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Abstract. We propose an automatic pose invariant approach for Face
Recognition At a Distance (FRAD). Since face alignment is a crucial
step in face recognition systems, we propose a novel facial features ex-
traction model, which guides extended ASM to accurately align the face.
Our main concern is to recognize human faces under uncontrolled envi-
ronment at far distances accurately and fast. To achieve this goal, we
perform an offline stage where 3D faces are reconstructed from stereo
pair images. These 3D shapes are used to synthesize virtual 2D views
in novel poses. To obtain good synthesized images from the 3D shape,
we propose an accurate 3D reconstruction framework, which carefully
handles illumination variance, occlusion, and the disparity discontinuity.
The online phase is fast where a 2D image with unknown pose is matched
with the closest virtual images in sampled poses. Experiments show that
our approach outperforms the-state-of-the-art approaches.

1 Introduction

The field of face recognition has been an attractive area of research the past
three decades and has made a significant progress. Despite the maturity of the
face recognition algorithms, the problem is still challenging. The challenging
associated with face recognition can be attributed to many variations such as
illumination, occlusion, pose, expression, and age.

In recent surveys of face recognition techniques, pose variation was identified
as one of the prominent unsolved problems in the research of face recognition and
it gains great interest in the computer vision and pattern recognition research
community. The face recognition across pose can be broadly classified into two
categories [I] 2D and 3D approaches.

In this paper, we propose an automatic pose invariant Face Recognition At
a Distance (FRAD) approach. Our proposed approach consists of two stages:
offline and online stages. In the offline stage, 3D faces are reconstructed from
stereo pair images. Then, virtual 2D views in novel poses are synthesized. The
online phase is a face recognition process where a probe 2D image with unknown
pose is matched with the closest virtual images in sampled poses.
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1.1 Related Works and Contributions

Active appearance model (AAM) [2] was proposed as a model-based approach
for face alignment and pose normalization. Once the model is fitted on an input
image, the optimized model parameters can be used for face recognition. Instead
of using model parameters for recognition, Guillemaut et.al [3] and Gao et al.
[4] warped the texture inside the fitted model shape to the frontal pose. Chai
et al. [B] presented a statistical affine transformation for pose normalization.
They first estimated the face pose with a pose subspace algorithm, and divided
the face region into three rectangles. An affine transformation was performed
independently in the three rectangles and the transformation parameters were
statistically learned from the correspondence information between the specific
pose and the frontal face. Sarfraz et al. [6] go away from the texture wrapping
to the face signature by proposing a linear mapping of the face signature of a
non-frontal face to the face signature of the corresponding frontal face. They
assume that the mapping from non-frontal to frontal feature vectors is linear.
However, this assumption seems to be overly restrictive [7].

Castillo and Jacobs [8] proposed to use the cost of stereo matching between a
gallery face image and a probe face image to recognize faces. Since the approach is
purely image based, it does not consider appearance change due to pose variation.

In the middle between 2D face recognition and 3D face recognition, Zhang
et al. [9] proposed an automatic texture synthesis (ATS) approach to synthe-
sise rotated virtual face views from a single frontal view for recognition using a
generic face shape model. This face shape was generated by averaging 40 3D face
shapes in range data format which were aligned using two eyes locations. Liu
and Chen [I0] proposed a probabilistic geometry assisted (PGA) face recogni-
tion algorithm to handle pose variations. In their algorithm, human heads were
approximated as an ellipsoid whose radiuses, locations, and orientations were es-
timated based on universal mosaic model. Although, these 3D-based recognition
approaches achieve better results than most of 2D-based pose invariant recogni-
tion approaches, their assumption that all faces have the same 3D geometry is
weak, where the generic face model does not capture all 3D faces variances.

Mostafa et al.[T1] proposed to use a different weighting for facial feature in
recognition. The weight of each facial feature is based on robustness to occlusion.
Their method based on using a mean 3D shape.

Facial 3D geometry either can be acquired using 3D sensing devices such as
laser scanners [12] or reconstructed from one or more images [13]. Although using
3D sensing devices has proven to be effective in 3D face recognition [14], their
high cost and limited availability, appropriate only at close ranges and controlled
environment. This has created the need for 3D face reconstruction methods to
enable the extraction of 3D information from 2D acquired facial images.

