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Abstract. Recently several methods for background subtraction from
moving camera were proposed. They use bottom up cues to segment
video frames into foreground and background regions. Due to this lack
of explicit models, they can easily fail to detect a foreground object when
such cues are ambiguous in certain parts of the video. This becomes even
more challenging when videos need to be processed online. We present
a method which enables learning of pixel based models for foreground
and background regions and, in addition, segments each frame in an
online framework. The method uses long term trajectories along with a
Bayesian filtering framework to estimate motion and appearance models.
We compare our method to previous approaches and show results on
challenging video sequences.

1 Introduction

One may argue that the ultimate goal of computer vision is to learn and per-
ceive the environment in the same way children learn. Without access to pre-
segmented visual input, infants learn how to segment objects from background
using low level cues. Inspired by this evidence, significant effort in the computer
vision community has focused on bottom up segmentation of images and videos.
It has become ever more important with the proliferation of videos captured by
moving cameras.

Our goal is to develop an algorithm for foreground/background segmentation
from freely moving camera in a online framework that is able to deal with arbi-
trary long sequences. Traditional video segmentation comes in different flavors
depending on the application but falls short of achieving this goal. In background
subtraction, moving foreground objects are segmented by learning a model of the
background with the assumption of a static background. Alternatively, motion
segmentation methods attempt to segment sparse point trajectories based on co-
herency of motion. However, they lack a model of the appearance of foreground
or background. Video object segmentation attempts to segment an object of
interest from the video with no model of the scene background. On the other
hand there are several segmentation techniques that attempts to extend tradi-
tional image segmentation to the temporal domain. Such techniques are typically
limited to segmenting a short window of time.

It is frequently the case however, that if one only considers a short window of
frames, that low level cues may be ambiguous. Existing approaches either ignore
this problem or resort to processing the whole video offline. Offline methods can
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Fig.1. Left:(a) Graphical model. Center: (b) Automatic segmentation obtained on
long sequence with fast articulated motion. Our method is able to segment the tennis
ball even when no trajectories exist on it. Right: (¢) One sample from the background
pixel based appearance model learned automatically.

typically produce good results on short sequences but the complexity increases
rapidly as more frames need to be processed. The key to solving this problem
is to recognize that to handle long sequences in an online way one has to learn
and maintain models for the background and foreground regions. Such models
serve the purpose of compactly accumulating the evidence over a large number
frames and are essential for high level vision tasks.

The contribution of this paper is a novel online method that learns appearance
and motion models of the scene (background and foreground) and produces
segmentations of video frames. It uses long term point trajectories and thus is
able to accumulate information over long sequences of frames while at the same
time performs a constant computation per frame. To achieve this we describe
a method to automatically update a low-dimensional representation of these
trajectories and incrementally update a set of clusters in a novel coordinate
free way. Rather than producing a single segmentation as an output, it uses
Bayesian filtering to maintain a belief over different labellings, and appearances
of the background and foreground. This enables our approach to recover from
errors. By combining long term sparse trajectories and dense models of motion
and appearance, our method is able to achieve superior results to the state of the
art. We also devised an automatic method to determine foreground background
labeling based on multiple static and dynamic cues.

Our method has several advantages over existing approaches. It processes
frames online and thus can easily handle arbitrary long videos. The use of long
term trajectories allows it to accumulate long term motion information and pre-
vents merging of objects that were known to move differently. Unlike affine mo-
tion segmentation, we accomplish this without assuming an affine camera model,
thus enabling automatic segmentation of articulated and non-rigid motion. Our
approach is able to handle multiple moving objects and maintain motion and
appearance models. Such models enables our approach to learn the appearance
of the foreground and background even if they are partially occluded. For exam-
ple, Fig [l shows a frame of tennis sequence and the corresponding background
model learned. Notice, that we are able to detect the tennis ball even when there
are no trajectories on it. Finally, our appearance models can be used by a higher
level reasoning framework to learn richer models of objects.
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2 Related Work

Background Subtraction from Moving Camera. Traditionally, background
subtraction methods [24/I7J5] attempt to achieve foreground segmentation by
assuming that any motion in the video data is due to moving objects. The success
of these algorithms has led to their ubiquitous use in surveillance systems where
this assumption is always satisfied. Due to the assumption of static camera, this
severely limits their use in videos shot by a moving camera. Several attempts to
relax this assumption has led to methods which compensates for the motion of
the camera [7JT410]. These methods use a homography or a 2D affine transform
to compensate for the motion. This allows them to handle scenes that can be
approximated by a plane or when the camera rotates but does not translate.

