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Abstract. Recently, a number of cross bilateral filtering methods have
been proposed for solving multi-label problems in computer vision, such
as stereo, optical flow and object class segmentation that show an or-
der of magnitude improvement in speed over previous methods. These
methods have achieved good results despite using models with only unary
and/or pairwise terms. However, previous work has shown the value of
using models with higher-order terms e.g. to represent label consistency
over large regions, or global co-occurrence relations. We show how these
higher-order terms can be formulated such that filter-based inference re-
mains possible. We demonstrate our techniques on joint stereo and object
labeling problems, as well as object class segmentation, showing in addi-
tion for joint object-stereo labeling how our method provides an efficient
approach to inference in product label-spaces. We show that we are able
to speed up inference in these models around 10-30 times with respect to
competing graph-cut/move-making methods, as well as maintaining or
improving accuracy in all cases. We show results on PascalVOC-10 for
object class segmentation, and Leuven for joint object-stereo labeling.

1 Introduction

Many computer vision problems, such as object class segmentation, stereo and
optical flow, can be formulated as multi-labeling problems, and expressed within
a framework such as Markov Random Fields (MRFs), Conditional Random
Fields (CRFs), or other structured models. Although exact inference in such
models is in general intractable, much attention has been paid to developing
fast approximation algorithms, including variants of belief propagation, dual de-
composition methods, and move-making approaches [IJ2/3]. Recently, a number
of cross bilateral Gaussian filter-based methods have been proposed for problems
such as object class segmentation [4], denoising [5], stereo and optical flow [6],
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which permit substantially faster inference in these problems, as well as offering
performance gains over competing methods. Our approach builds on such filter-
based approaches and shows them to outperform or perform equally well to the
previously dominant graph-cut/move-making approaches on all problems con-
sidered. This strongly suggests that mean-field message-passing enhanced with
recent filtering techniques should be considered as a general state-of-the-art in-
ference method for a large number of computer vision problems currently of
interest.

A problem with filter-based methods as currently formulated is that they can
only be applied to models with limited types of structure. In [6], dependencies
between output labels are abandoned, and the filtering step is used to generate
unary costs which are treated independently. In [], filtering is used to perform
inference in MRF models with dense pairwise dependencies taking the form of a
weighted mixture of Gaussian kernels. Although allowing fully connected pair-
wise models increases expressivity over typical 4 or 8-connected MRF models,
the inability to handle higher-order terms is a disadvantage.

The importance of higher-order information has been demonstrated in all of
the labeling problems mentioned. For object class segmentation, the importance
of enforcing label consistency over homogeneous regions has been demonstrated
using P"-Potts models [7], and co-occurrence relations between classes at the
image level have also been shown to provide important priors for segmentation
[8]. For stereo and optical flow, second-order priors have proved to be effective
[9], as have higher-order image priors for denoising [10].

In this paper, we propose a number of methods by which higher-order infor-
mation can be incorporated into MRF models for multi-label problems so that,
under certain model assumptions, using efficient bilateral filter-based methods
for inference remains possible. Specifically, we show how to encode (a) a broad
class of local pattern-based potentials (as introduced in [11]), which include P™-
Potts models and second-order smoothness priors, and (b) global potentials rep-
resenting co-occurrence relationships between labels as in [8I12]. We assume a
base-layer MRF with full connectivity and weighted Gaussian edge potentials
as in [4]. Our approach allows us to apply bilateral filter-based inference to a
wide range of models with complex higher-order structure. We demonstrate the
approach on two such models, first a model for joint stereo and object class
labeling as in [13], and second a model for object class segmentation with co-
occurrence priors as in [§]. In the case of joint stereo and object labeling, in
addition to demonstrating fast inference with higher-order terms, we show how
cost-volume filtering can be applied in the product label-space to generate in-
formative disparity potentials, and more generally how our method provides an
efficient approach to inference in such product label-spaces. Further, we demon-
strate the benefits for object-stereo labeling of applying recent domain transform
filtering techniques [I4] in our framework. In both joint stereo-object labeling
and object class segmentation, we are able to achieve substantial speed-ups with
respect to graph-cut based inference techniques and improvements in accuracy
with respect to the baseline methods. In summary, our contributions are:
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e A set of efficient techniques for including higher-order terms in random fields
with dense connectivity, allowing for mean-field filter-based inference,

e An adaptation of our approach to product label-space models for joint
object-stereo labeling, again permitting efficient inference,

e An investigation of the advantages/disadvantages of alternative filtering
methods recently proposed [BIT4IT5] within our framework.

