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Abstract. We address the problem of complicated event categorization
from a large dataset of videos “in the wild”, where multiple classifiers are
applied independently to evaluate each video with a ‘likelihood’ score.
The core contribution of this paper is a local expert forest model for
meta-level score fusion for event detection under heavily imbalanced
class distributions. Our motivation is to adapt to performance varia-
tions of the classifiers in different regions of the score space, using a
divide-and-conquer technique. We propose a novel method to partition
the likelihood-space, being sensitive to local label distributions in im-
balanced data, and train a pair of locally optimized experts each time.
Multiple pairs of experts based on different partitions (‘trees’) form a
‘forest’, balancing local adaptivity and over-fitting of the model. As a re-
sult, our model disregards classifiers in regions of the score space where
their performance is bad, achieving both local source selection and fu-
sion. We experiment with the TRECVID Multimedia Event Detection
(MED) dataset, detecting 15 complicated events from around 34k video
clips comprising more than 1000 hours, and demonstrate superior per-
formance compared to other score-level fusion methods.

1 Introduction

Content-based exploitation and retrieval of digital video from large datasets is an
important topic in computer vision, with a wide range of potential applications.
Recently, with the rapid growth of multimedia data shared on platforms such
as YouTube, people have switched their focus from recognizing simple events,
e.g. single person waving (KTH dataset [1]) from high-quality videos (static
camera, clean background) [2,3] to more complicated events that contain multiple
object-interactions, e.g. boxing (MSR dataset [4]) within uncontrolled videos
(hand-held camera, cluttered background) [5] or movies [3].

In this paper, we address the detection of complex events from video clips
in a large multimedia archive (1000+hr collection of about 34k clips from the
Multimedia Event Detection task of TRECVID2011 [6])1, where the videos are
uncontrolled with respect to camera motion, background clutter and human
editing. The major challenges that typically come with video event detection are

1 http://www.nist.gov/itl/iad/mig/med11.cfm
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Fig. 1. Example frames from training clips. (a-e) illustrates the wide semantic
intra-class variation of the same event category: ‘attempting a board trick. (f,g) illus-
trates inter-class variation, with example frames from ‘feeding an animal’, and ‘landing
a fish. These frames illustrate various challenges e.g. rapid motion blur and background
clutter (a), insufficient lighting and captions from post-processing (f), as well as a wide
ranges of camera viewpoint and scene scale.

(1) wide intra-class and inter-class variation; (2) high-dimensional features; and
(3) imbalanced labeled data.

As shown in Fig.1, the event categories exhibit both wide intra-class variation
(attempting a board trick), broad inter-class variation, and rich temporal struc-
ture (e.g. changing a vehicle tire or making a sandwich) which can’t be estimated
from a single frame. Moreover, given the variety of real-world videos, any par-
ticular event class, e.g. wedding ceremony, only composes of a tiny proportion
in the entire video database, which results in an imbalanced labeled data for
training one-versus-all classifiers to detect each particular event.

We first introduce the larger system which motivates our choice of score-
fusion for event detection, and review other approaches to score fusion. We then
propose the idea of local expert forest for score fusion that resolves the dilemma
between local adaptivity and over-fitting from imbalanced training data. We
then demonstrate the method’s superior performance to alternative methods.

1.1 Video Retrieval System

The ultimate goal of a content-based image or video retrieval system is to allow
people to browse large multimedia archives in useful ways. While our experiments
are focused on activity-based browsing, i.e. finding video clips that show the same
event type, our score fusion approach can be used for other modalities such as
object-based browsing. In order to address the wide range of event categories
illustrated above, a useful system must incorporate a range of visual features,
audio features, and classification methods associated with the features. Fig.2
shows our system architecture, in which several types of features are extracted
from the video archive, and are stored in a database. A bank of base classifiers
follow, each of which are trained to produce a likelihood score based on a subset
of the features. Their outputs for a particular event are then fused by our method,
and the resulting fused likelihood is used to rank the clips in the archive relative
to the operator’s interest.

By including a wide range of video and audio features, the system can better
handle semantically diverse events. In our experiments (Sec. 3), we have found
that no single feature provides acceptable performance across all event categories,
with acoustic features outperforming others on birthday party, motion features
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Fig. 2. (a): Architecture of a general content based video retrieval system,
within which our score-fusion is a key part; (b): DET curves showing base classi-
fiers and fusion performances, 3 visual classifiers and 2 audio classifiers are fused
together, reducing both miss and false alarm rates. The overall performance of each
curve is quantified using Area Under Curve (AUC).

outperforming others on flash mob gathering, and object detections outperform-
ing others on getting a vehicle unstuck. Our database of rich features can also
be used to classify ad hoc event categories without the need to re-process the
archive clips. Having a large feature set complicates fusion, however, because
not all features will be useful with respect to a particular event. Therefore, a
good fusion system must identify and ignore such non-discriminative features
(and their associated base classifiers).