Blanz and Vetter [I5] proposed a face recognition system using 3D morphable
model based on image-based reconstruction and prior knowledge of human faces.
The prior knowledge of face shapes and textures was learned from a set of 3D face
scans. Then shape and texture information in the forms of vertices and diffuse
reflectance coefficients was spanned into different eigen spaces where principal
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component analysis was performed to form a 3D morphable model. However,
the identity-related shape and texture coefficients may be affected during cost
function minimization [1J.

Georghiades et al. [16] proposed a face recognition approach using a photo-
metric stereo technique. From a set of frontal face images under different near
frontal illumination conditions, identity face shape and surface reflectance in-
formation were reconstructed. Virtual views in novel illumination and viewing
conditions were then synthesized and used in face recognition to match the probe
image with the closest virtual images in sampled poses and illuminations. This
approach requires multiple images under different lighting direction with fixed
pose; however, this requirement is impractical for real face recognition systems.

In this work, we are mainly concerned with a fast automatic pose invariant
Face Recognition At a Distance (FRAD) approach. Our main contributions are a
proposed algorithm for nine facial features detector. These nine features improve
the performance of the face alignment algorithm. Also, we propose an accurate
face reconstruction provides good synthesized images at far ranges ranges. The
proposed 3D reconstruction framework carefully handles three main problems:
illumination variance in the stereo pair, occlusion, and finally, the disparity dis-
continuity is overcome by fitting a grid on the reconstructed face’s points.

2 The Proposed Approach

As illustrated in Fig.[6 our proposed approach consists mainly of two stages: an
offline stage “Enrollment” and an online stage “Authentication”. The input to
the Enrollment stage is a stereo pair. A 3D face is reconstructed from that stereo
pair after a preprocessing step, which includes face detection, face alignment,
rectification, and face cropping. 2D images with different poses are synthesized
from the reconstructed 3D face and are enrolled in our gallery. A 2D face image
with unknown pose is the input to the online stage. The 2D image is preprocessed
by detecting, aligning and cropping the face. Finally a 2D recognition approach,
which is Local Binary Pattern (LBP) [I7], is used to match the probe image
with the closest virtual images in sampled poses.

3 Face Alignment

Face alignment is a crucial step in face recognition system. It comes after face de-
tection, which is used for segmentation of the facial region from the background.
It aims to locate a precise facial features point such as eyes, nose, mouth, and
face boundary.

Active Appearance Models (AAM) and Active Shape Models (ASM) are the
most popular algorithms for face alignment. In these algorithms, principle com-
ponent analysis is applied to a set of labeled faces in order to model the in-
trinsic variation in shape, texture, or both. This results in a parameterized
model that can represent large variation in shape and texture with a small set of
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Fig. 1. A block diagram describes the proposed approach

parameters. Fitting a model to a new image is generally accomplished by maxi-
mizing the posterior of the model parameters. This posterior has a complex shape
and is defined over a high dimensional space, which makes it impossible to find
posterior global maximum. Therefore, most algorithms are concerned with the
efficient local maximization of the posterior starting from an initial guess. In
some applications, the initial guess can be obtained from a face detector [I§],
but if the face is non-frontal, or a highly precise fit is required then it is necessary
to start with a better initialization. One way to specify an accurate initialization
is by detecting landmarks correspondences between points in the model domain
and points in the image. We propose a novel facial features (nine points) extrac-
tion model. These features are wrapped to a mean shape which contains more
facial features (68 feature points). Furthermore, the initial boundary points are
refined. Then Extended active shape model [I9] is used to accurately align the
face (i.e., locating the 68 facial features).

3.1 Facial Feature Extraction

Most common algorithms for detecting landmarks based on a sliding window
detectors such as [I8]. These detectors classify each patch of the image separately
as being one of the landmarks or the background. These detectors perform well
for some cases such as frontal faces, which have a relatively unique appearance.
However, these detectors may fail in case of occluded faces e.g., hair, glasses,
hands, etc. The detection of each facial feature is independent and it ignores
the relation among these facial feature points. Therefore, researchers filter the
output of landmarks detector by a shape model. Most of the existing works
model the relation between the facial features as gaussian model. In [20], the
facial features’ relative positions were modeled by a pairwise reinforcement of
feature response instead of Gaussian distribution. Valstar et.al [2I] proposed
using a Markov Random Field (MRF) as a shape model. These approaches used
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a single distribution, which is not suitable for modeling wide range of poses.
Everingham and et.al [22] extended the model of the single gaussian distribution
into mixture of Gaussian trees.