In Sec. A we review the method of [4]. Sec. Bl provides details on how we en-
code higher-order terms, Sec. @l gives experimentation on joint stereo and object
labeling and object class segmentation, and Sec. [{ concludes with a discussion.

2 TFilter-Based Inference in Dense Pairwise CRF's

We begin by reviewing the approach of [4], which provides a filter-based method
for performing fast approximate maximum posterior marginal (MPM) inferencd]
in multi-label CRF models with fully connected pairwise terms, where the pair-
wise terms have the form of a weighted mixture of Gaussian kernels. We define
a random field over random variables X = {X1,...Xn} conditioned on an im-
age I. We assume there is a random variable associated with each pixel in the
image N' = {1...N}, and the random variables take values from a label set
L ={l,...,I1p}. We can then express the fully connected pairwise CRF as:

PXIT) = exp(~E(XIT) (1)
BXID) = Y vule) + Y o) 2)
ieEN i<jeN

where E(X|I) is the energy associated with a configuration X conditioned on
I, Z(I) = )"y, exp(—E(X'|I)) is the (image dependent) partition function, and
¥y (.) and 9,(.,.) are unary and pairwise potential functions respectively, both
implicitly conditioned on the image I. The unary potentials can take arbitrary
form, while [4] restrict the pairwise potentials to take the form of a weighted
mixture of Gaussian kernels:

M
Ypl@i,wy) = plws,wy) Y w™EM(E, 1) (3)

m=1

where p(.,.) is an arbitrary label compatibility function, while the functions
k(m) (.,.), m = 1...M are Gaussian kernels defined on feature vectors f;, f; derived
from the image data at locations i and j (where [4] form f; by concatenating the
intensity values at pixel ¢ with the horizontal and vertical positions of pixel i in
the image), and w™ m = 1...M are used to weight the kernels.

Given this form of CRF, [4] show how fast approximate MPM inference can
be performed using cross bilateral filtering techniques within a mean-field ap-
proximation framework. The mean-field approximation introduces an alternative

! For exact MPM inference, the solution satisfies z}*™ € argmax; > s =1y P(xID).
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distribution over the random variables of the CRF, Q(X), where the marginals
are forced to be independent, e.g. Q(X) = [[, Qi(x;). The mean-field approxi-
mation then attempts to minimize the KL-divergence D(Q||P) between @ and
the true distribution P. By considering the fixed-point equations that must hold
at the stationary points of D(Q||P), the following update may be derived for
Qi(z; =1) given the settings of Q;(z;) for all j # i (see [16] for a derivation):

Qulei=0) = expl—tu(ee) = 3 S Qiles =Dy(esm)} ()
g el j#i

where Z; = Zmi:leﬁ exp{—u(®i) — Xper Zj;éi Qj(x; = U)hp(wi,z;)} is a
constant which normalizes the marginal at pixel 4. If the updates in Eq. [ are
made in sequence across pixels i = 1...N (updating and normalizing the L values
Qi(x; =1), l = 1...L at each step), the KL-divergence is guaranteed to decrease
[16]. In [], it is shown that parallel updates for Eq. @l can be evaluated by
convolution with a high dimensional Gaussian kernel using any efficient bilateral
filter, e.g. the permutohedral lattice method of [I5] (which introduces a small
approximation). This is achieved by the following transformation:

Q" (W) =D K (8, £)Q;() = (G ® QUI(E:) — Qi) (5)

