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Abstract. We address the task of inferring the future actions of peo-
ple from noisy visual input. We denote this task activity forecasting. To
achieve accurate activity forecasting, our approach models the effect of
the physical environment on the choice of human actions. This is ac-
complished by the use of state-of-the-art semantic scene understanding
combined with ideas from optimal control theory. Our unified model
also integrates several other key elements of activity analysis, namely,
destination forecasting, sequence smoothing and transfer learning. As
proof-of-concept, we focus on the domain of trajectory-based activity
analysis from visual input. Experimental results demonstrate that our
model accurately predicts distributions over future actions of individu-
als. We show how the same techniques can improve the results of tracking
algorithms by leveraging information about likely goals and trajectories.
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1 Introduction

We propose to expand the current scope of vision-based activity analysis by
exploring models of human activity that reason about the future. Although rea-
soning about future actions often requires a large amount of contextual prior
knowledge, let us consider the information that can be gleaned from physical
scene features and prior knowledge of goals. For example, in observing pedestri-
ans navigating through an urban environment, we can predict with high confi-
dence that a person will prefer to walk on sidewalks more than streets, and will

Fig. 1. Given a single pedestrian detection, our proposed approach forecasts plausible
paths and destinations from noisy vision-input
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most certainly avoid walking into obstacles like cars and walls. Understanding
the concept of human preference with respect to physical scene features enables
us to perform higher levels of reasoning about future human actions. Likewise,
our knowledge of a goal also gives us information about what a person might
do. For example, if an individual desires to approach his car parked across the
street, we know that he will prefer to walk straight to the car as long as the
street is walkable and safe. To integrate these two aspects of prior knowledge
into modeling human activity, we leverage recent progress in two key areas of
research: (1) semantic scene labeling and (2) inverse optimal control.

Semantic scene labeling. Recent semantic scene labeling approaches now provide
a robust and reliable way of recognizing physical scene features such as pavement,
grass, tree, building and car [1], [2]. We will show how the robust detection of
such features plays a critical role in advancing the representational power of
human activity models.

Inverse optimal control. Work in optimal control theory has shown that human
behavior can be modeled successfully as a sequential decision-making process
[3]. The problem of recovering a set of agent preferences (the reward or cost
function) consistent with demonstrated activities, can be solved via Inverse Op-
timal Control (IOC) – also called Inverse Reinforcement Learning (IRL) [4] or
inverse planning [5]. What is especially intriguing about the IOC framework is
that it incorporates concepts, such as immediate rewards (what do I gain by
taking this action?), expected future rewards (what will be the consequence of
my actions in the future?) and goals (what do I intend to accomplish?), which
have close analogies to the formation of human activity. We will show how the
IOC framework expands the horizon of vision-based human activity analysis by
integrating the impact of the environment and goals on future actions.

In this work, we extend the work of Ziebart et al. [6] by incorporating vision-
based physical scene features and noisy tracker observations, to forecast activities
and destinations. This work is different from traditional IOC problems because
we do not assume that the state of the actor is fully observable (e.g., video games
[7] and locations in road networks [6]). Our work is also different from Partially
Observable Markov Decision Process (POMDP) models because we assume that
the observer has noisy observations of an actor, where the actor is fully aware
of his own state. In a POMDP, the actor is uncertain about his own state and
the observer is not modeled. To the best of our knowledge, this is the first work
to incorporate the uncertainty of vision-based observations within a robust IOC
framework in the context of activity forecasting. To this end, we propose a Hidden
variable Markov Decision Process (hMDP) model which incorporates uncertainty
(e.g., probabilistic physical scene features) and noisy observations (e.g., imperfect
tracker) into the activity model. We summarize our contributions as follows:
(1) we introduce the concept of inverse optimal control to the field of vision-
based activity analysis, (2) we propose the hMDP model and a hidden variable
inverse optimal control (HIOC) inference procedure to deal with uncertainty in
observations and (3) we demonstrate the performance of forecasting, smoothing,
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Homotopy classes Our approach

Fig. 2. Qualitative comparison to homotopy classes. Trajectories generated by distinct
homotopy classes and trajectories generated by physical attributes of the scene. Phys-
ical attributes are able to encode agent preferences like using the sidewalk.

destination forecasting and knowledge transfer operations in a single framework
on real image data.

