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Abstract. We address the problem of determining where a photo was taken by
estimating a full 6-DOF-plus-intrincs camera pose with respect to a large geo-
registered 3D point cloud, bringing together research on image localization, land-
mark recognition, and 3D pose estimation. Our method scales to datasets with
hundreds of thousands of images and tens of millions of 3D points through the
use of two new techniques: a co-occurrence prior for RANSAC and bidirectional
matching of image features with 3D points. We evaluate our method on several
large data sets, and show state-of-the-art results on landmark recognition as well
as the ability to locate cameras to within meters, requiring only seconds per query.

1 Introduction

Localizing precisely where a photo or video was taken is a key problem in computer
vision with a broad range of applications, including consumer photography (“where did
I take these photos again?”), augmented reality [1], photo editing [2], and autonomous
navigation [3]. Information about camera location can also aid in more general scene
understanding tasks [4, 5]. With the rapid growth of online photo sharing sites and the
creation of more structured image collections such as Google’s Street View, increasingly
any new photo can in principle be localized with respect to this growing set of existing
imagery.

In this paper, we approach the image localization problem as that of worldwide pose
estimation: given an image, automatically determine a camera matrix (position, orienta-
tion, and camera intrinsics) in a georeferenced coordinate system. As such, we focus on
images with completely unknown pose (i.e., with no GPS). In other words, we seek to
extend the traditional pose estimation problem, applied in robotics and other domains,
to accurate georegistration at the scale of the world—or at least as much of the world as
we can index. Our focus on precise camera geometry is in contrast to most prior work
on image localization that has taken an image retrieval approach [6, 7], where an image
is localized by finding images that match it closely without recovering explicit camera
pose. This limits the applicability of such methods in areas such as augmented reality
where precise pose is important. Moreover, if we can establish the precise pose for an
image, we then instantly have strong priors for determining what parts of an image
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Fig. 1. A worldwide point cloud database. In order to compute the pose of a query image, we
match it to a database of georeferenced structure from motion point clouds assembled from photos
of places around the world. Our database (left) includes a street view image database of downtown
San Francisco and Flickr photos of hundreds of landmarks spanning the globe; a few selected
point cloud reconstructions are shown here. We seek to compute the georeferenced pose of new
query images, such as the photo of Chicago on the right, by matching to this worldwide point
cloud. Direct feature matching is very noisy, producing many incorrect matches (shown as red
features). Hence, we devise robust new techniques for the pose estimation problem.

might be sky (since we know where the horizon must be) or even what parts are roads
or buildings (since the image is now automatically registered with a map). Our ultimate
goal is to automatically establish exact camera pose for as many images on the Web as
possible, and to leverage such priors to understand images at world-scale.

Our method directly establishes correspondence between 2D features in an image
and 3D points in a very large point cloud covering many places around the world, then
computes a camera pose consistent with these feature matches. This approach follows
recent work on direct 2D-to-3D registration [8, 9], but at a dramatically larger scale—
we use a 3D point cloud created by running structure from motion (SfM) on over 2
million images, resulting in over 800,000 reconstructed images and more than 70 mil-
lion 3D points, covering hundreds of distinct places around the globe. This dataset,
illustrated in Figure 1, is drawn from three individual datasets: a landmarks dataset cre-
ated from over 200,000 geotagged high-resolution Flickr photos of world’s top 1,000
landmarks, the recent San Francisco dataset with over a million images covering down-
town San Francisco [7], and a smaller dataset from a university campus with accurate
ground truth query image locations [10].

While this model only sparsely covers the Earth’s surface, it is “worldwide” in the
sense that it includes many distinct places around the globe, and is of a scale more than
an order of a magnitude beyond what has been attempted by previous 2D-to-3D pose es-
timation systems (e.g., [8, 9]). At this scale, we found that noise in the feature matching
process—due to repeated features in the world and the difficulty of nearest neighbor
matching at scale—necessitated new techniques. Our main contribution is a scalable
method for accurately recovering 3D camera pose from a single photograph taken at
an unknown location, going well beyond the rough identification of position achieved
by today’s large-scale image localization methods. Our 2D-to-3D matching approach to



Worldwide Pose Estimation Using 3D Point Clouds 17

image localization is advantageous compared with image retrieval approaches because
the pose estimate provides a powerful geometric constraint for validating a hypothe-
sized location of an image, thereby improving recall and precision. Even more criti-
cally, we can exploit powerful priors over sets of 3D points, such as their co-visibility
relations, to address both scalability and accuracy. We show state-of-the-art results com-
pared with other localization methods, and require only a few seconds per query, even
when searching our entire worldwide database.