J#i
where G, is a Gaussian kernel corresponding to the m’th component of Eq. B
and ® is the convolution operator. Since >, Qj(z; = I')p(zi, 7;) in Eq. @

can be written as ) w(m)@gm)(l’ ), and approximate Gaussian convolution us-
ing [15] is O(N), paralleﬂ updates using Eq. [l can be efficiently approximated in
O(MNL?) time (or O(MNL) time for the Potts model), thus avoiding the need
for the O(M N?L?) calculations which would be required to calculate these up-
dates individually. Since the method requires the updates to be made in parallel
rather than in sequence, the convergence guarantees associated with the sequen-
tial algorithm are lost [I6]. However, [4] observe good convergence properties in
practice. The algorithm is run for a fixed number of iterations, and the MPM
solution extracted by choosing x; € argmax; Q;(z; = 1) at the final iteration.

Although [4] use the permutohedral lattice [15] for their filter-based inference,
we note that other filtering methods can also be used for the convolutions in
Eq. Bl Particularly, the recently proposed domain transform filtering approach
[14] has certain advantages over the permutohedral lattice. Domain transform
filtering approximates high-dimensional filtering, such as 5-D bilateral filtering in
2-D spatial and 3-D RGB range space, by alternating horizontal and vertical 1-D
filtering operations on transformed 1-D signals which are isometric to slices of
the original signal. Since it does not sub-sample the original signal, its complexity
is independent of the filter size, while in [I5] the complexity and filter size are
inversely related. In Sec. @, we show that for the filter sizes needed for accurate
object/stereo labeling, the domain transform approach can allow us to achieve
even faster inference times than using [I5].

2 Although the updates are conceptually parallel in form, the permutohedral lattice
convolution is implemented sequentially.
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3 Inference in Models with Higher-Order Terms

We now describe how a number of types of higher-order potential may be incor-
porated in fully connected models of the kind described in Sec. 2] while continu-
ing to permit efficient mean-field updates. The introduction of such higher-order
terms not only greatly expands the expressive power of such densely connected
models, but also makes efficient filter-based inference possible in a range of mod-
els where other techniques are currently used. We show in our experimentation
that filter-based inference generally outperforms the best alternative methods in
terms of speed and accuracy.

We first give a general form of the models we will be dealing with. In place of
Eq. 2l we consider the general energy:

E(VID) = te(ve[T) (6)

ceC

where V is a joint assignment of the random variables V = {V4,...,Vy, }, C
is a set of cliques each consisting of a subset of random variables ¢ C V, and
associated with a potential function 1. over settings of the random variables
in ¢, ve. In Sec. 2] we have that V = X, that each X; takes values in the set
L of object labels, and that C contains unary and pairwise cliques of the types
discussed. In general, in the models discussed below we will have that X C V), so
that ¥V may also include other random variables (e.g. latent variables) which may
take values in different label sets, and C may also include higher-order cliques.
The general form of the mean-field update equations (see [16]) is:

Quloi=v) = e(=3 3 Qeeilvers) - velve)) (7)

ceC {v.|vi=v}

where v is a value in the domain of random variable v;, v, denotes an assignment
of all variables in clique ¢, v._; an assignment of all variables apart from V;, and
Q._; denotes the marginal distribution of all variables in ¢ apart from V; derived
from the joint distribution Q. Z; = >, exp{—>_ cc > (v, jvmr} @e—i(Ve—i) -
e(ve)} is a normalizing constant for random variable v;. We note that the sum-
mations Z{Vclvi:V} Qce—i(Vei) - Ye(ve) in Eq. [ evaluate the expected value of
Y. over Q given that V; takes the value v. The updates for the densely con-
nected pairwise model in Eq. [ are derived by evaluating Eq. [l across the unary
and pairwise potentials defined in Sec. Pl for v; = 1.y and v = 1...L. We de-
scribe below how similar updates can be efficiently calculated for each of the
higher-order potentials we consider.

Pattern-Based Potentials: In [I1], a pattern-based potentiaﬁ is defined as:

w@@a—?‘ ifxe € P (8)

Ymax Otherwise

3 The class of such sparse higher-order potentials is also considered in [I7].
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where P, C LI¢l is a set of recognized patterns (i.e. label configurations for the
clique) each associated with an individual cost 7x,, while a common cost Ymax
is applied to all other patterns. We assume |P.| << L!°l, since when |P.| ~ LI¢!
the representation approaches an exhaustive parametrization of 1.(x.).