As a proof-of-concept, we focus on trajectory-based human activity analysis
[8]. We take a departure from traditional motion-based approaches [9], [10] and
explore the interplay between features of the environment and pedestrian tra-
jectories. Previous work [11], [12], has shown that modeling the impact of the
social environment, like actions of nearby pedestrians, can improve priors over
pedestrian trajectories. Our work is complementary in that, our learned model
explains the effect of the static environment, instead of the dynamic environment
like moving people, on future actions. Other work uses trajectories to infer the
functional features of the environment such as road, sidewalk and entrance [13].
Our work addresses the inverse task of inferring trajectories from physical scene
features. Work exploring the impact of destinations, such as entrances and ex-
its, of the environment on trajectories has shown that knowledge of goals yields
better recognition of human activity [14], [15]. Gong et al. [16] used potential
goals and motion planning from homotopy classes to provide a prior for tracking
under occlusion. Our work expands the expressiveness of homotopy classes in
two significant ways, by generating a distribution over all trajectories including
homotopy classes, and incorporating observations about physical scene features
to make better inference about paths. Figure 2 depicts the qualitative difference
between shortest distance paths of ‘hard’ homotopy classes and ‘soft’ probability
distributions generated by our proposed approach. Notice how the distribution
over potential trajectories captures subtle agent preferences such as walking on
the sidewalk versus the parking lot, and keeping a safe distance from cars.

There is also an area of emerging research termed early recognition, where
the task is to classify an incoming temporal sequence as early as possible while
maintaining a level of detection accuracy [17], [18], [19]. Our task of activity fore-
casting differs in that we are recovering a distribution over a sequence of future
actions as opposed to classifying a partial observation sequence as a discrete
activity category. In fact, our approach can forecast possible trajectories before
any pedestrian observations are available.
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Fig. 3. Underlying graphical model and state representation for IOC. (a) Proposed
hMDP: agent knows own state s, action a and reward (or cost) r but only noisy
measurements of the state u are observed, (b) MDP: agent state and actions are fully
observed and (c) ground plane is discretized into cells which represent states.

2 Preliminaries

Markov Decision Processes and Optimal Control. The Markov decision process
(MDP) [20] is used to express the dynamics of a decision-making process (Figure
3b). The MDP is defined by an initial state distribution p(s0), a transition model
p(s′|s, a) (shorthand ps

′
s,a) and a cost function r(s). Given these parameters, we

can solve the optimal control problem by learning the optimal policy π(a|s),
which encodes the distribution of action a to take when in state s. To be concrete,
Figure 3c depicts the state and action space defined in this work. The state s
represents a physical location in world coordinates s = [x, y] and the action a is
the velocity a = [vx, vy] of the actor. The policy π(a|s) maps states to actions,
describing which direction to move (action) when an actor is located at some
position (state). The policy can be deterministic or stochastic.

Inverse Optimal Control. In the inverse optimal control problem, the cost func-
tion is not given and must be discovered from demonstrated examples. Various
approaches using structured maximum margin prediction [21], feature matching
[4] and maximum entropy IRL [3] have been proposed for recovering the cost
function. We build on the maximum entropy IOC approach in [6] and extend the
model to deal with noisy observations. We make an important assumption about
the form of the cost function r(s), which enables us to translate from observed
physical scene features to a single cost value. The cost function:

r(s; θ) = θ�f(s), (1)

is assumed to be a weighted combination of feature responses
f(s) = [f1(s) · · · fK(s)]�, where each fk(s) is the response of a physical scene
feature, such as the soft output of a grass classifier, and θ is a vector of weights.
By learning the parameters of the cost function, we are learning how much a
physical scene feature affects a person’s actions. For example, a feature such as
car and building, will have large weights because they are high cost and should be
avoided. This explicit modeling of the effect of physical scene features on actions
via the cost function sets this approach apart from traditional motion-based
models of pedestrian dynamics.
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3 Hidden Variable Inverse Optimal Control (HIOC)

In a vision-based system, we do not have access to the true state, such as the
location of the actor, or the true action, such as the velocity of the actor. Instead,
we only have access to the output of a noisy tracking algorithm. Therefore, we
deal with observation uncertainty via a hidden state variable (Figure 3a). Using
this hidden model, HIOC determines the reliability of observed states, in our
case tracker detections, by adjusting its associated cost weight. For example, if
the tracker output has low precision, the corresponding weight parameter will
be decreased during training to minimize the reliance on the tracker output.