A central technical challenge is that of finding good correspondences to image fea-
tures in a massive database of 3D points. We start with a standard approach of using
approximate nearest neighbors to match SIFT [11] features between an image and a
set of database features, then use a hypothesize-and-test framework to find a camera
pose and a set of inlier correspondences consistent with that pose. However, we find
that with such large 3D models the retrieved correspondences often contain so many
incorrect matches that standard matching and RANSAC techniques have difficulty find-
ing the correct pose. We propose two new techniques to address this issue. The first
is the use of statistical information about the co-occurrence of 3D model points in im-
ages to yield an improved RANSAC scheme, and the second is a bidirectional matching
algorithm between 3D model points and image features.

Our first contribution is based on the observation that 3D points produced by SfM
methods often have strong co-occurrence relationships; some visual features in the
world frequently appear together (e.g., two features seen at night in a particular place),
while others rarely appear in the same image (e.g., a daytime and nighttime feature).
We find such statistical co-occurrences by analyzing the large numbers of images in
our 3D SfM models, then use them as a new sampling prior for RANSAC in order to
efficiently find sets of matches that are likely to be geometrically consistent. This sam-
pling technique can often succeed with a small number of RANSAC rounds even with
inlier rates of less than 1%, which is critical for speed and accuracy in our task. Sec-
ond, we present a bidirectional matching scheme aimed at boosting the recovery of true
correspondences between image features and model points. It intelligently combines
the traditional “forward matching” from features in the image to points in the database,
with the recently proposed “inverse matching” [8] from points to image features. We
show this approach performs better than either forward or inverse matching alone.

We present a variety of results of our method, including quantitative comparisons
with recent work on image localization [8, 7, 9] and qualitative results showing the
full, 6-degree-of-freedom (plus intrinsics) pose estimates produced by our method. Our
method yields better results than the image-retrieval-style method of Chen et al.[7]
when both use only image features, and achieves nearly the same performance—again,
using image features alone—even when their approach is provided with approximate
geotags for query images. We evaluate localization accuracy on a smaller dataset with
precise geotags, and show examples of the recovered field of view superimposed on
satellite photos for both outdoor and indoor images.

2 Related Work

Our task of worldwide pose estimation is related to several areas of recent interest in
computer vision.
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Landmark Recognition and Localization. The problem of “where was this photo
taken?” can be answered in several ways. Some techniques approach the problem as
that of classification into one of a predefined set of places (e.g., “Eiffel Tower,” “Arc
de Triomphe”)—i.e., the “landmark recognition/classification” problem [12, 13]. Other
methods create a database of localized imagery and formulate the problem as one of
image retrieval, after which the query image can be associated with the location of the
retrieved images. For instance, in their im2gpswork, Hays and Efros seek to character-
ize the location of arbitrary images (e.g., of forests and deserts) with a rough probability
distribution over the surface of Earth, but with coarse confidences on the order of hun-
dreds of kilometers [4]. In follow-up work, human travel priors are used to improve
performance for sequences of images [14], but the resulting locations are still coarse.
Others seek to localize urban images more precisely, often by matching to databases of
street-side imagery [6, 7, 15–18] often using bag-of-words retrieval techniques [19, 20].
Our work differs from these retrieval-based methods in that we seek not just a rough
camera position (or distribution over positions), but a full camera matrix, with accurate
position, orientation, and focal length. To that end, we match to a georegistered 3D
point cloud and find pose with respect to these points. Other work in image retrieval
also uses co-occurrence information, but in a different way from what we do. Chum et
al. use co-occurrence of visual words to improve matching [21] by identifying confus-
ing combinations of visual words, while we find use co-occurrence to guide sampling
of good matches.