Given higher-order potentials ¢2?*(x.) of this form, the required expectation
for the mean-field updates (Eq.[0) can be calculated:

> Qeoilxe—) R (xe) = D> (I @itz =pi))w

{xc|zi=l} PEP.|i=1 JEC,jFL

+1=C Y. (I @it =pi)))ymax

PEPc|i=1 JEC,jF1

9)

where we write Pj;—; for the subset of patterns in P. for which x; = [. Since
the expectation in Eq.[d can be calculated in O(|P.||c|) time, such terms con-
tribute O(max.(|P.||c|)|CP?*|) to each parallel update, where CP*" is the set of
pattern-based clique potentials ] If we assume each pixel belongs to at most M Pat
cliques, and each clique has at most P™®* patterns, this complexity reduces to
O<MpatNPmax) .

A particular case of the pattern-based potential is the P™-Potts model [7]:

wf‘)t“(xc):{”l pee m (10)
Ymax Otherwise

where implicitly we have set P to be the L configurations with constant labelings.
The required expectations here can be expressed as:

> Qeilxemi) YR (xe) = ([ Qilms =)

{xc|zi=l} JjE€c,j#i

+(1—( H Qj(x; =1)))ymax (11)

JEC,jF#i

which contribute O(L max.(|c|)|CP°"®|) to each parallel update. Assuming each
pixel belongs to at most MP? cliques, we can reexpress this as O(MP**NL),
which effectively preserves the O(M N L?) complexity of the dense pairwise up-
dates of Sec. @ (assuming MP®' ~ M), and further preserves the O(MNL)
complexity when the pairwise terms also use Potts models. Further potentials
which can be cast as pattern-based potentials are discussed in [I1], including
second-order smoothness priors for stereo, as in [9].

4 Eq. [ requires evaluation of the joint probability of ¢ — 1 variable assignments for
each of the |P.| patterns, leading to the complexity O(|P¢||c|) for a single evaluation.
If @ is prevented from taking the values 0 and 1, the joint pattern probabilities
[];c. Qi(z; = p;) can be calculated once for each clique, and the conditional forms
[I;cc j2i Qi(z; = p;) needed for parallel updates can then be derived by dividing
by Qi(z; = pi), leading to the overall O(max.(|P:||c|)|C***|) complexity.
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Co-occurrence Potentials: Co-occurrence relations capture global informa-
tion about which classes tend to appear together in an image and which do not,
for instance that busses tend to co-occur with cars, but tables do not co-occur
with aeroplanes. A recent formulation [§] which has been proposed attempts
to capture such information in a global co-occurrence potential defined over the
entire image clique ¢; (generalization to arbitrary cliques is also possible) as:

00 (X) = C(A(X)) (12)

Ccr

Here, A(X) C L returns the subset of labels present in configuration X, and
C(.) : 2 — R associates a cost with each possible subset. In [§] the restriction
is placed on C(.) that it should be non-decreasing with respect to the inclusion
relation on 27, i.e. Ay, Ay C £ and A; C Ay implies that C(A;) < C(Az). We
will place the further restriction that C(.) can be represented in the form:

CA)=> Cr-A+ Y Cpyy- A - A2 (13)

leL li,l€L

where we write A! for the indicator [I € A], where [.] is 1 for a true condition
and 0 otherwise. Equivalently, A’ is the I’th entry of a binary vector of length
|£] which represents A by its set-indicator function, and C'(A) is a second degree
polynomial over these vectors. Eq. is the form of C(.) investigated experi-
mentally in [§], and is shown perform well there on object class segmentation.

