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Abstract. In this work we introduce novel image metrics that can be
used with distance-based classifiers or directly to decide whether two in-
put images belong to the same class. While most prior image distances
rely purely on comparisons of low-level features extracted from the in-
puts, our metrics use a large database of labeled photos as auxiliary
data to draw semantic relationships between the two images, beyond
those computable from simple visual features. In a preprocessing stage
our approach derives a semantic image graph from the labeled dataset,
where the nodes are the labeled images and the edges connect pictures
with related labels. The graph can be viewed as modeling a semantic
image manifold, and it enables the use of graph distances to approxi-
mate semantic distances. Thus, we reformulate the task of measuring
the semantic distance between two unlabeled pictures as the problem of
embedding the two input images in the semantic graph. We propose and
evaluate several embedding schemes and graph distance metrics. Our re-
sults on Caltech101, Caltech256 and ImageNet show that our distances
consistently match or outperform the state-of-the-art in this field.

1 Introduction

Psychological studies have shown that humans can easily determine whether two
visual examples belong to the same basic category, even when that class is new
and has never been seen before [1]. This suggests that to address this problem
our brain employs a general semantic distance metric valid across all classes.
In this work we are interested in investigating computational models that can
tackle the same problem: our objective is to design distance functions providing
a measure of whether two input photos belong to the same basic class, regardless
of what that class may be. Image metrics implementing such semantic notions
of similarity promise to enable a wide array of computer vision applications, and
have been used in the past in image retrieval [2,3], object classification [4], as
well as semantic segmentation and annotation of photos [5].

Most prior image metrics rely solely on comparisons of low-level features
extracted from the two input images [2,4,6]. While directly comparing visual
features may be sufficient to assess simple notions of similarity, such as near-
duplicate or object-instance similarity, we argue for the need of auxiliary labeled
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data to provide accurate estimates of semantic relatedness and membership to
the same object class. In a sense, our proposed use of this background knowl-
edge is akin to the way children exploit past observations of many examples of
different classes in order to learn to recognize instances of a new category [7].

At a high-level, our approach operates as follows. During an offline prepro-
cessing stage, our method uses the auxiliary dataset of images with class labels
to compute an image graph. The nodes of the graph are the labeled pictures and
the edges link images that are semantically similar, as determined by the class
labels. The shortest path distance between two nodes of the graph can then be
viewed as a measure of their semantic relatedness. The shortest path distances
are approximations of the geodesic distances of the unknown semantic manifold
of images. This idea has been previously used for many tasks including dimen-
sionality reduction [8], and semi-supervised learning [9]. While the graph per
se provides estimates of semantic distance only for the labeled image nodes, we
propose to extend its use also for unlabeled pictures, by embedding these photos
in the graph. For each unlabeled input photo, this requires first determining its
position in the graph, using only visual features. Once the input is embedded in
the graph, we can compute its semantic distance to all the other pictures in the
graph. Similarly, given two unlabeled images, we can embed them both in the
graph in order to measure their semantic distance.

In this paper we propose several schemes to embed unlabeled pictures in the
semantic graph. Our methods perform the embedding by using a visual distance
(i.e., a metric based on low-level image features) to compare the input photo to
the images in the graph. While this may appear to defeat the purpose of side-
stepping visual distances to measure semantic relationships between images, we
argue that our embedding task is far easier than the problem of directly com-
puting semantic distances from low-level descriptors, for the following reasons:

1. Embedding the input images requires only selecting the most semantically-
related photos. As shown by studies in human perception [10] and in com-
puter vision [11], the most semantically similar pictures to a given input
photo tend to be those most visually similar to it. Thus, these images are
easy to identify even with distances based on low-level image descriptors.

2. We can simplify the task by using a large-scale database of labeled photos.
It has been shown [12] that making the database larger will increase the
probability that the top images retrieved according to a visual metric will
also be semantically close to the input image, even when using simple low-
level features to calculate visual distances. We exploit this property by using
a database of 10M images (the ImageNet dataset [13]) to build our graph.

