scene geometry by obtaining the 3D coordinate of each
pixel in frame ¢ and projecting it to the image plane in frame ¢ — k, using reliable
camera parameters provided by the KinectFusion algorithm @] As shown in
Fig. @ this constraint reduces the impact of noise and enhances intrinsic image
quality, especially in dark regions with a low signal-to-noise ratio.

We additionally take advantage of multiple viewpoints in the video to reduce
the effects of specular highlights on the decomposition. In this non-local temporal
constraint, the correspondences of a point at temporally distant earlier frames
are examined to determine whether the image intensity of the point is an outlier,
i.e., contains specular reflection. If so, then its color is replaced with that from
a non-specular corresponding pixel:

Cpry = arg  min |leg, —204k) || * K =1..5. (11)

Cop (t—20%k)

If t — 20 % k < 0, then the non-existent frame is disregarded. Likewise, a term is
ignored if its frame contains no correspondence. The effect of this constraint is
exemplified in Fig. Bl where the specular highlight is properly handled. In our
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Fig. 4. Result of applying local temporal constraint: Top left original color, shown
as chromaticity to better visualize noise effects in dark regions. Top center & right
resulting albedo & shading image. Bottom left chromaticity after applying the con-
straint. Bottom center & right resulting albedo & shading image.

implementation, the local temporal constraint is applied before the non-local
constraint.

5 Optimization

To estimate intrinsic images with local and non-local reflectance, shading and
temporal constraints, we minimize the following energy function:

arg msin Z [W;S;,q(sp - Sq)2 + W;T;,q ((ip — sp) — (ig — Sq))ﬂ (12)
(p,@)EN
+ Z Z [Wnlr ((ip — sp) — (ig — 84)) ] Z Z [wnls - Sq)ﬂ
PEN g€G(p) PEN qEG,(p)

after applying the temporal constraints in Eq. (I0)-(T).

Eq. (I2) is a quadratic function with respect to a vector s containing all
the unknown variables s, for shading. We represent this function in a standard
quadratic form as follows:

1
arg min 2STAS ~bTs+ec (13)
S

where A is an M x M symmetric positive-definite matrix and b is an M x 1
vector. M indicates the number of variables to be calculated, i.e., the number of
pixels in the image. Although A is a very large matrix, most of its elements are
zero. A non-diagonal element a,, is non-zero only when pixels p, ¢ are adjacent
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Fig. 5. Result of applying non-local temporal constraint: Top left original color. Top
center & right resulting albedo & shading image. Bottom left color after applying
the constraint. Bottom center & right resulting albedo & shading image.

or grouped together by non-local constraints. Thus Eq. (I3) is straightforward to
optimize using a sparse linear solver. In experiments we use the preconditioned
conjugate gradient technique implemented on parallel graphics hardware, which
requires only 0.1 second per 640 x 480 image frame.

6 Results

We validate our decomposition method on image sets captured with a Microsoft
Kinect camera. These sets contain several image+depth videos of indoor scenes
containing various static objects. As a preprocessing step, we aligned the depth
and image frames since they are captured with slightly offset cameras. The al-
gorithm parameters, which affect the relative influence and strictness of the
different constraints, were empirically fixed to w, = 10,ws = 1,7 = 0.001 =
taus = 0.001, wyi = wnis = 0.1, 7, = 1 throughout our experiments.

A benchmark dataset for evaluating intrinsic image algorithms was presented
in ﬂ2_1|] However, it does not provide multiple viewpoints of a scene or geom-
etry information, and so it is not applicable to our method. Since techniques
do not exist for obtaining ground truth intrinsic images for the general large-
scale scenes considered in this work, we evaluate our method through qualitative
comparisons.

6.1 Effects of Individual Constraints

To show the effects of each proposed constraint, Fig. [6] presents results obtained
with our full algorithm and compares them to decompositions computed with
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Fig. 6. Decompositions computed using Row 1 the full algorithm; Row 2 without
local shading; Row 3 without non-local shading; Row 4 without local temporal; Row
5 without non-local temporal.

various constraints removed. Please see the supplementary material for additional
examples. Removing the local shading constraint (row 2) causes shading bound-
aries to become less sharp, e.g., in the magnified view of the wheel. Not using the
non-local shading constraints (row 3) can lead to parallel surfaces having less con-
sistent shading, e.g., the inner side of the far door and the wall. Without the local
temporal constraints (row 4), the increase in image noise degenerates shading qual-
ity, especially in dark areas with low signal-to-noise ratio such as around the wheel.
Leaving out the non-local temporal constraint causes sharp specular highlights to
appear in the reflectance image, e.g., on the bonnet and the near door.

6.2 Comparison to Other Methods

We additionally validate our technique through comparisons with recent intrin-
sic image estimation methods. Fig. [l exhibits results from conventional Retinex
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Fig. 7. Comparison with other methods. Column 1 conventional Retinex lﬂ], Col-
umn 2 Shen et al. B], Column 3 Gehler et al. ﬂﬁ] Column 4 Ours.
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(with code downloaded from [21]), Shen et al. [8], Gehler et al. [9], and the
proposed method. To view larger images with greater detail, please see the sup-
plementary material. In conventional Retinex, the shading results appear to cap-
ture many of the shading variations. However, the lack of shading constraints
leads to cast shadows and inconsistent shading in reflectance images (e.g., on the
wall of the desk/shelf scene). In addition, a lack of temporal constraints leaves
highlights (e.g., car scene) and sharp reflections (e.g., glass wall in chair scene) in
reflectance images, and maintains strong noise in shading images (e.g., monitor
scene). The results of Shen et al. appear similar to those of conventional Retinex,
due to little repetitive texture in the scenes. The decompositions of Gehler et
al. also show the effects of not having shading and temporal constraints. For
example, the shading on disjoint parallel surfaces (e.g., the far door of the car
and the wall; and also the monitor and the wall) are significantly different from
each other. We note that our algorithm also suffers from this inconsistency when
the non-local shading constraint is not included, such as between the monitor
and wall in Fig. [

7 Conclusion

We presented a technique for intrinsic image estimation based on shading and
temporal constraints derived from image—+depth video. These constraints come
in both local and non-local forms that complement existing local and non-local
constraints on reflectance. In our experiments, this framework is shown to yield
state-of-the-art decomposition results.

In future work, we plan to roughly estimate the illumination conditions using
the reconstructed scene geometry and estimated shading map, and then use this
information to bootstrap our intrinsic image estimation process. Rough knowl-
edge of lighting conditions would allow for improvement in the visibility compo-
nent of the non-local shading constraint, by densely sampling about the major
lighting directions and giving greater weight to those visibilities. The non-local
temporal constraint may also benefit from rough illumination estimation, e.g.,
by identifying previous frames with more appropriate viewpoints for reducing
the effects of specular highlights at each point.

Our current implementation solves the decomposition of a 640 x 480 image
frame in 91.7 seconds on average, with only 0.1s for solving the system of equa-
tions on the GPU and the rest of time for determining reflectance and shading
groups on the CPU. We believe that significantly faster processing could be
obtained with a full implementation on parallel graphics hardware that pre-
computes an initial set of non-local reflectance/shading groups on the GPU,
incrementally updates these groups on the fly with newly visible scene points,
and initializes the decomposition of each frame by mapping the solution from
the previous frame. With this scheme, we hope to compute intrinsic images near
or at video frame rates.
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