Performing the fusion at the score level abstracts away the details of the
underlying classifiers, and allows us to use different classification methods for
the features to which they are best suited. For instance, score fusion allows
numerical combination of temporal models (e.g. Dynamic Bayes Nets (DBNs)[7])
on 3D features for spatio-temporal matching with kernel methods (e.g., SVM)
applied to bag of word-type features. The system should also permit the later
introduction of scores from classification schemes as they are introduced (e.g.,
[8,4,5]). In that sense, score-level fusion is preferred, as we need only re-train the
fusion part when a new classifier’s output is provided.

Because each base classifier layer produces a scalar likelihood value from a
high-dimensional audio/video feature, fusion in the score space is generally faster
than fusion at the feature level. This advantage in training complexity can be
used to provide robustness to missing features, by training multiple models for
base classifier combinations that may be given for any particular clip at eval-
uation time. While the full power set may not be necessary, TRECVID clips
occasionally lack audio data, requiring separate fusion models for video-only and
audio+video base classifier sets. As compared to voting methods for decision-
level fusion, score-fusion is preferred because the output is still a continuous
score (likelihood) for ranking the archive clips.

An example fusion result is plotted in detection-error-trade-off (DET) curve
shown in Fig. 2(b), which is very similar with Receiver Operating Characteris-
tic (ROC) curve but uses a nonlinear scale on the two axis (false alarm/miss
detection prob.), so that the curves are more ‘linear’ [9]. This DET curve illus-
trates our fusion performance (from 3 visual classifiers and 2 audio classifiers) in
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detecting birthday party, which gives 6% missed detections under 20% false
alarm. This is a significant improvement over the best base classifier, which
has 20% miss at the same false alarm level.

1.2 Other Work in Score Fusion

Discriminative score fusion differs from classification/regression problems in that
it takes continuous and semantically meaningful input (likelihood scores) with
discrete labels to produce continuous output (a fused likelihood score) for rank-
ing. On the other hand, score fusion is similar to ensemble stacking, where sep-
arate training data are used for base classifier- and meta-level (fusion) training.

Fusion techniques are widely applied in various applications. In biometric
systems, [10] combines the matching scores from multiple modalities based on
generalized densities estimated from the score space, but requires a large amount
of training data to approximate the density distribution. For object tracking, Yin
[11] fuses multiple likelihood maps (of motion, saliency, template matching, etc.)
using minimum mean-squared error (MMSE) linear fusion. For hand detection,
Mittal [12] proposes to use a linear SVM classifier to fuse three independent
detector scores based on shape, context and skin, respectively.

In large scale detection and ranking systems such as search engines, linear
score fusion is widely used [13,14,15]. Here, area under an ROC curve (AUC),
similar to average precision (AP), is widely used as a measure of the overall
performance of the retrieval system [16,17], instead of evaluation at a single
operating point. AUC optimization is also equal to the Wilcoxon-Mann-Whitney
(WMW) ranking

AUC =

N+∑

i=1

N−∑

j=1

I(pi, nj)/N
+N−, (1)

where I(pi, nj) is 1 if pi > nj and zero otherwise, pi and nj are the scores of
N+ positive and N− negative samples, respectively. Because Eqn.1 is nonlinear
and discontinuous, people have used continuous functions, e.g., a sigmoid, to
approximate the function and have optimized via gradient descent [17]. However,
when the substitute function is too smooth, it no longer approximates Eqn.1.
On the other hand, if the continuous function is sharp enough to approximate
Eqn.1, gradient descent solutions may become unstable.

Linear fusion, producing a fused score s from base classifier scores sk as
s =

∑
k skwk, is a popular method to combine likelihoods with non-negative

weights wk ≥ 0. This is intuitive as a high likelihood output from the base-
classifier should also indicate a high likelihood after fusion, and the different
weights account for the relative performance of the classifiers. This model has
demonstrated strong performance ([11,13,14,15]) especially in terms of general-
ization on unseen testing data (Sec.3).