In the maximum entropy framework, the distribution over a state sequence s
is defined as:

p(s; θ) =

∏
t e

r(st)

Z(θ)
=

e
∑

t θ
�f (st)

Z(θ)
, (2)

where θ are the parameters of the cost function, f (st) is the vector of feature
responses at state st and Z(θ) is the normalization function. In other words,
the probability of generating a trajectory s is defined to be proportional to the
exponentiated sum of features encountered over the trajectory.

In our hMDP model (Figure 3a), we add state observations u to represent
the uncertainty of being in a state. This implies a joint distribution over states
and observations as:

p(s,u; θ) =

∏
t p(ut|st)eθ

�f (st)

Z(θ)
=

e
∑

t

{
θ�f (st)+θo log p(ut|st)

}

Z(θ)
, (3)

where the observation model p(ut|st) is a Gaussian distribution. Notice that by
pushing the observation model into the exponent as log p(ut|st) it can also be
interpreted as an auxiliary ‘observation feature’ with an implicit weight of one,
θo = 1. However, we increase the expressiveness of the model by allowing the
weight parameter θo of observations to be adjusted at training.

3.1 Training and Inference

In the training step, we recover the optimal cost function parameters θ and
consequentially an optimal policy π(a|s), by maximizing the entropy of the con-
ditional distribution or equivalently the likelihood maximization of the observa-
tions under the maximum entropy distribution,

p(s|u; θ) = e

{∑
t θ

�f ′
(st)

}

Z(θ)
, (4)

where the feature vector f ′(st) now includes the tracker observation features.
To maximize the entropy of (4), we use exponentiated gradient descent to

iteratively minimize the gradient of the log-likelihood L � log p(s|u; θ). The
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Algorithm 1. Backwards pass
V (s)← −∞
for n = N, . . . , 2, 1 do

V (n)(sgoal)← 0

Q(n)(s, a) = r(s; θ) + E
Ps′
s,a

[V (n)(s′)]

V (n−1)(s) = softmaxa Q(n)(s, a)
end for
πθ(a|s) = eQ(s,a)−V (s)

Algorithm 2. Forward pass
D(sinitial)← 1
for n = 1, 2, . . . , N do

D(n)(sgoal)← 0

D(n+1)(s) =
∑

s′,a P s
s′,aπθ(a|s′)D(n)(s′)

end for
D(s) =

∑
n D(n)(s)

f̂θ =
∑

s f(s)D(s)

gradient can be shown to be the difference between the empirical mean fea-
ture count f̄ = 1

M

∑M
m f (sm), the average features accumulated over M demon-

strated trajectories, and the expected mean feature count f̂θ, the average features
accumulated by trajectories generated by the parameters, ∇Lθ = f̄ − f̂θ. We up-
date θ according to the exponentiated gradient, θ ← θeλ∇Lθ , where λ is the
step size and the gradient is computed using a two-step algorithm described
next. At test time, the learned weights are held constant and the same two-step
algorithm is used to compute the forecasted distribution over future actions, the
smoothing distribution or the destination posterior.

Backward pass. In the first step (Algorithm 1), we use the current weight pa-
rameters θ and compute the expected cost of a path ending in sg and starting in
si �= sg. Essentially, we are computing the expected cost to the goal from every
possible starting location. The algorithm revolves around the repeated compu-
tation of the state log partition function V (s) and the state-action log partition
function Q(s, a) defined in Algorithm 1. Intuitively, V (s) is a soft estimate of the
expected cost of reaching the goal from state s and Q(s, a) is the soft expected
cost of reaching the goal after taking action a from the current state s. Upon
convergence, the maximum entropy policy is πθ(a|s) = eQ(s,a)−V (s).

Forward pass. In the second step (Algorithm 2), we propagate an initial distri-
bution p(s0) according to the learned policy πθ(a|s). Let D(n)(s) be defined as
the expected state visitation count which is a quantity that expresses the prob-
ability of being in a certain state s at time step n. Initially, when n is small,
D(n)(s) is a distribution that sums to one. However, as the probability mass is
absorbed by the goal state, the sum of the state visitation counts quickly con-
verges to zero. By computing the total number of times each state was visited
D(s) =

∑
n D

(n)(s), we are computing the unnormalized marginal state visita-
tion distribution. We can compute the expected mean feature count as a weighted
sum of feature counts f̂θ =

∑
s f(s)D(s).