Recently, several methods were devised for background subtraction from mov-
ing camera. [I5] uses orthographic motion segmentation over a sliding window
to segment a set of trajectories. This is followed by sparse per frame appearance
modeling to densely segment images. The use of orthographic motion segmen-
tation means that motion information outside the sliding window is lost and
the sparse appearance modeling fails to capture object boundaries when appear-
ance information is ambiguous. Due to the dependence on long term trajectories
only, regions with no trajectories may be disregarded as background altogether.
Finally, the method fails if the assumption of orthographic projection is not
satisfied. In [9], a method is proposed that maintains block based appearance
models in a Bayesian framework. To update the appearance models, the method
iterates between estimating the motion of the blocks and inferring the labels
of the pixels. Once converged, the appearance models are used as a prior for
the next frame and the process continues. Due to the iterative nature of the
approach the method is susceptible to local minimum. Although motion infor-
mation between successive frames is estimated, it is only used to estimate the
labels in the current frame and does not carry on to future frames. In contrast,
we maintain motion information via long term trajectory and maintain a belief
over different labellings in a Bayesian filtering framework.

Motion Segmentation. Motion segmentation techniques relies on motion cues
to segment the images [20]. They can roughly be divided into two groups; one that
relies on sparse point trajectories and those that performs dense segmentations.
Multi-body factorization [4I8] uses sparse point trajectories and the affine camera
model to segment the trajectories belonging to multiple rigid objects. However,
they suffer from major drawbacks. First, they assume that all trajectories are vis-
ible over all frames which severely limits their application to short video sequences.
A few recent methods [I3l6] have tried to overcome this limitation by assuming
that only some trajectories span the whole sequence, but as the problem is inher-
ent to factorization this can be successful only to a certain degree. Second, they
assume that the objects are rigid which limits their applicability. Finally, they
produce a sparse segmentation and therefore requires further post-processing to
segment the image. [3IIT], computes distances defined over long term trajectories
followed by spectral clustering to group trajectories by object. This is followed
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by applying a hierarchical variational approach to segment regions belonging to
different objects. Though the method does not rely on having trajectories span
the entire sequence, their approach is not online. In comparison, our method in-
crementally tracks and segment the foreground while learning models of their ap-
pearance and motion. Dense motion segmentation methods|I6] use optical flow
and normalized graph cut to segment a graph formed from the video. Layered
motion segmentation methods [22IT925T2] segment videos into segments with
consistent motion based on some notion of consistency.

3 Overview

We begin by introducing some notation. Our Bayesian filtering framework is
represented by the graphical model in Fig[[(a). At time ¢ our state consists of a
tuple sy = (Ay, My, Ly). Ay = {Ap+, Ay} represents the appearance models of
the background and foreground respectively. Similarly, M; = {M,,, M.} are
the motion models for the background and foreground. Finally, L, = {li : I} =
{b,f},i=1...N} where N is the number of pixels, is a pixel wise labeling of
the image pixels at time ¢. For convenience, let ¢(i) = (z,y) be the function that
transforms pixel indexes to coordinates.

We adopt a camera centric representation for both the appearance and motion
models. Let k = {b, f} denote which layer the variable belongs to. Let aj, , denote
a random variable representing the appearance of the ith pixel of layer k at time
t. Let mj, = [uj, vj,]" denote a random variable representing the reverse
motion of pixel i of the k" layer between frames t and ¢t — 1. By grouping these
random variables by layer we get Ay, = {a}, ;4 =1...N} and My, = {mj, :
i=1...N}.

We have two sources of observations, frames I; and sparse labeled motion
vectors P;. Let I} denote the color of the i'" pixel. The labeled sparse motion
vectors at frame tisaset P, = {p; : j=1... M} of tuples p;+ = (g;t,wj.t, i),
where ¢ is the pixel location, w;; = [u v]T denotes the motion vector and ¥, =
{f, b} denotes its layer.