Localization from Point Clouds. More similar to our approach are methods that lever-
age results of SfM techniques. Irschara et al. [22] use SfM reconstructions to generate
a set of “virtual” images that cover a scene, then index these as documents using BoW
methods. Direct 2D-to-3D approaches have recently been used to establish correspon-
dence between a query image and a reconstructed 3D model, bypassing an intermediate
image retrieval step [8, 9]. While “inverse matching” from 3D points to image fea-
tures [8] can sometimes find correct matches very quickly though search prioritization,
results with this method becomes more difficult on the very large models we consider
here. Similarly, the large scale will also pose a severe challenge to the method of Sattler
et al. [9] as the matches becomes more noisy; this system already needs to perform
RANSAC for up to a minute to ensure good results on much smaller models. In con-
trast, our method, aided by co-occurrence sampling and bidirectional search techniques,
is able to handle much larger scales while requiring only a few seconds per query image.
Finally, our co-occurrence sampling method is related to the view clustering approach
of Lim et al. [3], but uses much more detailed statistical information.

3 Efficient Pose Estimation

Our method takes as input a database of georegistered 3D points P resulting from struc-
ture from motion on an set of database images D. We are also given a bipartite graph G
specifying, for each 3D point, the database images it appears in, i.e., a point p ∈ P is
connected to an image J ∈ D if p was detected and matched in image J . For each 3D
point p we denote the set of images in which p appears (i.e., its neighbors in G) as Ap.
Finally, one or more SIFT [11] descriptors is associated with each point p, derived from
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Fig. 2. Examples of frequently co-occurring points as seen in query images. Notice that such
points are not always close to each other, in either 3D space or the 2D images.

the set of descriptors in the images Ap that correspond to p; in our case we use either
the centroid of these descriptors or the full set of descriptors. To simplify the discussion
we initially assume one SIFT descriptor per 3D point.

For a query image I (with unknown location), we seek to compute the pose of the
camera in a geo-referenced coordinate system. To do so, we first extract a set of SIFT
feature locations and descriptors Q from I . To estimate the camera pose of I , a straight-
forward approach is to find a set of correspondences, or matches, between the 2D image
features Q and 3D points P (e.g., using approximate nearest neighbor search). The pro-
cess yields a set of matches M, where each match (q, p) ∈ M links an image feature
q ∈ Q to a 3D point p ∈ P . Because these matches are corrupted by outliers, a pose
is typically computed from M using robust techniques such as RANSAC coupled with
a minimal pose solver (e.g., the 3-point algorithm for pose with known focal length).
To reduce the number of false matches, nearest neighbor methods often employ a ratio
test that requires the distance to the nearest neighbor to be at most some fraction of the
distance to the second nearest neighbor.

As the number of points in the database grows larger, several problems with this ap-
proach begin to appear. First, it becomes harder to find true nearest neighbors due to the
approximate nature of high-dimensional search. Moreover, the nearest neighbor might
very well be an incorrect match (even if a true match exists in the database) due to
similar-looking visual features in different parts of the world. Even if the closest match
is correct, there may still be many other similar points, such that the distances to the
two nearest neighbors have similar values. Hence, in order to get good recall of corre-
spondence, the ratio test threshold must be set ever higher, resulting in poor precision
(i.e., many outlier matches). Given such noisy correspondence, RANSAC methods will
need to run for many rounds to find a consistent pose, and may fail outright. To address
this problem, we introduce two techniques that yield much more efficient and reliable
pose estimates from very noisy correspondences: a co-occurrence-based sampling prior
for speeding up RANSAC and a bidirectional matching scheme to improve the set of
putative matches.