3. It is possible to exploit the structure of the graph to improve the embedding
results: while the visual distances are brittle and may produce a set of can-
didate nodes including some outliers (i.e., images not semantically related
to the input photo), this candidate set can then be refined (or denoised)
to identify related nodes that lie close to each other in the graph. In other
words, it is possible to enforce coherence of labels among the selected nodes
to make the embedding more accurate and robust.
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2 Related Work

Most object categorization systems require some form of similarity function to
compare examples, such as the distance metric used by the nearest neighbor
(NN) classifier or the kernels in SVMs. Most recent approaches to defining image
metrics are based on learning methods which train the distance function using
a set of labeled examples, typically consisting of images annotated with class
labels. This problem is often referred to as metric learning. Within the wide
range of proposed approaches in this area we can identify two main categories:
techniques to learn “global” metrics versus methods computing “local” distances.

Algorithms in the former category operate by learning a single parametric
transformation mapping the inputs to a new target space, such that a predefined
metric (most typically the Euclidean distance) in this space satisfies certain
desired properties [14,15]. Similarly to these approaches, our method uses labeled
examples to map images to a new target space – in our case, the semantic graph.
However, rather than computing a parametric transformation and employing
a predefined distance in the target space, our method uses the examples non-
parametrically both to compute the mapping and also to define a distance metric
expressed in terms of the entire labeled set.

The second strand of related work involves methods to compute “local” dis-
tances, i.e., metrics that vary across the space of examples (see [6] for a com-
prehensive survey). A simple form of local distance is one that changes for each
individual training example [2,4]. Alternatively, a local distance can be learned
for each category to recognize [16] or by grouping together classes that can share
effectively the same metric [17]. Our approach can be viewed also as implement-
ing a local metric, since the semantic graph can be complex and anisotropic: our
distance will vary depending on the embedding point of the test example. In a
sense, our metric is closely related to algorithms that learn a different metric
for each test example by using as training points its closest neighbors [18,19].
However, unlike these prior systems, we exploit label information associated to
the training examples, so as to suppress the effect of outliers present in the vi-
sual neighbors and to obtain a distance that is optimized for class recognition.
Furthermore, while prior local metrics have been trained for a predefined set of
classes (with the only exception of [17] which demonstrates good generalization
to novel classes), our aim is to define a general distance that can be used to
compare images of arbitrary classes, even categories not present in the labeled
graph. Indeed, nearly all our experiments are carried out with this setup.

Our approach is inspired by the recent work of Deselaers and Ferrari [11],
who have also proposed to compute image distances through comparisons to an
auxiliary labeled dataset. They named their metric the “ImageNet distance”, as
it relies on the ImageNet database to infer the semantic relation between the
input photos. For each input image, their method computes the distribution of
class labels associated to its ImageNet neighbors; the distance between two input
images is then calculated by comparing their class-label histograms. A related
idea is presented in [3] where the distance between two images is computed by
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comparing their membership probabilities to a set of 103 Flickr groups, estimated
using a set of SVM classifiers.

As in [11], we also exploit ImageNet as the auxiliary source of labeled images.
However, we argue that our graph-based representation of this data provides sev-
eral advantages over the system of [11]. First, it enables semantic filtering: while
the ImageNet distance uses the labels of visual neighbors to measure similarity
between two images, our embedding methods exploit the graph structure to find
target nodes that are not only visually similar to the input but also semantically
coherent. In our experiments we demonstrate that this refinement improves the
results. Furthermore, the graph allows us to measure indirect semantic relations:
while the ImageNet distance measures the number of exactly matching class la-
bels between the two neighbor sets, the graph allows us to take into account
indirect semantic relations between the neighbors, even when their class labels
do not match exactly.

3 Approach Overview

Our approach consists of an offline preprocessing stage, during which the seman-
tic graph is built from a dataset of labeled images, and a test stage in which the
graph is used to measure the distance between any two new unlabeled images.

Let us denote with D = {(x1, y1), . . . , (xN , yN )} the labeled dataset of N
images that we use to build the semantic graph, where xi is the descriptor of
the i-th image in the database and yi is a label indicating the category of the
object present in the i-th image. While our approach can be used with any
arbitrary image descriptor, our experiments use two different feature vectors:
the first is the GIST descriptor [20], which is a low-level image representation
capturing the spatial layout in the picture; the second is the “classeme” feature
vector [21], which is a higher-level descriptor containing the output of 2659
predefined classifiers evaluated on the image. We chose these two descriptors
for several reasons: they are compact in size and thus well suited to large-scale
databases; both descriptors have been shown to capture categorical information;
finally, they allow us to understand the pros and cons of using a low-level as
opposed to a high-level representation with our approach.