We propose a probabilistic framework, which models the uncertainty of de-
tection landmarks and the relation between the facial features. This framework
has advantages over the existing frameworks that it combines the uncertainty
of landmark detection with shape model instead of making them two separate
steps. We use a Mixture of Complex Bingham distribution as a shape model.
It is a powerful model in statistics shape community since it has a symmetric
property [23]. Because of the symmetric property, we do not need to do the least
square fitting, which is time consuming and is prone to some errors, to filter the
rotation effect.

Formally, let Z = {z1, 22, ..., 2 } denote the locations of facial features and it
is called a shape vector. N is the number of facial features. The feature’s location
is described in complex domain as z; = xz; + jy;. The probability distribution
function of a shape using complex Bingham is given by

. HZ*  HZ
H is a (N —1) x N Helmert sub-matrix [23]. A is a (N — 1) x (N — 1) Hermitian
parameter matrix. The spectral decomposition can be written as A = UAU*.
U= (u'u?---uN"1) is a matrix whose columns u?,i = 1,.., N — 1, which corre-
spond to the eigenvectors of A. A = diag(A1, -+ ,An_1) is the diagonal matrix
of corresponding eigenvalues. ¢(A) is a normalizing constant and it is given by

N1
c(A) = 27Nt Z a; exp(\;), (2)
i=1
where a; ' = [L,n2i(Xi = Am). The eigenvectors and the eigenvalues of A is

proved to be u’ = g;, and \; = [;/N where i =1,...N — 1. G = (91,92, - gN—1)
denotes the corresponding eigenvector of S, which is a N —1 x N — 1 matrix
that denotes the auto correlation matrix for manually annotated shapes (train-
ing shapes). L = diag(l1,l2---Iny_1) is the diagonal matrix of corresponding
eigenvalues of matrix S. Although, complex Bingham distribution can efficiently
represent a shape and handle situations such as in-plan rotation, occlusion, and
expression, it cannot handle a wide range of poses. The shape deformation, which
is due to different poses, is large and cannot be handled by a single distribution
[22124]. Therefore, we divide the training annotated shapes into M = 5 classes.
Each class contains the shapes that correspondence to 45, -25, 0, 25, 45 degree
respectively . Bayes classifier rule is used to estimate the class of the testing
shape.
The index of a class is given by

A /A HZ
m = arg min

Wz ez eRCn D) )
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The problem of facial features detection is formulated in Bayesian framework
of maximum-a-posteriori. We want to find the vector Z, which maximizes the
response probability for the texture model and shape model.

Z = argmax P(I|Z)P(Z). (4)

P(I|Z) represents the probability of similarity between the texture of the face
to off-line model given the facial feature vector. Since the similarity of the face
can be expressed in the similarity of the windows around each facial feature, it
can be written as P(W(Z;),W(Zz)---W(Zn)|Z). Where W (Z;) is the image
window around the facial point Z;. The windows around each facial point can
be considered independent from each others. Therefore

P(I|2) = HP (5)

where P(W(Z;)|Z;) can be mterpreted as the probability of a pixel being fea-
ture based on texture model Based on boosted classifier and Haar-like feature
vector the probability can be written as Each detector for each facial feature is
trained on MUCT dataset where positive examples are taken at manually anno-
tated point and another sample located randomly inside a circle with radius 3
pixels around annotated point. The negative samples are taken far away for the
annotated point at least 1/8 of the distance between two eyes.

K
P(W(ZZ)|ZZ) = ZwtiBtm (6)
t=1

where wy, is the weight of the weak classifier ¢ for the facial feature ¢ . By, is the
binary response of the weak classifier ¢ for the facial feature i. Then

P(I|2) = H Z w, By, . (7)

i=1t=1
Therefore, the maximum-a-posteriori estimate of facial features can be formu-
lated as energy minimization of function F(Z)

HZ*AHZ
E(Z) log wy, By, . (8)
; Z | HZ |?