3.1 Sampling with Co-occurrence Prior

As a brief review, RANSAC operates by selecting samples from M that are minimal
subsets of matches for fitting hypothesis models (in our case, pose estimates) and then
evaluating each hypothesis by counting the number of inliers. The basic version of
RANSAC forms samples by selecting each match in M uniformly at random. There is
a history of approaches that operate by biasing the sampling process towards better sub-
sets. These include guided-MLESAC [23], which estimates the inlier probability of each
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match based on cues such as proximity of matched features; PROSAC [24], which sam-
ples based on a matching quality measure; and GroupSAC [25], which selects samples
using cues such as image segmentation. In our approach, we use image co-occurrence
statistics of 3D points in the database images (encoded in the bipartite graph G) to form
high-quality samples. This leads to a powerful sampling scheme: choosing subsets of
matched 3D points that we believe are likely to co-occur in new query images, based on
prior knowledge from the SfM results. In other words, if we denote with PM the subset
of 3D points involved in the set of feature matches M, then we want to sample with
higher probability subsets of PM that co-occur frequently in the database, hence bias-
ing the sampling towards more probable subsets. Unlike previous work, which tends to
use simple evidence from the query image, our setting allows for a much more power-
ful prior due to the fact that we have multiple (for some datasets, hundreds) of images
viewing each 3D point, and can hence leverage statistics not available in other domains.
This sampling scheme enables our method to easily handle inlier rates as low as 1%,
which is essential as we use a permissive ratio test to ensure high enough recall of true
matches. Figure 2 shows some examples of frequently co-occurring points; note that
these points are not always nearby in the image or 3D space.

Given a set of putative matches M, and a minimal number of matches K we need
to sample to fully constrain the camera pose, the goal in each round of RANSAC is
to select such a subset of matched points,1 {p1, . . . , pK} ⊆ PM, proportional to an
estimated probability that they jointly correspond to a valid pose, i.e.,

Pr select(p1, . . . , pK) ∝ Pr valid(p1, . . . , pK). (1)

As a proxy for this measure, we define the likelihood to be proportional to their empir-
ical co-occurrence frequency in the database, taking the view that if a set of putative
points were often seen together before, then they are likely to be good matches if seen
together in a new image. Specifically, we define:

Pr select(p1, . . . , pK) ∝ |Ap1 ∩ · · · ∩ ApK | , (2)

i.e., the number of database images in which all the K points are visible. If all of the
image sets Ap1 , . . . ApK are identical and have large cardinality, then Pr select is high; if
any two are disjoint, then Pr select is 0.

As it is quite expensive to compute and store such joint probabilities for K larger
than 1 or 2 (in our case, 3 or 4), we instead opt to draw the points sequentially, where
the i-th point is selected by marginalizing over all possible future choices:

Pr select(pi|p1, . . . , pi−1) ∝
∑

pi+1,...,pK

|Ap1 ∩ · · · ∩ ApK |. (3)

In practice, the summation over future selections (pi+1, . . . , pK) can still be slow. To
avoid this expensive forward search, we approximate it using simply the co-occurrence
frequency of the first i points, i.e.,

P̃rselect(pi|p1, . . . , pi−1)∝ |Ap1 ∩ · · · ∩ Api | . (4)

1 Here we assume that each point p is matched to at most one feature in Q, and hence appears
at most once in M. We find that this is almost always the case in practice.
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Given precomputed image sets Ap, this quantity can be evaluated efficiently at runtime
using fast set intersection.2

We also tried defining Pr select using other measures, such as the Jaccard index and
the cosine similarity between Ap1 ∩· · ·∩Api−1 and Api , but found that using simple co-
occurrence frequency performed just as well as these more sophisticated alternatives.

3.2 Bidirectional Matching

The RANSAC approach described above assumes a set of putative matches; we now
return to the problem of computing such a set in the first place. Matching an image
feature to a 3D point amounts to retrieving the feature’s nearest neighbor in the 128-D
SIFT space, among the set of points P in the 3D model (using approximate nearest
neighbor techniques such as [26]), subject to a ratio test. Conversely, one could also
match in the other direction, from 3D points to features, by finding for each point in
P its nearest neighbor among image features Q, subject to the same kind of ratio test.
We call the first scheme (image feature to point) forward matching and the second
(point to feature) inverse matching. Again, we begin by assuming there is a single SIFT
descriptor associated with each point.