3.2 Destination Forecasting from Noisy Observations

In novel scenes, the destination of an actor is unknown and must be inferred.
For each activity, a prior on potential destinations p(sg), may be generated
(e.g., points along the perimeter of a car for the activity ‘approach car’) and, in
principle, a brute force application of Bayes’ rule enables computing the posterior
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Fig. 4. Classifier feature response maps. Top left is the original image

over both destinations and intermediate states. A naive application, however, is
quite expensive as we may wish to consider a large number of possible goals –
potentially every state.

Fortunately, the structure of the proposed maximum entropy model enables
efficient inference. Following Ziebart et al. [6], we approximate the posterior over
goals using a ratio of partition functions, one with and one without observations:

p(sg|s0, u1:t) ∝ p(u1:t|s0, sg) · p(sg) (5)

∝ eVu1:t (sg)−V (sg) · p(sg), (6)

where Vu1:t(sg) is the state log partition of sg given the initial state is s0 and the
observations u1:t and V (sg) is the state log partition of sg without any observa-
tions. The ratio of log partition functions measure the ‘progress’ made toward
a goal by adding observations. In deterministic MDPs, where the action deci-
sions may be randomized but the state transitions follow deterministically from
a state-action pair, we can invert the role of goal and start locations for an agent.
Doing so enables computing the partition functions required in time independent
of the number of goals. Using this inversion property, the state partition values
for each goal can be computed efficiently by inverting the destination and start
states and running Algorithm 1.

4 Experiments

We evaluate the four tasks of activity analysis, namely, (1) forecasting, (2)
smoothing, (3) destination prediction and (4) knowledge transfer, using our pro-
posed unified framework. For our evaluation we use videos from the VIRAT
ground dataset [22]. Our dataset consists 92 videos from two scenes, shown in
Figure 1. Scene A consists of 56 videos and scene B consists of 36 videos. Each
scene dataset consists of three activities categories: approach car, depart car and
walk through. In all experiments, 80% of the data was used for training and the
remaining 20% used for testing using 3-fold cross validation.

The physical attributes were extracted using the scene segmentation labeling
algorithm proposed by Munoz et al. [1]. In total 9 semantics labels were used,
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including grass, pavement, sidewalk, curb, person, building, fence, gravel, and
car. For each semantic label, four features were generated, including the raw
probability and three types of ‘distance-to-object’ features. The distance feature
is computed by thresholding the probability maps and computing the exponen-
tiated distance function (with different variance). A visualization of the proba-
bility maps used as features is shown in Figure 4. For the smoothing task, the
pedestrian tracker output is blurred with three different Gaussian filters which
contribute three additional features. By adding a constant feature to model travel
time, the total number of features used is 40.

Our state space is the 3D floor plane and as such, 2D image features, obser-
vations and potential goals are projected to the floor plane (camera parameters
are assumed to be known) for all computations. For the activities depart car
and walk through potential goals are set densely around the outer perimeter of
the floor plane projection. For the activity approach car, connected components
analysis is used to extract polygonal shape contours of detected cars, whose
vertices are used to define a set of potential goals.

4.1 Metrics and Baselines

In each of the experiments, we have one demonstrated path, a sequence of states
st and actions at, generated by a pedestrian for a specific configuration of a
scene. We compare the demonstrated path with the probabilistic distribution
over paths generated by our algorithm using two different metrics: first is proba-
bilistic and evaluates the likelihood of the demonstrated path under the predicted
distribution, the second performs a more deterministic evaluation by estimating
the physical distances between a demonstrated path and paths sampled from
our distribution. We use the negative log-loss (NLL) of a trajectories, as in [6]
as our probabilistic comparison metric. The negative log-loss:

NLL(s) = Eπ(a|s)

[

− log
∏

t

π(at|st)
]