We consider below two approximations to Eq. which give rise to efficient
mean-field updates when incorporated in fully connected CRFs as discussed in
Sec. @I Both approximations make use of a set of new latent binary variables
Y = {¥1,..., Y.}, whose intended semantics are that ¥; = 1 will indicate that
label [ is present in a solution, and Y; = 0 that it is absent. As discussed below
though, both approximations enforce this only as a soft constraint. In the first,
we reformulate Eq. [[2] as:

00l (X,Y) = C({Yi = 1) + K-S V= 1A (Yl =1]) = 0]
1 i
+EK-Y Vi=0A e =1)>0] (14)
1 i
We consider constructing two CRF distributions P; (V1 |I) and P>(V2|I) over the
variables sets V; = X and V, = {X, Y} respectively, where the clique structure
is the same in both distributions, except that a potential ¥¢?°¢ in Py has been
replaced by ng’oc'l in Py. If we set K = oo in Eq. [[4] the marginals across X
in P> will match Pi: Py(X|I) = >y P»(X,Y|I), since the only joint configu-
rations with non-zero probability in P, have identical energies. In general this
will not be the case; however, for high K, we can expect that these distributions
to approximately match, and hence to be able to perform approximate MPM
inference using Eq. [[4]in place of Eq.
An alternative, looser approximation to Eq.[I2] can be given as:

E?OC_Q(X,Y) _ C({”Y*Z — ]_}) + K- Z[Y} =0Ax; = ” (15)

il
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using the same latent binary variables Y1, ..., Y introduced in Eq. I4l Setting
K = oo in Eq. does not result in matching marginals in the CRF distri-
butions P;(V1|I) and P2(V2|I) (see above) as it did with Eq. [4l Since the
constraint ¥; = 1 = > .[x; = I] > 0 is not enforced by Eq. I3 the marginal-
ization for a given X configuration in P, will be across all settings of Y that
include A(X). Since there are more of these for configurations when |A(X)]| is
small than when it is large, this will tend to make configurations with smaller
label sets more probable, and those with larger label sets less so, thus accen-
tuating the minimum description length (MDL) regularization implicit in the
original cost function, C(A(X)) (see [§]). For large K (i.e. K # 00), we can thus
expect similar distortions.

We give below only the expectation calculations for updates based on 1/15?“'2.
Those for 1/}5?“'1 can be calculated similarly (as shown in the supplementary
material), and we compare the empirical performance of both approximations in
Sec. [l First, for the latent variables Y; the required expectations are:

> Quovi(V =Y ¢(V) =

{VIyvi=b}

{K~ZiQi(xi—l)+m ifb=0 16)

Ci+ Zl/;él Qr(Yy =1)Cip+rk ifb=1

where we write V — Y] for a setting of all random variables V apart from Y] (i.e.
{X,Yru}), Quv_y, for the marginalization of @) across these same variables,
b € {0,1} is a boolean value, and & is a constant which can be ignored in the
mean-field updates since it is common to both settings of Y;. Substituting these
into Eq. [0 we have the following latent variable updates:

QYi=0) = , exp(~K -3 Qe =)

QuYi=1) = , exp{~Ci~ Y Qu(Y = 1)Cir) (17)
]

For the variables X;, we have the expectations:

> Quox (V= X3) v (V) = K- Qu(Y = 0) + & (18)
(VIX;=1}

where « is again a common constant. Evaluation of each expectation in Eq. [I7]
requires O(N + L) time, while each expectation in Eq. I8 is O(1). The overall
contribution to the complexity of parallel updates for 1/}5?“'2 is thus O(NL+L?),
as can also be shown for ¢g§>°°-1. This does not increase on the complexity of
O(M N L?) for fully connected pairwise updates as in Sec. 2l

4 Experiments

We demonstrate our approach on two labeling problems including higher-order
potentials, joint stereo and object labeling and object class segmentation, adapt-
ing models which have been proposed independently. Details of the experimental
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Fig. 1. Qualitative results on Leuven dataset. From left to right: input image, ground
truth, object labeling from [13] (using graph-cut + range-moves for inference), object
labeling and stereo outputs from our dense CRF with higher-order terms and extended
cost-volume filtering (see text).

set-up and results are provided below. In all experiments, timings are based on
code run on an Intel(R) Xeon(R) 3.33 GHz processor, and we fix the number of
full mean-field update iterations to 5 for all models.