We employ a new bidirectional matching scheme combining forward and inverse
matching. A key observation is that visually similar points are more common in our 3D
models than they are in a query image, simply because our models tend to have many
more points (millions) than an image has features (thousands). A prominent point visi-
ble in a query image sometimes cannot be retrieved during forward matching, because it
is confused with other points with similar appearance. However it is often much easier
to find the correct match for such a point in the query image, where the corresponding
feature is more likely to be unique. Hence inverse matching can help recover what for-
ward matching has missed. On the other hand, inverse matching alone is inadequate for
large models, even with prioritization [8], due to the much higher proportion of irrel-
evant points for any given query image and hence the increased difficulty in selecting
relevant ones to match. This suggests a two-step approach:

1. Find a set of primary matches using the conventional forward matching scheme,
and designate as preferred matches a subset of them with low distance ratios (and
hence relatively higher confidence);

2. Augment the set of primary matches by performing a prioritized inverse match-
ing [8], starting from the preferred matches as the model points to search for in the
images. The final pose estimation is carried out on the augmented set of matches.

We apply these two steps in a cascade: we attempt pose estimation as soon as the pri-
mary matches are found and skip the second step if we already have enough inliers to
successfully estimate the pose.

As mentioned above, a 3D point can have multiple descriptors since it is associated
with features from multiple database images. Hence we can choose to either compute

2 While our method requires that subsets of three or four points often be co-visible in the
database images, this turns out to be a very mild assumption given the further constraints
we use to determine correct poses, described below.
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and store a single average descriptor for each point (as in [8, 9]) or keep all the individ-
ual descriptors; we evaluate both options in our experiments. In the latter case, we relax
the ratio test so that, besides meeting the ratio threshold, a match is also accepted if both
the nearest neighbor and the second nearest neighbor (of the query feature) are descrip-
tors of the same 3D point. This is necessary to avoid “self confusion,” since descriptors
for the same point are expected to be similar. While this represents a less strict test, we
found that it works well in practice. The same relaxation also applies to the selection of
preferred matches. For inverse matching, we always use average descriptors.

4 Evaluation Datasets

To provide a quantitative evaluation of the localization performance of our method,
we have tested on three datasets, both separately and combined into a single point
cloud; some are from the literature to facilitate benchmarking. Table 1 summarizes
each dataset. The sizes of the Dubrovnik and Rome datasets used in [8] are included
for comparison; our combined model is about two orders of magnitude larger than the
Rome dataset.

Landmarks. The first dataset consists of a large set of geotagged photos (i.e., photos
with latitude and longitude) of famous places downloaded from Flickr. We first created
a list of geotagged Flickr photos from the world’s top 1,000 landmarks derived via clus-
tering on geotags by Crandall et al. [27]. We ran SfM on each of these 1,000 individual
collections to create a set of point cloud models [28], estimated the upright orientation
of each model, then geo-registered the reconstructed 3D model using the image geotags,
so that its coordinates can be mapped to actual locations on the globe. Since the geotags
are quite noisy, we used RANSAC to estimate the required 2D translation, 1D rotation,
and scale. This sometimes produced inaccurate results, which could be alleviated in
the future by more robust SfM and georegistration methods [29]. Finally, we took the
union of these SfM models to form a single, geo-referenced point cloud. Some of the
individual models are illustrated in Figure 1.

For evaluation, we created a set of test images by removing a random subset of
10,000 images from the reconstruction. This involves removing them from the image
database and their contribution to the SIFT descriptors of points, and deleting any 3D
points that are no longer visible in at least two images. Withholding the test images
slightly reduces the database size, yielding the sizes shown in Table 1. Each test im-
age has a known landmark ID, which can be compared with the ID inferred from an
estimated camera pose for evaluation. This ID information is somewhat noisy due to
overlapping landmarks, but can provide an upper bound on the false registration rate
for the dataset. Since the test images come from the original reconstructions, it should
be possible to achieve a 100% recall rate.

San Francisco. We also use the recently published San Francisco dataset [7], which
contains 640x480 resolution perspective images cropped from omnidirectional panora-
mas. Two types of images are provided: about 1M perspective central images (“PCIs”),
and 638K perspective frontal images (“PFIs”) of rectified facades. Each database image,
as well as each of 803 separate test images taken by cameraphones (not used in recon-
struction), comes with a building ID, which can be used to evaluate the performance of
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Table 1. Statistics of the data sets used for evaluation, including the sizes of the reconstructed
3D models and the number of test images. SF-1 refers to the San Francisco data set with image
histogram equalization and upright SIFT features [7], while SF-0 is the one without. Note that
SF-0 and SF-1 are derived from the same image set.