In our model, foreground and background are represented as two layers of
pixels. Each layer moves according to the motion vectors in the corresponding
motion model. To generate a frame, pixels from the background and foreground
are selectively selected based on the labels. Formally, the dynamics of the system
can be described by the following equations.

Ly = Q(Myt, Li—1), Ar = g(Ai—1, My), (1)

Q(My.e, Lim1) = B0, gi(Are, Mis) = a7, (2)

where j(i,k) = ¢~ (¢(i)+mi ,),i =1...N. The function 2 = [2],i=1,...,N
takes as input the motion model of the foreground and labels at time ¢ — 1 and
produces the labels at time ¢. Simply put, the label of i*" pixels at time t is
the same as the label of a pixel j(i, f) which is mjﬂt pixels away in the previous
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frame. Similarly the function g = [gi],i = 1...N, k = {f,b} takes as input
the motion model of each layer and moves the appearance models accordingly.
Together, these functions describes a process by which the new appearances of
the foreground and background are generated given the motion of each pixel of
each layer. The observation model can be similarly described by

It = h(At,Lt), Pt = Z(Mt), (3)
hi(At,Lt):ai,t—i—eI, k=1 e ~ N(0, X1)
2j(My) = {j,m} +ep,k}forj€1...N, ep ~N(0,%p)

The function h = [h;], e = 1... N describes how the image is generated given the
appearance models and the labels. If the label of pixel i is f, then the observed
appearance is the same as the appearance of pixel ¢ in the foreground model
a}vt plus some white noise with covariance X; and vice versa. The function z =
[2j], 7 = 1...N describes how labeled sparse motion vectors P, are generated
given the motion model. The observed sparse motion vector is simply the pixel
index, the motion vector from the corresponding motion model with an added
white noise with covariance X'p, and the label of the vector. Without loss of
generality, we observe P; for a subset of pixels only. Since our Bayesian filtering
framework assumes that the observation P, is available, we describe later how
to compute a sparse set of motion trajectories and their associated labels.

Our algorithm can be summarized in the following steps. Using the first few
frames in the video sequence we perform initialization (Subsection [7). For each
consecutive frame afterwards, we maintain a low dimensional representation of
the sparse trajectories and cluster them (Section [). Next, we use multiple cues
to label each cluster as foreground or background and thus obtain P; (Section
E). From the clustered sparse trajectories, the motion models M, are inferred.
Finally, given the frame I;, the previous frame appearance models A;_; and
labels L;_1, and the inferred motion model M; compute the updated appearance
model and labels A; and L; (Section [6]).

4 Long-Term Trajectory Modeling

We model each trajectory up to time ¢ as a single point in a low dimensional
embedding space. The coordinate of each trajectory in this space is continuously
updated. Trajectories belonging to the background are expected to lie on a low-
dimensional manifold (background manifold) while trajectories belonging to the
foreground objects lie on separate manifolds. This arises due to the similarity in
spatial location and motion between neighboring trajectories. Fig[2l shows a set
of trajectories in the image space and their corresponding manifolds in the em-
bedding space. In the embedding space we model each trajectory manifold using
a Gaussian Mixture Model(GMM) where each patch of the manifold is modeled
with a multivariate Gaussian. This representation is continuously updated in a
coordinate free manner.
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Fig. 2. Trajectories in the image and their corresponding embedding coordinates. Each
cluster is marked with a different color. Black dots are short trajectories not yet added
to the embedding. The foreground cluster is marked with two red concentric circles
around its trajectories. (Best viewed in color).

Given two trajectories, we define two distance metrics d™ (T}, Tp) and d®(Ty, Tg)
representing the difference in motion and spatial location respectively

dM(Ta, Ts) = maz,c(anp)di’ 44(Ta, Tr), d°(Ta,Ts) = mazicanp)di (Ta, Ts),

(4)
where dif 4. (Ta, Tg) = (u'y** — uly 42 + (07" — 042 and &7 (Ta, Ts) =||
¢4 — q% ||. Note that both metrics can be computed incrementally as follows
d1.4(Ta, TB) = max(di.4—1 (Ta, T),d:(Ta, T5)). From the n trajectories, we de-
fine the two distance matrices DM = [D;; = d}4(T;,T;)],and D = [D;; =
dy.,(T;, T;)] of all pairwise distances. It follows that we can compute D1 incre-
mentally from Dq.;_; and AD, where AD = D;_1.;. We then form matrix W
of affinities as