This energy function is non-linear and not amenable to gradient descent-type al-
gorithms. The problem has been solved by simulated annealing algorithm where
maximum number of iterations is 100. It takes 0.47sec on Intel core i7 2.93 GHz
machine for detection the nine facial features. This problem is equivalent from
the computational point of view to the denoising of an image has 9 pixels and
each pixel has 10 degree of freedom in intensity level. Examples of the extracted
nine features are shown in Fig. 2l Behind the scope of this paper, the proposed
approach is also used as essential step for camera steering in camera network
application [25]
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Fig. 2. A sample of our results for detection the nine facial features on LFW database

4 Passive 3D Facial Reconstruction

After the face alignment step, we use the estimated mesh to crop the faces
from the background of the stereo pair images as follows. First, the stereo pair
is roughly rectified by making the left and right eye centers have the same y
coordinates. This shrinks the disparities range in y direction. After that, the
faces are cropped using the mesh boundary such that the disparity between left
eyes in the cropped stereo pair becomes zero. Example of a cropped stereo pair
is illustrated in Fig. Bl (a,b).

(@) (b) | (e)

Fig. 3. Example of a stereo pair and its depth map. (a) left image, (b) right image
with sever radiometric changes, (c) depth map using [26], (d) depth map using proposed
approach (occluded regions colored in red,) (e) depth map after occlusion handling.

stereo matching step aims to find the pair of points p and ¢ in two images
that corespondent to the same point in the same point in the space (X,Y, Z). In
this work, We follow the most conventional approaches such that stereo prob-
lem is formulated as a MAP-MRF framework [27]. We build on Kolmogorov’s
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approach [26] which treats the two images symmetrically by computing the
disparity maps D for both images simultaneously by minimizing the function
E(D) = Egata(D) + Esmooth (D). Smoothness term Egpmooth(D) is chosen to be
> (p.aren min(|dp — dg|, M), where N is the neighborhood system and M is
empirically chosen to 1.

stereo matching step aims to find the pair of points p and ¢ in two images
that corespondent to the same point in the same point in the space (X,Y, Z). In
this work, We follow the most conventional approaches such that stereo prob-
lem is formulated as a MAP-MRF framework [27]. We build on Kolmogorov’s
approach [26] which treats the two images symmetrically by computing the
disparity maps D for both images simultaneously by minimizing the function
E(D) = Egata(D) + Esmooth (D). Smoothness term Egpmooth(D) is chosen to be
> (paren min(|dy — dgl, M), where N is the neighborhood system and M is
empirically chosen to 1.

Most of stereo matching approaches are based on an assumption that cor-
responding pixels have a similar color value. Thus the data term FEqa.ia(D) is
usually chosen as a similarity measure (e.g., [28]) that handles slight variation
between corresponding pixels’ colors. However, colors of the real scene are trans-
formed nonlinearly to another colors in the stereo pair images, which violates
color consistency assumption. In this work, the color normalization approach
described in [29] is used to convert the transformation between the pixels’ colors
in two images from non-linear to a liner transformation. Then, the Normalized
Cross Correlation (NCC) [30] is used in data term since (NCC) is invariant to
linear transformation. We reduce the execution time of the NCC by reducing the
calculation of the means of the pixels in the windows. To do this, we compute
the integral image Z where the value of Z at pixel p is the sum of the pixels’
color above and left of p: Z,, = ZKP I,.. So, we calculate the mean of a window,
which its corners from top left and in a clockwise direction are (p,q,r,s), as
(Zp +Tr — Iy — L)/ (P — ¢a)(Dy — 54))-

To asses the proposed technique, we make a severe synthetic radiometric
changes on a stereo pair and the compute the disparity map. As shown in Fig[3]
the proposed technique accurately computes the disparity map, however, the
output of conventional graph cut approach [26] is not that accurate.

After finding the disparity map D, we propose to fill the occluded regions (e.g.,
red pixels in Fig. B(d)), by interpolating between the correctly reconstructed
pixels of each scan line using a cubic Splines interpolation model.