Images in Points in Test Images in Points in Test
3D model 3D model images 3D model 3D model images

Landmarks 205,162 38,190,865 10,000 Quad 4,830 2,022,026 348
SF-0 610,773 30,342,328 803 Dubrovnik [8] 6,044 1,975,263 800
SF-1 790,409 75,410,077 803 Rome [8] 15,179 4,067,119 1,000

image retrieval or, in our case, pose estimation. We reconstructed our 3D model using
only the PCIs (as the PFIs have non-standard imaging geometry). We reconstructed two
SfM models, one (SF-0) using the raw PCIs (to be consistent with the other datasets),
and one (SF-1) using upright SIFT features extracted from histogram-equalized ver-
sions of the database images (as recommended in [7]). The model was georegistered
using provided geotags. We ignore images that were not reconstructed by SfM.

Quad. The first two datasets only provide coarse ground truth for locations, in the
form of landmark/building identifiers. Although geotags exist for the test images, they
typically have errors in the tens (or hundreds) of meters, and are thus too imprecise
for fine evaluation of positional accuracy. We therefore also use the Quad dataset from
Crandall et al. [10], which comes with a database of images of the Arts Quad at Cornell
University as well as a separate set of test images with accurate, sub-meter error geotags.
We ran SfM on the database images, and use the accurately geotagged photos to test
localization error.

5 Experiments and Results

To recap: to register a query image, we estimate its camera pose by extracting SIFT fea-
tures Q, finding potential matches M with the model points P through nearest neighbor
search plus a ratio test, and running co-occurrence RANSAC to compute the pose, fol-
lowed by bidirectional matching if this initially fails. For the minimal pose solver, we
use the 3-point algorithm if the focal length is approximately known, e.g., from EXIF
data, or the 4-point algorithm [30] if the focal length is unknown and needs to be esti-
mated along with the extrinsics. Finally a local bundle adjustment is used to refine the
pose. We accept the pose if it has at least 12 inlier matches, as in [8, 9].

Precision and Recall of Registration. We first test the effectiveness of exploiting
point co-occurrence statistics in RANSAC using registration rate, i.e., the percentage
of query images registered to the 3D model. We later estimate the likelihood of false
registrations.

Figure 3 (left) shows the registration rates on the Landmarks data set. For RANSAC
with co-occurrence prior, we always use 0.9 as the ratio test threshold. For regular
RANSAC without co-occurrence we experimented with three thresholds (r=0.7, 0.8,
0.9), the best of which at 10,000 RANSAC rounds (r=0.8) has performance roughly



24 Y. Li et al.

0
10
20
30
40
50
60
70
80
90

100

10 100 1000 10000

Pe
rc

en
t o

f I
m

ag
es

 R
eg

ist
er

ed
 

Number of RANSAC Sampling Rounds 

Registration Performance 

With co-occurrence, r=0.9
W/o co-occurrence, r=0.7
W/o co-occurrence, r=0.8
W/o co-occurrence, r=0.9

75

80

85

90

95

100

Forward,
no co-occ.

Forward,
w/ co-occ.

Bidirect.,
no co-occ.

Bidirect.,
w/ co-occ.

Avg. descriptors
All descriptors

Fig. 3. Registration rates on Landmarks. Left: comparison of results with and without co-
occurrence prior for sampling under forward matching. At 10,000 rounds, RANSAC starts to
approach the running time of the ANN-based matching. Right: comparison of forward vs. bidi-
rectional matching. We used 10,000 RANSAC rounds and selected 0.8 as the ratio threshold
for the experiments without using co-occurrence (0.9 otherwise). For comparison, applying the
systems of [8] and [9] on this same data set yielded registration rates of 33.09% and 16.20%
respectively.

equal to running just 10 rounds with co-occurrence. These results demonstrate the
advantage of using co-occurrence to guide sampling, especially when the number of
rounds is small. For this experiment, we used average SIFT descriptors for points (cf.
Sec 3). When using all of its associated descriptors for each point, we observed the
same trend as in Figure 3. The overhead incurred by co-occurrence sampling is only
a small fraction of the total RANSAC time; thus its impact on overall speed is almost
negligible.