Wi = exp(~D¥/\3) - eap(—D5,/73). (5)

Given the affinity matrix, a lower dimensional representation is computed using
Laplacian Eigenmaps [I]. Let D be the n xn matrix with elements D;; = > j Wij.
Laplacian eigenmaps is obtained by an eigen decomposition of the normalized
Laplacian TTAT = D 2 (D — W)D =2 and keeping the eigenvectors vy, .. ., Un,
corresponding to the m+ 1 smallest eigenvalues and then ignoring vg. The eigen-
vectors then defines the coordinates of the trajectories in a lower dimensional
space.

This representation of the trajectories has two advantages. First, the distance
of non-overlapping trajectories can be measured in the embedding space. Second,
if part of an object goes out of view, its trajectories in the embedding space
remain valid and can be used to enforce the existence of a cluster at that location.

For the first frame, each trajectory is assigned a cluster number by fitting a
GMM of R components. In subsequent frames, after computing the new embed-
ding coordinates, we associate trajectories extending from the previous frame
with their old cluster assignment. Given this assignment, the parameters of a
new GMM model can be estimated and optimized by running a few iterations
of the EM algorithm on the whole set of trajectories. The intuition is that as
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the distance matrix is updated and the new embedding computed, the spatial
relationship of trajectories in the embedding will not change abruptly. Due to
the incremental nature of the algorithm, the good initialization prevents the al-
gorithm from being stuck in local minima. The result of this step is a set of
trajectories with their associated cluster labels.

As the embedding space is updated, the number of clusters may also need
to be updated. This happens when an object enters or exits the field of view.
During the EM iterations if a cluster ends up with zero trajectories, we simply
remove the cluster and decrease the number of clusters by 1. To handle increasing
the number of clusters, the probability of each trajectory is computed given the
GMM parameters. If the number of trajectories with low probability is more
than a threshold, we assign these trajectories to a new cluster and perform EM
until convergence.

5 Figure/Ground Labeling

Due to the over-clustering of the embedding space, clusters obtained from the
incremental trajectory clustering represents a part of an object or a part of the
background. Labeling these clusters with foreground or background labels is,
therefore, essential for the rest of the approach.

The problem of figure/ground separation is well studied in psychology of vi-
sion. In the case of a single image, the definition of figure/ground can be quite am-
biguous. Among the most important factors psychologist studies pointed out to
determine figure/ground are: Surroundedness, Size , Orientation, Contrast, Sym-
metry, Convexity, and Parallelism of the contour. Dynamic figure/ground pro-
cessing seems to be far less ambiguous compared to single image figure/ground
processing. The proposed approach uses motion grouping based on trajectory
analysis (common fate), compactness, surroundedness, and spatial closeness. By
combining multiple cues, the approach is much more robust than previous ap-
proaches which typically assumes that background is the cluster with largest
number of trajectories.

Formally, an energy function is defined over labellings L = {l1,...lg}, where
l; € {0,1} (0O=foreground, 1=background) is the label given for each cluster. The
energy function encapsulates the evidence from multiple cues.

E(L)=ac) dclli) +aa) dallsly) +as Y és(lil) +asés(L)
i (4,5) (4,9)
The first term of the energy function ¢c(l;) = (1—1;)- (max(:jz:gg, ZZ:EZ;; )—1.5)
is a unary potential that measures the compactness of each cluster. Foreground
objects are more likely to be elongated in the horizontal or vertical direction while
background clusters are more spread. The remaining pairwise potentials are only
defined for clusters with trajectories that are spatially close in the frame. We de-
fine a pairwise potential ¢4 (l;,1;) = —lilj€arfine + (Li(1—1;) +1;(1— 1) A Fine
which encourages affine motion compatibility between two clusters with back-
ground labels and discourages compatibility between foreground and background