Joint Stereo and Object Labeling: We adapt a model for joint stereo and
object labeling, as proposed originally in [I3]. The model can be expressed in
terms of a CRF over two sets of random variables, V = {X,U}, conditioned
on a pair of images, P(V|I;,I). X = {Xy,..., Xn} and U = {Uy,...,Un} each
range over pixels ¢ = 1...N in image I, where X, takes values in £ = {1...L}
representing the object present at each pixel, and U; takes values in D = {1...D}
representing the disparity between pixel ¢ in I; and a proposed match in Is. We
introduce dense pairwise connections between the variables X; n and Ui, n
as in Sec. @ as well as a set of P"-Potts higher-order potentials over X, as
described in Sec.[3l The P™-Potts potentials are set as follows: we run meanshift
segmentation [I8] over image I at a fixed resolution, and create a clique ¢
from the variables X; falling within each segment returned by the algorithm. We
represent the joint unary potential in [I3] by separate unary potentials 1, (x; =)
and ¥, (u; = d) over the object labels and the disparity labels respectively and
a connecting pairwise potential ¢, (xz; = I,u; = d). As discussed, for our mean-
field model we replace the 8-connected pairwise structure on X and U with
dense connectivity. We disregard the joint pairwise term over the product space
Yp(z; = li,u; = di,x; = la,u; = dg) proposed in [I3]. The mean-field updates
for Q;(z; =) are calculated as in Eq. @ with additional terms for the P™-Potts
model expectations (Eq.[Id]) and pairwise expectations for the joint potentials
Yp(xi,u;). Updates for Q;(u; = d) are similar, but without higher-order terms.

The model is applied to the Leuven dataset [I3], consisting of stereo images
of street scenes, with ground truth labeling for 7 object classes, and manually
annotated ground truth stereo labelings quantized into 100 disparity labels. We
use identical training and test sets to [I3]. The parameters of the model are set
as follows. As in [13], for our basic model we use JointBoost classifier responses
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Table 1. Quantitative comparison on Leuven dataset. The table compares the average
time per image and performance (Object and Stereo labeling accuracy) of joint object
and stereo labeling algorithms, using graph-cut + range-moves (GC+Range(x), where
range moves to disparity values d & x are allowed for fixed d at each iteration) [13], an
extension of cost-volume filtering (see text), and our dense CRF with higher-order terms
and filter-based inference (with and without cost-volume filtered unaries, and using
different filtering approaches, see text). Our Dense+HO approach achieves comparable
accuracies to [I3], and is an order of magnitude faster. The best stereo accuracies occur
when our model is combined with cost-volume filtered unary potentials for disparity.

Algorithm Time (s) Object(% correct) Stereo(% correct)
GC+Range(1) [13] 24.6 95.94 76.97
GC+Range(2) [13] 49.9 95.94 77.31
GC+Range(3) [13] 74.4 95.94 77.46

Extended CostVol ([15] filter) 4.2 95.20 77.18
Dense+HO ([15] filter) 3.1 95.24 78.89
Dense+HO ([I4] filter) 2.1 95.06 78.21

Dense+HO+CostVol ([14] filter) 6.3 94.98 79.00

to form the object unary potentials ¥, (xz; =) [19]. A truncated lo-norm of the
intensity differences is used to form the disparity potentials ¢, (u; = d) (using the
interpolation technique described in [3]), while the potentials ¢, (z; = I, u; = d)
are set according to the observed distributions of object heights in the training
set. For the densely connected pairwise terms over X and U, we use identical
kernels and weightings to [4] and an Ising model for the label compatibility
function, p(ly,l2) = [l1 # l2]. For the P™-Potts potentials, we set v; = 0 for all
l=1...L, and set ypax by cross-validation.