The final goal of our system is to compute the distance between any two
unlabeled images x,x′. While sections 4,5 describe formally the method, here
we explain the intuition behind the two stages of our approach, schematically
illustrated in figure 1.

Offline Stage: Construction of the Semantic Graph. The aim of this stage
is to reorganize the auxiliary dataset D in the form of a graph. The nodes in the
graph represent the labeled images and the edges link pictures that are detected
to be highly similar, both visually as well semantically. The semantic relation
between the labeled images is determined by comparing their annotations, while
their visual similarity is computed using image-content features. The edges in
the graph are supplemented with weights, corresponding to the visual distance
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Step 2: refine visual neighbors by 
           enforcing semantic coherence

Embedding an unlabeled test image:

Step 1: find visual neighborsLink labeled images that are 
both visually and semantically similar

Offline Preprocessing:
Semantic Graph Construction

Fig. 1. Conceptual illustration of our embedding method. During an offline stage a
semantic image graph is constructed using a labeled database: links are created between
images that satisfy the joint conditions of being visually close and having related class
labels. At test time, the unlabeled photo is embedded in the graph via a two-step
process: first, visual neighbors are found; then, the position of the test images in the
graph is computed by finding visual neighbors that are semantically coherent.

between the two nodes connected by the edge. The high-level idea is that for
images that are closely related, the visual distance provides a reliable estimate
of their similarity. For two images that are not directly linked via an edge, their
similarity can be measured through their shortest connecting path within the
graph. Thus, the graph embodies a form of semantic manifold where geodesics
provide measures of semantic relatedness between images.

Test Time: Embedding Unlabeled Images in the Graph. The semantic
distance between two unlabeled images is computed by embedding indepen-
dently both images in the graph so as to measure their distance in the semantic
manifold. As illustrated in figure 1, this is done via the following two steps:

– Step 1: find visual neighbors in the graph. For each of the two input examples,
the m closest database images are found according to the visual distance.

– Step 2: embed the points by enforcing semantic coherence. While the initial
selection of the m candidate nodes ensures that these images are visually
similar to the input, in this step we impose semantic coherence among these
nodes to compute the final positions of the inputs in the graph.

After embedding, the distance between the inputs is calculated by comparing
their positions inside the semantic graph.

4 Semantic Graph Construction

As previously discussed, we construct our semantic graph from the large-scale
ImageNet dataset [13], which consists of roughly 10M images encompassing over
15000 categories. The ImageNet categories are structured according to the se-
mantic hierarchy of WordNet [22]: each class is described by a set of synonyms,
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called a synset, and the children of a synset represent more specialized synsets of
that visual category (e.g., the children of synset “plant” are “tree”, “flower” and
“vegetable”). For each synset, on average, the dataset includes 632 manually-
validated images illustrating that visual concept.

We exploit the hierarchy of ImageNet to build the semantic graph, as discussed
below. In order to maintain the computational and storage costs manageable in
spite of the large database size, we propose to construct a sparse graph, where
each image is connected only to a small number of other photos.

For each database image xi, we define Si to be the set of synsets comprising the
synset of xi and the children of the synsets of xi. We refer to Si as the “extended
synset” of xi. Then, the graph is constructed by creating an undirected edge
between each image xi and its k-closest neighbors within its extended synset
Si, computed using the L2 distance between image descriptors. To each edge
connecting node i to node j, we associate weight wij ≡ ||xi−xj ||. Note that this
strategy achieves two fundamental goals: on one hand, by linking each image only
to nodes within its extended synset we establish semantically-consistent edges;
on the other hand, by letting edges to be created across the original WordNet
synsets, we avoid ending up with a myriad of disconnected graph components.

One issue, however, is that the root node in the ImageNet hierarchy has no
associated images. This would cause the subtrees of the top-layer synsets to
be disconnected components in the graph. To avoid this problem, we establish
edges between the image pairs with the 1000 smallest visual distances among
all pictures in the top synsets. After this operation, 99.36% of all images belong
to the largest connected component of the graph. Thus, we simply discard the
images outside the largest component, since this is a tiny subset of the database.