Online Moving Camera Background Subtraction 235

clusters. The affinity term &afrine = exp(—var(AffErr)) is computed by es-
timating an affine subspace out of the trajectories in both clusters and then
measuring the variance of the error Af f Err in projecting these trajectories on
the subspace. For this computation we only use trajectories over a small window
of frames. ¢g(l;, ;) = —LilijEEmbed + (L:i(1 — 1) + 1;(1 — 1;))Embea tests for the
existence of a clear boundary in the embedding space by penalizing distant clus-
ters labeled as background, and close foreground and background clusters. The
affinity {pmbpeq is defined as exp(—minyy, o, ||z; —x;|), where z; is an embedding
coordinate of a trajectory in cluster ¢ and z; is an embedding coordinate of a
trajectory in cluster j. Finally, ¢5(L) computes a measure surroundedness of the
foreground. Let F, and B denote the set of points belonging to the foreground
and background clusters respectively. Then ¢g(L) = 1 — |F€CO"U|;I‘H"”(B)|‘
ac,aqp,ap,ag are coefficients the determine the relative importance of each
term. Since the number of clusters is typically small < 10, the optimal assign-
ment for the labeling can be found by evaluating all possible assignments and
finding the minimum.

6 Motion Estimation and Bayesian Filtering

Motion Estimation
Given the sparse trajectories, we estimate the motion model for each layer by the
marginal posterior probability p(m27t|pj7t :j=1...M,l;; = k). However, not all
pixels in a layer are associated with a trajectory and, without any assumption,
inferring the motion is therefore an ill-posed problem. In reality however, back-
ground objects are rigid and foreground objects are articulated. This implies the
motion of nearby pixels to be smooth. ‘
For each layer, we construct a pairwise MRF with a set of vertices V = {mivt :
j =1,...,N}. The set of edges & = {(i,5) : 7 € N(i)} represents pairwise
neighborhood relationships on a grid structure defined over the image. The joint
posterior probability with respect to My, ¢ is given by

(M| P) o [T @(miesmi,) [I @0mis, Pio), (6)

(i,5)€E 111=qj ¢

where
¢(m§c,ta m?t) = N(m;c,t - mi,tIO, X, W(mi,t, Pj¢) = N(mi,tle,t, ) (7

Ym, 2p are two bandwidth matrix that represent the strength of the relation-
ship between neighboring pixels and covariance of the observed motion vec-
tors respectively. Since both unary and pairwise potentials are gaussians, this
is an instance of Gaussian Belief Propagation (GaBP)[23]. It follows that the

. . - . . 1T T
joint distribution can be written as p(Mj | P;) oc e”2™ Vmtm b where m =
[m mb. .., ml ml] is the vector of random variables and V, b are the in-

verse covariance matrix and shift vector respectively. It is straightforward to
write down V, b from (). The marginal posterior probability p(my |P) =
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Ny, Zhy) for i = 1...N, k = {b, f} can be obtained in closed form as
:“;c,t ={V~"'b}s, Elic,t ={V 1}

Bayesian Filtering

Our ultimate goal is to estimate L; given all observations. This can be accom-
plished by Bayesian filtering. In the first step we predict the appearance models
and labels given the motion models. In the second step we update the prediction
using the most recent observation. For brevity we will drop the dependence on
past observations for the remainder of this section.

Prediction. We first predict the appearance model given the motion models.
Since our model satisfies the Markov assumption, only the marginal appear-
ance model from the previous time step is needed. The prediction step for the
appearance models can be expressed as

N
plai gl P) =1 Y plagalmi . af,_)p(mi,|[P)] plal, ) (8)

i=1 mj_,en?

where is derived from marginalizing over the motion model. From (I),([2]) we
can derive p(aj, ,|mj, ,,ap, 1) = 5(@?6(12 — aj,,), wherej(i,mj ) = ¢~ (i) +

mj, ). Equation (8) thus becomes

plakalP) = S plmi o Poplal, ), (9)
mi ,eN?
The summation in equation (@) will lead to an exponential increase in the num-
ber of samples needed to represent the appearance. Thus by approximating
p(m27t|Pt) = N(/szt, Eét) with p(m};7t|Pt) = 5(/&” - m};7t) in (@) we can avoid
this problem and obtain p(a};’t\Pt) ~ p(aﬁiff’”). Therefore, we use nonpara-
metric density estimation to represent the probability density of the appearance
models. Specifically, for each layer, the density of each pixel is represented by
a set of Nxpp color samples in rgdq color space. At any instance, if the color
samples for a pixel will exceed Nk pg, we discard the oldest color sample. The
bandwidth of the KDE is chosen adaptively using the method in [5].
To predict the labels we similarly have

i i j(i,m% )
pli=fIP) = > pmhP)ply """ = f). (10)
™y N2

This summation is evaluated exactly and takes into account the uncertainty in
the motion vectors.