In addition to the model as described above, we also investigate an alterna-
tive approach to setting the unary potentials for the disparity variables based
on the cost-volume filtering framework of [6], which we extend to operate in
the product label space L x D, i.e. assigning a cost A\i(l,d) for each object-
disparity combination at pixel ¢ over a series of update steps ¢t = 0..T. We
initialize the costs to A)(I,d) = ¥y (z; = 1) + Yu(u; = d) + Yp(z; = Liu; =
d) + Yper 2 QY1 d) - bp(ai,a;), where QF(1,d) = 1/L for all 4,1,d. We
then update the costs at each iteration via independent mean-field updates
across the D cost-volumes A(.,d), d = 1...D, using the same kernel and label
compatibility function settings as described above; hence, we set Qﬁ“(l,d) =
(exp(—AL (L, d)))/ (S exp(—A (L, d))), and AL (L d) = s = 1) + v (us =
d)+p(zi =lLui=d)+3 pep s Q;H(l, d) -y (24, 2;). The output costs are
then given by A (I, d). We form updated disparity unary potentials for the full
model by adding the maximum across the output costs to the original potential
output: !, (u; = d) = max; AL (I, d) + ¥, (u; = d).

We compare results from the following methods. As our baseline, we use the
method of [13], whose CRF structure is similar to ours, but without dense connec-
tivity over X', and with a truncated Li-prior on the disparity labels U. Inference is
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performed by alternating alpha-expansion on X with range moves on U (forming
projected moves, see [13]). Since the speed and accuracy are affected by the size of
range moves considered, we test 3 settings of the range parameter, corresponding
to moves to disparity values d+ 1, d+2 and d 4 3, for a fixed d at each iteration
(see [20]). We consider also a baseline based on the extended cost-volume filtering
approach outlined above where we simply select (z;,u;) = argmax; 4 A1, d) as
output. We compare these with our basic higher-order model with full connec-
tivity as described above, and our model combined with extended cost-volume
filtered disparity unary terms v, as described. Further, using our basic model
we compare two alternative filtering methods for inference, the first using the
permutohedral lattice, as in [4I15], and the second using the domain transform
based filtering method of [I4]. We evaluate the average time for inference, and the
%-correct pixels for stereo and object labeling, where a disparity is considered
correct if it is within 5 pixels of the ground truth.

Qualitative and quantitative results are shown in Fig. [l and Tab. [ re-
spectively. We note that the densely connected CRF with higher-order terms
(Dense+HO) achieves comparable accuracies to [13], and that the use of domain
transform filtering methods [14] permits an extra speed up, with inference being
almost 12 times faster than the least accurate setting of [I3], and over 35 times
faster than the most accurate. The extended cost-volume filtering baseline de-
scribed above also performs comparably well, and at a small extra cost in speed,
the combined approach (Dense+HO+CostVol) achieves the best overall stereo
accuracies. We note that although the improved stereo performance appears to
generate a small decrease in the object labeling accuracy in our full model, the
former remains at an almost saturated level, and the small drop could possibly
be recovered through further tuning or weight learning.

Object Class Segmentation: We also test our approach on object class seg-
mentation, adapting the Associative Hierarchical CRF (AHCRF) model with a
co-occurrence potential proposed in [8]. As described in Sec. B} we build a CRF
over variables V = {X, Y}, with X; denoting the object label at pixels i = 1...N,
and latent binary variable Y; indicating the presence/absence of label [ = 1...L.
The model includes dense pairwise connections over the X; variables, as well
10 layers of P™-Potts potentials formed by running mean shift and K-means
clustering algorithms at 5 parameter settings each (coarse-fine) across the test
image, and forming a clique ¢ € C across variables from X" falling within each re-
turned segment. An additional set of P™-Potts potentials is also included based
on segments returned by grabcut initialized to the bounding boxes returned from
detectors trained on each of the L classes (see [§]). A co-occurrence potential is
also included, taking the form of either ©°°°“! or 1/)°°°¢2 as in Sec. Bl

We test the model on the Pascal VOC-10 training and validation set. We use
the same split as used in [4], who randomly partition the available images into 3
groups: 40% training, 15% validation, and 45% test set. Further, we use the unary
potentials provided by [], along with identical kernel weights and parameters,
and an Ising label compatibility function p(ly,l2) = [l1 # l2]. The higher-order
potentials are trained piecewise: we train a classifier using Jointboost [19] to
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Fig. 2. Qualitative results on PascalVOC-10 dataset. From left to right: input image,
ground truth, output from [§] (AHCRF+Cooccurrence), output from [4] (Dense CRF),
output from our dense CRF with Potts and Co-occurrence terms.

classify the segments associated with the P™-Potts cliques, and set the param-
eters 7, in Eq. to be the negative log of the classifier output probabilities,
truncated to a fixed value ypax set by cross validation. The parameters of the
co-occurrence cost function Eq. [[3] are set as in [§], by fitting a second-degree
polynomial to the negative logs of the observed frequencies of each subset of
labels L occurring in the training data. Individual weights on the potentials are
set by cross-validation.