5 Embedding Unlabeled Images in the Graph

We now present different strategies to embed an unlabeled image x in the graph.
The initial step for all methods involves selecting a set of candidate neighbors in
the graph using the visual distance: we indicate with R ⊂ {1, . . . , N} the indices
of the m-nearest neighbors of x in the graph, computed according to the L2
distance between image descriptors. In practice, the set R will include images
semantically related to x but also some outliers. The methods described below
enforce semantic coherence to improve the embedding.

Semantic Energy Optimization (SEO). This embedding method operates
by connecting the input to a subset of n nodes T , which we name the target
nodes. The subset T is chosen from the set of visual neighbors R by imposing
semantic coherence via an energy optimization approach. While the parameter n
could be set a-priori to be equal to k, in practice we found beneficial to tune n via
cross validation. We represent the subset T ⊂ R by introducing binary variables
zi ∈ {0, 1} for the nodes i ∈ R: we use zi = 1 to indicate that i ∈ T (i.e., the node
is selected as a target node), while zi = 0 denotes that i �∈ T . We indicate with
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z the |R|-dimensional binary-valued vector obtained by concatenating these bi-
nary variables, i.e., z = (zi | i ∈ R). An intuitive idea is to determine the subset
T by minimizing the following energy function:

E(z) =
∑

i∈R
θizi + λ

∑

i,j∈R
θijzizj (1)

subject to constraint
∑

i∈R zi = n, where

θi = ||x− xi|| (2)

θij =

{
dSPD(xi,xj) if dSPD(xi,xj) < τ

τ otherwise
(3)

with dSPD(xi,xj) denoting the shortest path distance in the semantic graph
between xi and xj . Intuitively, the unary terms of eq. 1 encode our preference for
choosing nodes that are visually similar to x, while the pairwise terms encourage
selection of neighbors that are close to each other in the semantic graph. The
threshold τ is used to avoid penalizing excessively selection of nodes that are
far apart in the graph: this makes the model more robust to outliers. It can
be shown that the constrained discrete optimization defined by eq. 1 is NP-
hard in general [23]. Nevertheless, we have tried to minimize this energy by
reformulating the optimization as a mixed integer program (MIP) expressed in
term of auxiliary variables tij ∈ [0, 1] bounding the pairwise interactions zizj via
constraints tij ≤ zi, tij ≤ zj, tij ≥ zi + zj − 1 for all i, j ∈ R. We obtained good
optimization results by minimizing the resulting MIP with the state-of-the-art
Gurobi solver [24], which in practice globally optimizes 26% of our problems.

However, even when the optimal T could be found, the resulting embedding
did not perform well in our tests. Through experimental investigation, we dis-
covered that the energy model of eq. 1 is simply too strict as it wants all target
neighbors to be close to each other. In practice, for many images this is an un-
reasonable assumption. Consider for example the photo of a group of children
playing soccer in the street: the picture should be linked to nodes of synset “soc-
cer, association football” but possibly also to nodes of synset “city, metropolis,
urban center”. Based on this observation we designed a “softer” version of our
semantic energy that forces each selected node to be close to at least l other
target nodes, where l < n. In other words, we encourage each selected neighbor
to be near a few other target nodes, but not necessarily to all nodes in T . This
soft constraint is implemented by optimizing the following energy:

E(z, t) =
∑

i∈R
θizi + λ

∑

i,j∈R
θijtij (4)

subject to
∑

i∈R zi = n, and to constraints:

zi ∈ {0, 1}, tij ∈ {0, 1}, tij ≤ zi, tij ≤ zj ∀i, j ∈ R (5)
∑

j∈R
tij ≥ lzi ∀i ∈ R (6)
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where θi, θij are defined as above. These constraints ensure that for each target
node i, only the l smallest pairwise terms θij between i and other selected nodes
are included in the objective. We found that this optimization is also much easier
to solve: the Gurobi solver was able to globally optimize all of our test cases. We
refer to minimization of eq. 4 as Semantic Energy Optimization (SEO).