Update. In this step the new observation is incorporated by updating the
marginal priors of the appearance model and labels. It turns out that if we

! Strictly speaking the summation in (&), ), and ([[0) contains also an integration
over the pixel areas which is neglected here for brevity.
2 rgs can be computed from RGB by s = R+G+B,r=R/s ,g=G/s.
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want to avoid maintaining a joint belief space of labels and appearance models,
updating both the appearance and labels is a chicken and egg problem. Given
the label at a pixel one can easily update the corresponding appearance model.
On the other hand, if the appearance of a pixel is known, marginal posterior
probability of the labels can be computed easily.

We address this by taking the former approach. Given the predicted label
prior and appearance models a MAP estimate of the labels is inferred. Next the
inferred labels are used to update the corresponding appearance model. In prac-
tice we have found that this approach yields excellent results while avoiding the
complexity of maintaining a joint belief space. Note that the marginal posterior
over the labels is maintained for the next prediction stage.

p(lt = k|I{, Py) o< p(I|l; = k)p(li| Py) = / p(I{|l;, aj . )plak | Pr) daj., p(ly|P:) (11)

P

Since we previously approximated the posterior probability of motion model
(by discarding the uncertainty) in the prediction of the appearance model, the
correct appearance can be anywhere in a neighborhood around the current pixel.
We therefore replace p(I{|l; = k) in ([II) with >, p(I{|17) - N (¢(5) — 6(4)|0, £} ,),
where X7 ,is the uncertainty in the motion model at pixel 1.

A pairwise MRF, defined over a grid structure over the pixels, is used to
enforce smoothness on the labels

p(Le|lt) o H @lt,lJ HW

(i,j)€E

where (14, 17) = N (Ii =170, 2)) (1117 +(1—17)(1—19)) and® (I¢) = 1*-p(I{| I}, P,)+
(1 =1 — p(l{| I, P)). Xy is a bandwidth matrix that represents the strength
of the relation ship between neighboring pixels. The globally optimal solution
Iy ap can be found efficiently via graph cuts[2].

Finally, updating the corresponding appearance model is done by simply
adding the observed frame pixel color I} to the set of samples of the corre-
sponding pixel in layer 1%, 4p.

7 Continuous Initialization

In the first few frames, the appearance models of some pixels will not have
the minimum number of samples needed to compute the appearance likelihood.
Therefore a method must be devised to initialize the appearance models of these
pixels. From the incremental trajectory clustering we obtain a set of sparse
labels 17 at a subset of the pixels j € S. To propagate these labels we construct
a pairwise MRF with a set of vertices V = {l{ : i = 1,...,N}. The set of
edges £ = {(i,7) : 7 € N(i)} represents a grid structure defined over pixel
neighborhood in the image. The joint posterior probability with respect to L; is
given by

p(LiL) o [ ot ) [ o 1), (12)

(i,5)€E i€S
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where @(11,17) = (I'(1 — 17) + (1 — 1)) - N(I} — I7]0, %) and W(Ii, 1)) =
(15 4+ (1 — 1) (1 = 1¥)) ,%, is a bandwidth matrix that represents the strength
of the relation ship between neighboring pixels. The MAP estimate can be com-
puted efficiently by Graph Cut [2]. This labeling defines a segmentation of the
image into foreground and background pixels. For each pixel which does not
have the minimum number of KDE samples, depending on the inferred label {*
of each pixel, the color I’ of the pixel is added to the foreground or background
appearance model.

8 Experiments

Feature Tracking

We use LDOF [I8] to track dense feature points over pairs of frames. New trajec-
tories are automatically incorporated up to a maximum number of trajectories
per frame T/, ... In addition, the total number of trajectories maintained is set to
not exceed 1,77 after with we drop trajectories with the oldest ending frame
number. Note that at any instant of time we do not store the full trajectories
but rather maintain a low dimensional representation.