We also assess the performance gain from bidirectional matching, the results of
which are shown in Figure 3 (right). Experiments were performed with average descrip-
tors as well as with all feature descriptors for the points. The results show that bidirec-
tional matching significantly boosts the registration rate, whether or not co-occurrence
based RANSAC is used. Similarly, the use of co-occurrence is also always beneficial,
with or without bidirectional matching, and the advantage is more pronounced when all
feature descriptors are used, as this produces more matches but also more outliers. Since
co-occurrence together with bidirectional matching produced the highest performance,
we use this combination for the remaining experiments.

To estimate the precision of registration, namely the fraction of query images cor-
rectly registered, and equivalently the false registration rate, we consider the 1000-way
landmark classification problem. The inferred landmark ID is simply taken to be the
one with the most points registered with the image. The classification rate among the
registered images is 98.1% when using average point descriptors and 97.9% when us-
ing all descriptors. However, we found that this does not mean that the remaining 2%
of images are all false registrations, since some of our landmarks visually overlap and
thus the classification objective is not always unambiguous. To better estimate the false
registration rate, we tested our method with a set of 1468 “negative images” that are
photos of other landmarks geographically distant from the top 1000 in our data set. Of
these, 10 images were registered (both for average/all descriptors), which corresponds
to a false registration rate of 0.68%. Figure 5 (left) shows an example false registra-
tion. Indeed, the false registrations are almost always due to identical-looking signs and
logos.
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Fig. 4. Estimated poses for the Landmarks dataset. A few images that were successfully regis-
tered, along with their estimate pose overlaid on a map. Each map has been annotated to indicate
the estimated position, orientation, and field of view of the photo, and the image itself is drawn
with a red line showing the horizon estimated from the pose, as well as axes showing the estimated
up (blue), north (green), and east (red) directions. (Best viewed on screen when enlarged.)

Fig. 5. Examples of false registrations. Side-by-side: query image and its closest image in the
database by the number of common 3D points. Left: from Landmarks. The US flag appears
both on the space shuttle and in the Grand Central Railway Station. Right: from San Francisco.
The piers have nearly identical appearance.

While it is difficult to quantitatively evaluate the accuracy of the full camera poses
on this dataset, we visualize a few recovered camera poses for the test set in Figure 4;
many of the poses are surprisingly visually accurate. Later, we describe the use of the
Quad dataset to quantitatively evaluate localization error.

We also test our method on the recent San Francisco data set of Chen et al. [7], and
compare with their state-of-the-art system for large-scale location recognition (based on
a bag-of-visual-word-style retrieval algorithm [31]). This is a much more challenging
benchmark: the database images have different characteristics (panorama crops) from
the test images (cell phone photos), and both have considerably lower resolution than
those in the Landmarks data set; moreover, unlike Landmarks, there is no guarantee
that every test image is recognizable given the database images. As in [7] we evaluate
our method using the recall rate, which corresponds to the percentage of correctly regis-
tered query images. We consider a registration correct if the query image is registered to
points of the correct building ID according to the ground truth annotation. The results
are summarized in Table 2. Using the same images and features, our method outper-
forms that of [7] by a large margin even when the latter uses the extra GPS information.
Although a maximum recall rate of 65% for SF-1 was reported in [7], achieving this
requires the additional use of the PFIs (on top of GPS) specific to this data set. Again,
our method produces not just a nearby landmark or building ID, but also a definitive
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Table 2. Percentage of query images correctly localized (“recall rate”) for the San Francisco data
set. For our method, we report results with (SF-1) and without (SF-0) histogram equalization
and upright SIFT. We also experimented with both using average descriptors and keeping all
descriptors. For [7] we cite the recall rates (if provided) for the variants that use the same kind of
perspective images (PCIs) as we do.

Our method (no GPS) SF-0 SF-1 Chen et al. [7] SF-0 SF-1
Avg. descriptors 50.2 58.0 No GPS 20 41
All descriptors 54.2 62.5 With GPS - 49

camera pose, including its location and orientation, as illustrated in Figure 6. This pose
information could be used for further tasks, such as annotating the image.

All the recall rates for our method correspond to false registration rates between 4.1%
and 5.3%, which are comparable to the 95% precision used in [7]. As before, most false
registrations are due to logos and signs, though a few are due to highly similar buildings
(as in Figure 5, right). Sometimes correct registrations are judged as incorrect because
of missing building IDs in the ground truth, which leads to an underestimate of both
recall and precision.