Random Walk (RW). The high-level idea of this embedding method is to find
the nodes that are most likely to be reached by a Markov random walk [25] inside
the graph starting from the initial candidate nodes R. We use random walks to
denoise the initial set R by finding nodes that are “close” to the majority of
these initial vertices, while suppressing the effect of the outliers in R. In order to
perform the random walk, for each graph edge linking i to j we define the one-
step transition probability from i to j in terms of the weights wij (we remind
the reader that the weights wij are the visual distances computed during the
graph construction). Specifically, for each edge (i, j) we define the probability of
transitioning from node i at time t to node j at time t+ 1 to be

Pt+1|t(j|i) =
1/wij∑
k 1/wik

(7)

so that the probabilities out of node i sum up to 1 (this probability is set to 0
for nodes not directly connected by an edge). Note that for nodes linked by an
edge Pt+1|t(j|i) is inversely proportional to the visual distance between xi and
xj . This implies that at each time the walk is likely to progress into a node that
is highly similar to the current one. The random walk is initiated from a starting
distribution q ∈ R

N computed from the candidate nodes R as follows:

qi =

{
1/||x−xi||∑

k∈R 1/||x−xk|| if i ∈ R
0 otherwise

(8)

If we store the one-step probabilities into a matrix A whose (i, j)-th entry is set
equal to Pt+1|t(j|i), then we can calculate the distribution r of nodes reached
from q after t steps of random walk as rT = qTAt. This can be more efficiently
calculated by means of t matrix-vector products, i.e., r = (((qTA)A) . . . A). The
resulting vector r can be shown [26] to measure the “volume” of paths leading
to the individual nodes in the graph from the initial configuration q. Intuitively,
the random walk will tend to suppress paths originating from outlier nodes in R,
while paths starting from nearby nodes in R will tend to reinforce each other.

In principle, we could select as target nodes T the vertices that correspond to
the n largest entries in r, i.e., the ones that are more likely to be reached from
the initial configuration. However, we found this strategy to produce relatively
poor results. Instead we have had more success by directly using the random
walk probabilities ri to calculate semantic distances as follows. Let r and r′

be the node distributions obtained via t steps of random walk for two input
images x and x′. Note that r can be viewed as a new semantic representation
for image x, encoding the relation of the image to the entire graph. Based on
this intuition, we define the random walk distance to be dRW (x,x′) = dχ

2

(r, r′),
which measures the χ2 distance between the two images in this semantic space.
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6 Discussion of Computational Costs

In this section we discuss the computational costs of our approach and possible
strategies to reduce them. We factor out from this discussion the creation of the
graph, since this is done only once during an offline stage and it can be reused
for all inputs, regardless of their class. The graph is represented as a sparse
matrix which occupies little space in memory. At test time the most expensive
operation is computing the visual distances from the input to all nodes. Without
any optimization, this operation takes about 2 minutes per input. However, this
runtime can be greatly reduced by adopting efficient NN search methods: for
example, the system in [27] runs in a couple of seconds on a database of 10M
images by using product quantization on classeme vectors to speed up the search
with little loss in accuracy. The RW embedding takes on average 99 seconds per
input when using t = 25 steps, but also this operation could be made much
faster by reformulating the walk in terms of powers of eigenvectors of the matrix
A, as discussed in [25]. The SEO optimization on average runs in 48 seconds per
example on a standard budget PC using m = 400, n = 100, l = 4.

7 Experiments

We now describe experimental evaluations of our distance metrics on the follow-
ing datasets: Caltech101, Caltech256 [28] and the ILSVRC2010 database [29].
Unless otherwise noted, all results are based on a graph constructed from the
10M ImageNet dataset using connectivity k = 10 (see [30] for our study of the
sensitivity to the size of the auxiliary dataset N and the graph connectivity k).

7.1 Evaluation of Metrics for “Same or Different Class” Recognition

We begin by presenting results on the Caltech101 dataset. While this image
database is known to be simple for the recognition standards of modern cate-
gorization systems, it was the dataset used in [11] to compare different image
metrics. We follow the experimental setup used in [11]: we use the same set of
1020 photos (10 samples for each of the 102 classes); the set is split in two sub-
sets of 51 classes; each subset is used in turn as training and testing set, so as
to tune the parameters with two-fold cross validation. The final result is pre-
sented as the average cross-validation error. In each cross validation set, there
are 129,795 distinct image pairs: in 2295 of these pairs the two images contain
an object of the same class, while in the remaining pairs the two images belong
to different category. In this experiment the value of distance is directly used to
make a classification decision on whether the two samples contain the same ob-
ject. As in [11], the result is presented in terms of Area Under the Curve (AUC)
computed from the ROC curve.