The cloud of 3D points, which are estimated using the disparity map and
system geometry, is denser than required for reproducing the amount of actual
detail present in the face. So first, we downsample these points. Then to remove
some artifacts of the reconstruction, an additional surface fitting step is done.
We approximate the reconstructed scattered data in a least squares sense to
generate a smoothed surface. Finally, we generate a triangular mesh from the
smoothed and downsampled points. More details can be found in [31].
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5 Signature Extraction and Similarity Measure

Face recognition using histograms of LBP (Local Binary Pattern) features was
originally proposed in [I7], and has been used by many groups since then. In the
original approach, the face image is divided into small regions from which LBP
features are extracted and histograms are used for efficient texture information
representation. The signature of the face is constructed by concatenating the
regional LBP extracted features. In this work, the LBP features are extracted
around the detected facial feature points, eyes, mouth, and nose. This repre-
sentation is more compact and efficient since most of face part does not have a
distinguish characteristic. The region size around each facial feature is empiri-
cally estimated for best performance is 21 x 21 for face image resolution 128*128.
The vector length of descriptor is 885 around each facial feature. The recognition
is performed using a nearest neighbor classifier in the computed feature space
using Chi square distance.

6 Experimental Results

We perform the following experimental results on our own stereo-based human
faces database. The motivation behind collecting this dataset is that there is
no public dataset, which contains stereo images for human faces at different
distances.

Our database is really a challenging dataset, since it is collected under un-
controlled environment, outdoor with different illumination conditions (sunny,
cloudy, ... etc.). The stereo pairs are collected at different distances (50, 80,100,
and 150 meter), two expressions (smile and neutral), and different poses. The
ranges of poses are, yaw angle —45° to 45°, pitch angle —20° to 20°, and roll
angle —20° to 20°. The width of detected faces ranges from 80 to 400 pixels.
Database is collected within one year with time laps three months. Each subject
(identity), at least, is collected into two time lapse. The database contains 172
subjects with 1820 sessions. Subject’s sessions are a set of stereo pairs, which
are captured under different conditions.

The 1820 sessions is divided into a gallery and testing data (probe) as follows.
The sessions is divided into twenty subsets of sessions according to their poses
and captured distances. Each subset is identified by the mean pose of the sessions’
poses that it contains and its captured distance. The six mean poses are +45°,
+25° and £15°. The gallery is the two subsets at 50 meter distance and at poses
around £15°. Testing data is the remaining 18 subsets.

In the “Enrollment” stage, for each subject, the frontal neutral expression
session at a distance 50 meter is used to reconstruct a 3D face. After recon-
structing the 3D face it is a simple matter using ray-tracing technique to render
synthetic images under different poses. A gallery entry of each subject consists
of five images: the captured left image plus four synthesized images at poses of
yaw angles 20 and +40. Figure @ illustrates samples from the gallery. Finally,
LBP technique is used to generate five signatures from the five images.
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In the online stage, the input is a probe session, which is a 2D image that is
captured under unknown environmental condition (i.e., pose, distance, illumina-
tion, ... etc.). Firstly, the face is detected [32]. Then our system automatically
detects the nine facial features that are used to initialize the extended Active
Shape Model (ASM). After that LBP signature is extracted from patches around
these facial features. This signature not only depends on the texture but it also
depends on the shape since the signature is taken around the facial features.
Finally, the probe pose is estimated [7], then its signature is compared with the
signatures of the gallery subset, which has the closest pose to prob pose.

It is worth mentioning that it takes around one sec per synthesized image
generation. Therefore; if we detect a probe pose first then synthesize images at
that pose for all the gallery subjects, for a large gallery, it will be too slow to
be a practical recognition system (e.g., it needs around half an hour for 2000
subjects gallery). Therefore our scenario is much faster since the synthesizing
process is done offline.

To highlight the need for the synthesizing process, we assume that the gallery
consists of the captured images only. Table 1 shows performance, rank one recog-
nition, of identification of the testing dataset against that gallery (captured im-
ages only).

For studying the effect of the reconstructed shape in the recognition, we con-
duct the following experiment. We replace the stereo-based reconstructed 3D
with a generic 3D shape. This generic 3D face shape was generated by averag-
ing 80 3D face shapes of USF database. This generic shape is used to synthesis
the images at the different poses. We call this approach “generic+synthesized”.
Table 1 shows the performance, rank one recognition, of identification of the
testing dataset against that gallery (generic shape).

The results in Table 1 show how using synthesized images in ”generic +
synthesized”, instead of using captured images only, enhances the recognition
rate.Moreover, it shows how our proposed recognition approach, which uses the
stereo-based 3D reconstructions to synthesize images, outperforms the ” generic
+ synthesized” approach, which use generic shape to synthesize images.