, (7)

is the expectation of the log-likelihood of a trajectory s under a policy π(a|s). In
our example, this metric measures the probability of drawing the demonstrated
trajectory from the learned distribution over all possible trajectories. We also
compute the modified Hausdorff distance (MHD) as a physical measure of the
distance between two trajectories. The MHD allows for local time warping by
finding the best local point correspondence over a small temporal window (±15
steps in our experiments). When the temporal window is zero, the MHD is ex-
actly the Euclidean distance. We compute the mean MHD, by taking the average
MHD between the demonstrated trajectory and 5000 trajectories randomly sam-
pled from our distribution. The units of the MHD are in pixels in the 3D floor
plane, not the 2D image plane. We always divide our metrics by the trajectory
length so that we can compare metrics across different models and trajectories
of different lengths.
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We compare against a maximum entropy Markov model (MEMM) that esti-
mates the policy based on environmental attribute features and tracker obser-
vation features. The policy is computed by:

π(a|s) ∝ exp{w�a F (s)}. (8)

where the weight vector wa is estimated using linear regression and F (s) is a
vector of features for all neighboring states of s. This model only takes into the
account the features of the potential next states when choosing an action and
has no concept of the future beyond a one-step prediction model.

We also compare against a location-based Markov motion model, which learns
a policy from observed statistics of states and actions in the training set:

π(a|s) ∝ c(a, s) + α, (9)

where c(a, s) is the number of times the action a was observed in state s and α
is a pseudo-count used to smooth the distribution via Laplace smoothing.

4.2 Forecasting Evaluation

Evaluating the true accuracy of a forecasting distribution over all future trajec-
tories is difficult because we do not have access to such ‘ground truth’ from the
future. As a proxy, we measure how well a learned policy is able to describe a
single annotated test trajectory. We begin experiments in a constrained setting,
were we fix the start and goal states to evaluate forecasting performance in iso-
lation. Unconstrained experiments are performed in section 4.4. We compare our
proposed model against the MEMM and the Markov motion model. Figure 5a
and Table 1a show how our proposed model outperforms the baseline models.
Note that tracker observations are not used in this experiment since we are only
evaluating the performance of forecasting and not smoothing.

Qualitative results of activity forecasting are depicted in Figure 6. Our pro-
posed model is able to leverage the physical scene features and generate a dis-
tribution that preserves actor preferences learned during training. Since many
pedestrians used the sidewalk in the training examples, our model has learned
that sidewalk areas have greater rewards or lower cost than paved parking lot
areas. Notice that although it would be faster and shorter to walk diagonally
across the parking lot, in terms of actor preferences it is more optimal to use the
sidewalk. Without the use of informative physical scene features, we would need
to learn motion dynamics with a Markov motion model from a large amount
of demonstrated trajectories. Unfortunately, the Markov motion model degener-
ates to a random walk when there are not enough training trajectories for this
particular configuration of the scene.

4.3 Smoothing Evaluation

In our smoothing evaluation, we measure how the computed smoothing distribu-
tion accounts for noisy observations and generates an improved distribution over
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Fig. 5. Mean NLL of forecasting and smoothing performance

Proposed Travel time MDP Motion model

Fig. 6.Comparing forecasting distributions. The travel time only MDP ignores physical
attributes of the scene. The Markov motion model degenerates to a random walk when
train data is limited.

trajectories. We run our experiments with a state-of-the-art super-pixel tracker
(SPT) [23] and an in-house template-based tracker to show how the smoothing
distribution improves the quality of estimated pedestrian trajectories. Again,
we fix the start and goal states to isolate the performance of smoothing. Our
in-house tracker is conservative and only keeps strong detections of pedestrians,
which results in many missing detections. Many gaps in detection causes the
MHD between the observed trajectory and true trajectory to be large without
smoothing. In contrast, the trajectories of the SPT have no missing observations
due to temporal filtering but have a tendency to drift away from the pedestrian.
As such, the SPT has much better performance compared to our in-house tracker
before smoothing. Figure 7 shows a significant improvement for both trackers
after smoothing. Despite that fact that our in-house tracker is not as robust as

Table 1. Average NLL per activity category and dataset (A and B) for (a) forecasting
and (b) smoothing performance

(a) Forecasting Proposed MEMM MarkovMot
approach (A) 1.657 1.962 2.157
depart (A) 1.618 1.940 2.103
walk (A) 1.544 2.027 2.174
approach (B) 1.519 1.780 2.180
depart (B) 1.519 1.903 2.115
walk (B) 1.707 1.997 2.182

(b) Smoothing Proposed MEMM
approach (A) 1.602 1.942
depart (A) 1.594 1.923
walk (A) 1.483 2.022
approach (B) 1.465 1.792
depart (B) 1.513 1.882
walk (B) 1.695 2.001
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Fig. 8. Destination forecasting and path smoothing. Our proposed approach infers a
pedestrians likely destinations as more noisy observations become available. Concur-
rently, the smoothing distribution (likely paths up to the current time step t) and the
forecasting distribution (likely paths from t until the future) are modified as observa-
tions are updated.