We compare both the timing and performance of four algorithms. As our
two baselines, we take the AHCRF with a co-occurrence potential [8], whose
model includes all higher-order terms but is not densely connected and uses
a-expansion based inference, and the dense CRF [4], which uses filter-based
inference but does not include higher-order terms. We compare these with our
approach, which adds first P™-Potts terms to the dense CRF, and then P"-
Potts and co-occurrence terms. We use the permutohedral lattice for filtering
in all models. We assess the overall percentage of pixels correctly labeled, the
average recall and intersection/union score per class (defined in terms of the
true/false positives/negatives for a given class as TP/(TP+FP+FN)).

Qualitative and quantitative results are shown in Fig. 2l and Tab. [2] respec-
tively (further per-class quantitative results are provided in the supplementary
material). As shown, our approach is able to outperform both of the baseline
methods in terms of the class-average metrics, while also reducing the infer-
ence time with respect to the AHCRF with a co-occurrence potential almost
by a factor of 9. The results shown are only for our approach with the 1/°°°¢-2
potential, since we found the 1°°°“! potential to suffer from poor convergence
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Table 2. Quantitative results on PascalVOC-10. The table compares timing and per-
formance of our approach (final 2 lines) against two baselines. The importance of
higher-order information is confirmed by the better performance of all algorithms com-
pared to the basic dense CRF of [4]. Further, our filter-based inference is both able
to improve substantially on the inference time and class-average performance of the
AHCREF [g], with P"-Potts and co-occurrence potentials each giving notable gains.

Algorithm Time (s) Overall (%-corr) Av. Recall Av. 1/U

AHCRF+Cooc [§] 36 81.43 38.01 30.9
DenseCRF [4] 0.67 71.63 34.53 28.4
Dense+Potts 4.35 79.87 40.71 30.18

Dense+Potts+Cooc 4.4 80.44 43.08 32.35

properties, with performance only marginally better than [4]. We note that our
aim here is to assess the relative performance of our approach with respect to our
baseline methods, and we expect that our model will need further refinement to
compete with the current state-of-the-art on Pascal (our results are ~ 9% lower
for average intersection/union compared to the highest performing method on
the 2011 challenge, see [22]). We also note that [4] are able to further improve
their average intersection/union score to 30.2% by learning the pairwise label
compatibility function, which remains a possibility for our model also.

5 Discussion

We have introduced a set of techniques for incorporating higher-order terms into
densely connected multi-label CRF models. As described, using our techniques,
bilateral filter-based methods remain possible for inference in such models, ef-
fectively retaining the mean-field update complexity O(M NL?) as in [4] when
higher-order P™-Potts models are used. This both increases the expressivity of
existing fully connected CRF models, and opens up the possibility of using pow-
erful filter-based inference in a range of models with higher-order terms. We have
shown the value of such techniques for both joint object-stereo labeling and ob-
ject class segmentation. In each case, we have shown substantial improvements
in inference speed with respect to graph-cut based methods, particularly by us-
ing recent domain transform filtering techniques, while also observing similar
or better accuracies. Further results in the supplementary materials appear to
show that the improved accuracy is both due to using dense models and mean-
field inference; graph-cut methods are substantially slower, and even when the
connectivity of the graph is increased cannot achieve similar accuracies to mean-
field in matched energies except in models without higher-order terms. Future
directions include investigation of further ways to improve efficiency though par-
allelization, and learning techniques which can draw on high speed inference for
joint parameter optimization in large-scale models. Code for our method is avail-
able for download at http://cms.brookes.ac.uk/staff/VibhavVineet/.
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