Table 1. Rank-1 recognition rates (number are percentage) on the test dataset using
two approaches: without including the synthesis images in the gallery (left column
in each pose) and “generic+synthesized” approach (middle column in each pose) and
proposed framework (right column in each pose)

Distance  —45° —25° +15 +25° +45° Avg

50m 637479 718082 — — — 868889 747684 7479 84
80m 5268 77 6072 74 8385 85 7681 84 63 64 69 6774 78
100m 46 53 61 56 64 72 78 78 78 76 79 82 59 62 62 63 67 71
150m 31 33 49 41 43 50 49 49 49 33 49 60 26 36 48 36 42 51

Avg 485767 576570 707171 68 7479 56 60 66
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Fig. 4. Samples from the gallery. Columns from left to right are: the left captured
image, the right captured image and the synthesized images at poses 40°, 20°,—20°,
and —40°.

Most of the-state-of-the-art approaches for pose invariant face recognition
reported their results on non-stereo databases such as CMU-PIE and FERET.
To compare with these approach, we have to use the same database. But CMU-
PIE and FERET databases don’t have stereo information, also we don’t have the
code of these works to accurately run them on our database. Therefore; we will
run the ”generic+synthesized” approach, which doesn’t need stereo information,
on the CMU-PIE and FERET database. For CMU-PIE, the gallery consists of
the frontal image (POSE ID ¢27) with neutral expression and ambient lighting
for each of the 68 subjects. The probe set consists of 6 non-frontal poses with
yaw angle from —40° to 40° and pitch from —22.5° to 22.5° also with neutral
expression and ambient lighting for each subject. For FERET database, we use
all 200 subjects at 7 different poses with yaw angle —40°t040°. The frontal image
for each subject is used as gallery and the remaining 6 images per subject are
used as probes (1,200 total).

The results in Tables 2 and 3 show the performance of the ”generic + synthe-
sized” approach compared to the performances, which are reported for other ap-
proaches. It is clear that ” generic+synthesized” approach outperforms the-state-
of-the-art approaches with rank-1 recognition rate 94.2% for FERET and 99.3%
for CMU-PIE. Since our proposed approach outperform the ” generic+synthesized”
approach, we expect that it will outperform the-state-of-the-art approaches as
well if it used in our database.
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Table 2. Recognition rates for CMU-PIE

cll  ¢29 c07 c09 c05 37

Method Face Alignment Trained on PIE —45° —22.5° up22.5° down22.5° +22.5° +45° Avg
Kanade et al. [33] Manual Yes 96.8 100 100 100 100 100 99.5
Zhang et al. [34] Automatic No 71.6 879 788 93.9 86.4 746 82.2
Chai et al. [5] Manual No 89.8 100 98.7 98.7 98.5 82.6 94.7
Castillo et al. [8] Manual No 100 100 90 100 100 99.0 98.2
Sarfraz et al.[6] Automatic No 84.0 87.0 - - 94.0 90.0 888
Asthana et al. [7] Automatic No 88.1 100 98.5 98.5 95.5 89.4 95.0
generic+synthesized ~ Automatic No 95.6 100 100 100 100 100 99.3

Table 3. Recognition rates for FERET

bh bg bf be bd bc

Method Face Alignment Trained on FERRET —40° —25° —15° +15° +25° +40° Avg
Zhang et al. [34] Automatic No 62.0 91.0 98.0 96.0 84.0 51.0 80.5
Gao et al. [4] Manual Yes 785 915 98. 97.0 93.0 81.5 90.0
Asthana et al. [37] Manual Yes 87.0 93.0 98.0 98.5 95.5 74.0 91.0
Sarfraz et al. [0 Automatic Yes 924 89.7 100 98.6 97.0 89.0 94.5
generic+synthesized ~ Automatic No 87.5 97.98 100 98.97 98.47 82.35 94.2

7 Conclusions

In this work, we propose a human face recognition approach. In this approach
subjects at far distances with different poses are recognized automatically. To
make the recognition process fast, we perform the steps of the approach that
consume time offline. Where 3D faces are reconstructed from stereo pair images.
Then, virtual 2D views in novel poses are synthesized. In face recognition process,
a probe 2D image with unknown pose is matched with the closest virtual images
in sampled poses. The proposed work was indirectly compared with the-state-of-
the-art approaches, which reported their performance on CMU-PIE and FERET
database. This comparison concludes that our approach is promising and can
outperform the-state-of-the-art approaches.
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