Results. We evaluate our algorithm qualitatively and quantitatively on five
challenging sequencesE. Our results are compared to state-of-the-art algorithms
that use dense point trajectories [I5], and belief propagation and Bayesian filter-
ing [9]@ We also compare the results of our approach with and without the label
prior. Parameter settings for all experiments are provided in the supplementary
materials.

Table 1. Performance comparisons with other methods

carsl peoplel people2 tennis drive
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Ours-1 0.84 0.99 0.91 0.94 0.85 0.89 0.69 0.88 0.77 0.86 0.92 0.89 0.55 0.96 0.70
Ours-2 0.85 0.97 0.90 0.97 0.88 0.92 0.87 0.88 0.88 0.90 0.81 0.85 0.60 0.67 0.63
[15] 0.63 0.99 0.77 0.78 0.63 0.70 0.73 0.83 0.78 0.27 0.83 0.40 0.02 0.66 0.04
9] 0.92 0.84 0.88 0.95 0.93 0.94 0.85 0.89 0.86 - - - - - -

The first three videos - carsl, peoplel and people2 - comes from the Hopkins
155 dataset [21]. Manually annotated ground truth for a subset of frames, around
one every 10 frames, is provided by Brox et al [3]. A characteristic of these
sequences is that they are short and the objects are always on motion. These
sequences are used as a benchmark to compare with other approaches.

3 Project page: http://www.cs.rutgers.edu/~elqursh/projects/bsmc/
4 We have requested the code and results from the authors but we did not receive a
response, results for their approach are reported verbatim from the paper.
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Fig. 3. Results on the carsl, peoplel, people2, and tennis sequences using our method
(First row), our method without label prior (Second row), using [I5](Third row). For
visualization purposes, background regions are darkened while foreground regions main-
tain their colors. (Best viewed in color).

Fig. 4. Results for drive 1 sequence using our method (First row) and [I5](Second row).
[I5] fails on this sequence since it highly deviates from the orthographic projection
assumption. Our approach successfully segments the new car as soon as it enters the
fields of view at frame 76. Notice also, how cars approaching in the opposite direction
are successfully segmented.
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Table [l shows quantitative comparison on the first three benchmark se-
quencesﬁ. The row labeled ours-1 is our approach with the label prior, while
ours-2 is our approach without the label prior. Without the label prior we do
not rely on the predicted labels in inferring the new labels. We compare our
methods to [15] and [9]. On carsl, people2 our approach ranks 1st in Fl-score
while in peoplel we rank a close second. The reason our approach performs
worser on the peoplel sequence is that with at most 2000 trajectories there are
no trajectories from the hips downwards and thus the motion of the legs is not
captured by the trajectories. As can be seen from the first row of Fig. [3], after
initialization the foreground appearance model captures the top portion and it
takes a few more frames for it to recover from this error. Figs[3shows qualitative
results on these sequences.

To evaluate the performance of the proposed approach on long sequences with
fast motion, two other sequences are used - tennis and drive. The tennis sequence
is 466 frames long and also comes with ground truth from [3]. The tennis player
pauses at times to wait for the ball, while at others moves fast to intercept it. Due
to the fast motion and homogeneous ground color not all objects have trajectory
points as seen in Fig[l(b). Finally, the drive sequence is 456 frames and was
manually annotated with ground truth. This sequence is challenging since cars
keep entering and exiting the field of view at different points in the video and
due to the forward motion. Figs. Bl [ shows qualitative results on the tennis and
drive sequences. Thanks to the accurate background model our method is able
to capture the cars on the other side of the road Fig. @l More results are are
available in the supplemental materials.

9 Conclusion

We introduce a methodthat accurately models appearance and motion to achieve
robust moving camera background subtraction. Unlike previous approaches, it
merges the best of both worlds, long term trajectories to accurately model long
term motion dependencies and a Bayesian filtering framework to reason about
pixel level appearance models for foreground and background regions. This is
achieved in a online framework without sacrificing the accuracy and with a con-
stant processing time per frame. The output is not only the final segmentation
per frame but in addition the pixel based background and foreground model.
Such models, we believe, are essential for high level reasoning. We evaluated the
approach on benchmark sequences as well as on two challenging sequences and
demonstrated that the method produces superior results.
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