SPT, the MHD after smoothing is actually better than the SPT post-smoothing.
This is due to the fact that our tracker only generates confident, albeit sparse,
detections. The distributions generated by our approach also outperforms the
MEMM, as shown in Table 1b.

4.4 Destination Forecasting Evaluation

In the most general case, the final destination of a pedestrian is not know in
advance so we must reason about probable destinations as tracker observations
become available. In this experiment we hold the start state and allow the des-
tination state to be inferred by Equation (6). Figure 8 shows a visualization of
destination forecasting, and consequentially, the successive updates of the fore-
casting and smoothing distributions. As noisy pedestrian tracker observations
are acquired, the posterior distribution over destinations, the forecasting and
smoothing distributions are updated. Quantitative results shown in Figure 9
show that the MHD quickly approaches a minimum for most activity categories,
after about 30% of the noisy tracker trajectory has been observed. This indicates
that we can forecast a person’s likely path to a final destination after observing
only a third of the trajectory.
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Fig. 9. Destination forecasting performance. Modified Hausdorff distance is the aver-
age distance between the ground truth trajectory and sampled trajectories from the
inferred distribution. (a) per activity category performance over datasets, (b) average
performance over the entire dataset.

Table 2. MHD for knowledge transfer performance. (a) forecasting and (b) smoothing.
Proposed approach can be applied to novel scenes with comparable performance.

(a) Forecasting TEST
TRAIN Scene A Scene B
Scene A 9.8520 7.4925
Scene B 10.4358 8.9774

|Δ| 0.584 1.485

(b) Smoothing TEST
TRAIN Scene A Scene B
Scene A 3.2582 6.4705
Scene B 4.9194 7.2837

|Δ| 1.661 0.813

Fig. 10. Knowledge transfer examples of forecasting in novel scenes

4.5 Knowledge Transfer

Since our proposed method encapsulates activities in terms of physical scene
features and not physical location, we are also able to generalize to novel scenes.
This is a major advantage of our approach over other methods that use scene-
specific motion dynamics. In this experiment we use two locations: scene A and
scene B, and show that learned parameters can be transferred in both directions
with similar performance. Table 2 shows that the transferred parameters perform
on par with scene specific parameters. With respect to forecasting performance,
the average MHD between a point of the ground truth and a point of a trajectory
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sampled from the forecasting distribution, is degraded by 0.584 pixels. It is
interesting to note that in the case of training on scene A and transferring
to scene B, the transferred model actually performs slightly better. We believe
that this is caused by the fact that we have more training trajectories from scene
A. In Figure 10 we also show several qualitative results of trajectory forecasting
and destination forecasting on novel scenes. Even without observing a single
trajectory from the scene, our approach is able to generate plausible forecasting
distributions for activities such as walking through the scene or departing from
a car.

5 Conclusion

We have demonstrated that tools from inverse optimal control can be used for
computer vision tasks in activity understanding and forecasting. Specifically, we
have modeled the interaction between moving agents and semantic perception of
the environment. We have also made proper modifications to accommodate the
uncertainty inherent to tracking and detection algorithms. Further, the result-
ing formulation, based on a hidden variable MDP, provides a unified framework
to support a range of operations in activity analysis: smoothing, path and des-
tination forecasting, and transfer, which we validated both qualitatively and
quantitatively. Our initial work focused on paths in order to generate an ini-
tial validation of the approach for computer vision. Moving forward, however,
our proposed framework is general enough to handle non-motion representations
such as sequences of discrete action-states. Similarly, we limited our evaluation to
physical attributes of the environments, but an exciting possibility would be to
extend the approach to activity features, similar to those used in crowd analysis,
or other semantic attributes of the environment.
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