We consider in our evaluation our two proposed embedding methods – SEO
and RW. In addition, we include the simple embedding obtained by connecting
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Fig. 2. Performance of distance metrics on Caltech101 using (a) GIST and (b) classeme
features. Our metrics based on embedding in the graph are: NNE, SEO, RW. The
ImageNet metrics proposed in [11] are CH and JC. The visual distances are L2 (the
Euclidean metric) and LMNN (learned using the method of [16]).

each test image to its n closest visual neighbors in the graph, and denote this em-
bedding method as Nearest-Neighbor Embedding (NNE). For NNE and SEO,
the final semantic distance is computed as the shortest path distance between
the two embedded nodes. As discussed in section 5, for the RW embedding we
compute the semantic metric as the χ2 distance between the random walk prob-
ability vectors. In addition to these metrics, we include the two distances pro-
posed in [11]: CH is the ”ImageNet” category histogram metric, while JC is the
distance inspired by the Jiang-Conrath semantic similarity [31]. All parameters
were optimized individually for each method by considering the following values:
m ∈ {100, 200, 400, 800}, n ∈ {5, 10, 100, 200}, l ∈ {1, 2, 4, 6}. We also present re-
sults for two baseline metrics that do not use the auxiliary ImageNet database:
L2 denotes the L2 distance between the feature vectors of the two input images;
LMNN indicates the distance learned using the large-margin nearest-neighbor
approach described in [16]. Even for LMNN, we trained and tested the metric
by using two-fold cross validation (i.e, the training and test sets involve two sets
of disjoint classes), with 10 samples per class. To train this metric we used the
software provided by the authors and as recommended in the manual we pre-
processed the feature vectors via PCA, tuning the PCA target dimensionality
for the best possible accuracy.

The performances of the different metrics are shown in figure 2. We can see
that SEO, RW and CH perform considerably better than the visual distances
(L2 and LMNN), with RW and CH nearly tied as the best metrics. The use of
the auxiliary labeled data enables these distances to infer additional semantic
connections yielding large improvements over LMNN, which has been previ-
ously shown to be one of the best metric learning methods (see, e.g., evaluations
in [16,6,11]). It is also interesting to notice that both SEO and RW perform much
better than the näıve NNE strategy which directly links the test images to their
visual neighbors: this suggests that the semantic coherence enforced by SEO and
RW produces a beneficial refinement of the initial set of visual neighbors.
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Fig. 3. Caltech256 multiclass recognition using a NN classifier based on different image
metrics using (a) GIST and (b) classeme descriptors. Our RW metric gives consistently
the best results: it even outperforms the LMNN metric, which in this experiment has
been advantageously trained on the test categories.

7.2 Using Semantic Distances for Multiclass Object Categorization

In this section we demonstrate the use of semantic distances to perform multi-
class object recognition using two different classification models – the NN clas-
sifier and a SVM trained with kernels defined by our metrics.

Nearest-Neighbor Classification with Semantic Metrics. We begin by
presenting an evaluation on the Caltech256 dataset. The test set was obtained
by sampling 10 images from each of the 256 classes. The training set size is
varied from a minimum of 1 to a maximum of 20 examples per class. We use the
NN classifier to perform multiclass recognition as follows: for each test image, we
compute its distance to the training examples of all 256 classes and then pick the
class most voted among theK nearest neighbors, whereK is an integer optimized
individually for each distance metric. Note that the embedding of the training
images in the graph is done without exploiting the textual tags of the Caltech256
classes. We report the NN classification accuracy obtained with the RW, SEO,
CH, L2 and LMNN metrics (we omit NNE and JC as they produce much poorer
results). Here the LMNN metric was learned from a separate training set of
10 images for each of the 256 classes: thus the LMNN method here is given
the significant advantage of training on the test classes. Figure 3 shows the
recognition accuracy as a function of the number of training examples for (a)
GIST and (b) classeme features. We see that on this task RW outperforms all
distances, including CH as well as the LMNN metric trained in highly favorable
conditions. The SEO metric performs better than the L2 distance but not as
well as the RW and CH metrics.