Localization Error. In order to evaluate the accuracy of estimated camera positions,
we tested our method on the Quad data set, which has accurately geotagged query im-
ages. This is also a challenging data set, because of the differences in season between
the database images and the query images. Our method succeeded in registering 68.4%
of the query images using average descriptors and 73.0% using all desciptors. The lo-
calization error has a mean of 5.5m and a median of 1.6m, with about 90% for images
having errors of under 10m and 95% under 20m. Hence despite relatively larger errors
in database image geotags used to geo-register the 3D model, our method was able to
achieve good localization accuracy comparable to that of consumer GPS.

Scalability. To further study the scalability of our method, we merged the reconstructed
3D models for our three datasets into a single large one by concatenating them together;
compared with the individual datasets, the merged set has many more things that could
potentially confuse a query image. For this test we used the San Francisco model with-
out histogram equalization or upright SIFT, so that all three models are reconstructed
using the same type of features and hence are more potent distractors of each other. The
combined model contains over 800K images and 70M points. We run the same registra-
tion experiment for each of the three sets of query images on the combined model, and
compare the results with those from running on the individual models. Table 3 shows
the registration performance on the combined model for each test set under the same

Fig. 6. Estimated poses for selected San Francisco query images. The annotations are the same
as in Figure 4. Our method produces reasonable poses for most of these benchmark images.
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Table 3. Recall rates (percent) on the combined model compared with those on individual models.
Combining the models has essentially no impact on the false registration rates. Average point
descriptors are used in these experiments.

Model \ Query images Landmarks San Francisco Quad
Individual 98.95 50.2 68.4
Combined 98.90 47.7 61.2

criteria as on the individual models.3 The performance gap is negligible for Landmarks
and small (around 2%) for San Francisco. While the gap is somewhat larger for the
Quad images (about 7%), this is likely due to the fact that the Quad model is far smaller
than the other two, with fewer than 5K images and just over 2M points. Hence placing it
into the combined model corresponds to more than an order of magnitude increase in the
amount of irrelevant information. In this context, the decrease in registration rate for the
Quad query images can be considered quite modest. Furthermore our method maintains
essentially the same level of localization accuracy (mean=4.9m, median=1.9m) when
given the combined model. This shows the scalability of our method and its robustness
to irrelevant information.

For completeness, we also tested our method on the Dubrovnik and Rome datasets
from [8]. We achieved a registration rate of 100% on Dubrovnik and 99.7% on Rome,
using a single average descriptor per point, which compares favorably to results re-
ported in [8, 9] (94.1%/92.4% and 98.0%/97.7%, respectively). We also verified by
swapping the two sets that no Dubrovnik images were falsely registered to Rome and
vice versa.

Our system takes on average a few seconds per query image of medium resolution
(1–2 megapixels), excluding the time to extract the SIFT keys, when running single-
threaded on a Intel Xeon 2.67 GHz CPU. While not real-time, this is quite fast consid-
ering the size of the database, and could easily be parallelized.

Discussion. Most of the false registrations by our method involve some sort of signs or
logos, which tend to be feature-rich and are identical at different places. This suggests
that false registrations can be largely reduced if we can learn to recognize these types of
objects, or take into account contextual information. Our method can require a signif-
icant amount of memory for storing descriptors, particularly when a point is assigned
all of its corresponding SIFT features. In the future, this could be improved through the
use of more compact descriptors [32], or by intelligently compressing the database.

6 Conclusion

We presented a method for camera pose estimation at a worldwide scale; for the level
of accuracy in pose we aim for, this is to our knowledge the largest such system that
exists. Our method leverages reconstructed 3D point cloud models aided by two new
techniques: co-occurrence based RANSAC and bidirectional matching, which greatly

3 Registered Quad images are counted as correct if they were registered to the Quad part of the
combined model, which they all did.
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improve its reliability and efficiency. We evaluated our method on several large data
sets and show state-of-the-art results. Moreover, comparable performance is maintained
when we combine these data sets into an even greater one, further demonstrating the
effectiveness and scalability of our method.
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