We now describe NN multiclass recognition on a subset of the ILSVRC2010
dataset. This is a difficult test: the ILSVRC2010 images are more challenging
than those in the Caltech sets as they often contain multiple objects, and exhibit
a much wider within-class variance. However, the downside of this test is that the
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ILSVRC2010 classes are present as synsets in the ImageNet dataset (although
the two sets of images are, of course, disjoint). This means that the test categories
are also included in the manifold. For this experiment, we sample 5 images from
500 randomly selected categories. We then partition the dataset into 5 subsets,
each containing one example of each class. We use this partition to evaluate
the 5-fold cross validation error of the NN classifier using different metrics. The
recognition accuracies using classeme features are 6.04%,5.08%,2.92% for RW,
CH, and L2, respectively. Note that while the absolute accuracy rates are low due
to the small number of training examples per class (only 4 for each validation run)
and the large number of classes, the RW metric provides a relative improvement
of 18% over the accuracy obtained using the state-of-the-art CH distance.

Nonlinear SVM Classification with Semantic Kernels. We conclude by
presenting experiments demonstrating that our metrics can be used to construct
powerful kernels for nonlinear Support Vector Machines (SVM). We compare
kernels built from our distances to popular hand-defined kernels for categoriza-
tion and show that in all cases our RW metric provides superior results.

Most kernels for SVMs are defined so that the kernel distance is close to 1
when the input vectors are similar and near to 0 when the inputs are highly
different. In order to achieve this desired behavior with our metrics, we apply
the “exp” function to the negative values of the distances, i.e., we define the
kernel as k(x,x′) = exp(−d(x,x′)/γ), where d is the semantic distance and γ
is a hyperparameter. We denote with expRW, expSEO, and expCH the kernels
built by using as distance d the metrics RW, SEO and CH, respectively. Note
that expRW and expCH are obtained by applying the exponential function to
negative χ2-distances, which always yields a Mercer kernel [32]. Instead, expSEO
may produce a kernel matrix that is not Mercer. When this happens, we follow
the common practice of thresholding the negative eigenvalues of the distance
matrix to zero in order to yield a proper kernel matrix [33]. Finally, we include
as baselines the exponential kernel (expL2) and the Gaussian kernel (Gaussian),
both built by applying the exponential function to distances between visual
descriptors: kexpL2(x,x′) = exp(−||x−x′||/γ) and kGaussian(x,x′) = exp(−||x−
x′||2/γ). These two kernels are commonly used for image classification.

We evaluate this set of kernels on the Caltech256 dataset, using 15 training
examples per class. With the Gram matrix of each kernel, we train a nonlinear
one-vs-the-rest SVM by optimizing the dual objective. The SVM regularization
parameter C and the kernel hyperparameter γ are selected individually for each
method via 5-fold cross validation. We evaluate the resulting SVMs on a test
set of 10 images per class as in the previous subsection. We include in this
comparison also the dot-product kernel klinear(x,x′) = xTx′, which produces a
linear SVM. The results are shown in fig. 4 for both (a) GIST and (b) classeme
features. From this plot we see that the kernels defined by our RW distance
yield much higher accuracy than the traditional hand-defined nonlinear kernels
considered here. As in all our previous experiments, even in this evaluation our
RW metric matches or outperforms the CH distance proposed in [11].
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Fig. 4. Caltech256 performance of nonlinear SVMs trained with different kernels using
(a) GIST and (b) classeme features: expRW and expSEO denote kernels constructed
from our RW and SEO distances; expCH is the kernel induced by the CH distance
of Deselaers and Ferrari [11]; exp-L2 and Gaussian are the exponential and Gaussian
kernels computed from the L2 visual distances; linear indicates the linear SVM learned
using the dot-product kernel. The training set consists of 15 examples per class.

8 Conclusions

We have presented new image metrics for categorization. Our distances are com-
puted by embedding the photos in a semantic image manifold. This allows our
methods to infer semantic relations that cannot be captured by directly com-
paring the two input images. We have shown that this yields results matching
or outperforming the state-of-the-art on three different datasets. Our current
embedding methods require calculating distances to all nodes in the graph. To
reduce this cost in the future we are interested in learning parametric embedding
models. Our graphs and image embedding software may be obtained from [30].
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