On the other hand, the obvious drawback of linear fusion is that it offers lim-
ited degrees of freedom, as each base-classifier is assigned a fixed weighting. This
is illustrated in Fig. 3(a), where the notional performances of two base classifiers
are plotted in red and blue DET curves respectively. Classifier C2 has relatively
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Fig. 3. Motivation and high-level approach. In order to account for local perfor-
mance variations, as illustrated by crossing DET curves in (a), we learn a local expert
forest over the score space. Multiple partitions and expert pairs within the score space
(black plots in (b)) are combined to an expert forest (red part) which accounts for local
performance variations.

better performance at the top-left region (data with high likelihood score), and
C1 outperforms C2 at the bottom-right region (data with low likelihood score).

This observation motivated us to weight base-classifiers differently in regions
of the M -dimensional score space defined by the outputs of M base classifiers.
A mixture of local expert model (MoE) [18] appears to be a promising solution
since it provides such a local flexibility, and because non-negative linear fusion
can still be performed within each local region to provide good generalization.

However, there are several drawbacks of MoE when applied to our system.
First, MoE is typically solved using expectation maximization (EM) iteration,
the performance of which heavily depends on the initialization, especially when
the base-classifier score distribution is more scattered than clustered, as in our
case. More importantly, when positive samples of each class are limited and
vastly outnumbered by negative samples, splitting the entire space into multiple
pieces may still result in over-fitting within some local regions. This imbalance is
particularly acute in the TRECVID data, where each event category has 100+
positively labeled training clips, as compared to 2k+ negative training clips.

We propose a novel Expert Forest model resolving the above concerns. We
use a combination of the basic MoE unit – a one-layer binary partition with
two local experts. We carefully divide the score space in two, being sensitive to
label distributions in each cluster so that the experts have enough data to avoid
over-fitting, while still being able to adapt to local data properties. We apply
linear fusion with non-negative weight constraints on local clusters, so that each
local model has strong generalization while allowing for base classifier selection.
The training of an expert with a linear binary partition is much simpler than
EM optimization in a high-dimensional space. Multiple local experts that have
overlapping regions jointly contribute to the weight set used (Fig.3(b)), so the
overall model gains a much higher degree of freedom to adapt to local properties
while maintaining good generalization ability.
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2 Random Forest of Local Fusion Experts

The general framework is shown in Fig. 4, where we have multiple 1-layer binary
partition trees. Each ‘tree’ divides the score space in two, and then handles them
independently. At test time, input score vectors first go through multiple ‘gates’
to determine which weight sets are applied to data in that part of the score space.
The weighted scores from each of the trees are combined (averaged) in order to
generate the final fused output. In this section, we first address the key problem
of how to find good partitions in the presence of heavily imbalanced data for a
MoE model, and then give solutions to expert forest (EF) model optimization
under this guided space partition.

Fig. 4. Local expert fusion model framework, in which an input vector containing
M base classifier scores is fused to a single scalar output. The input’s position X in the
score space (notionally shown by the white circle) determines, for each tree, which set
of fusion weights are applied. The fused weights from each of the trees are combined
in order to generate the final fused output.

2.1 Partitioning for MoE under Imbalanced Data

One problem with the MoE model data is that, when class labels are not bal-
anced, space partitioning may locally exacerbate that imbalance. This is illus-
trated in Fig.5(a), where a blind K-means partition ignoring the labels produces
one cluster containing mostly negatively-labeled data. Unlike linear discriminant
analysis (LDA) or decision trees, which look for a separation between positive
and negative labels, our training prefers a balanced distribution of labels in order
to prevent local over-fitting.

To address this, we apply K-means separately to the positive (+) and negative
(−) samples to partition both types of labels into 2 clusters (c1, c2) and merge
them in a later stage. Given different random initializations of K-means2, we can
obtain various partitions on both the(+) and (−) samples. Ideally, if a (+)cluster
and a (−)cluster spatially overlap completely, we can merge them to form a local
space that is rich with both (+/−) labels. In order to evaluate the consistency
of merging a binary partition on (+) labels with a partition on (−) labels, we

2 To get random partition of clusters with more diversity, we typically run K-means
in a random subspace and don’t require full convergence.
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Fig. 5. Partitioning the score space in the presence of imbalanced class la-
bels. Naive K-means clustering (a) may exacerbate imbalance, leading to over-fitting.
We separately partition both positive and negative samples (b), project them on a 1D
axis (c), and choose a threshold τ along that line (d) to partition the samples.

adopt the idea of mutual information, which indicates the spatial overlap of
(+/−)clusters to be merged.

Let a binary random variable ‘+’∈ {c1+, c2+} indicate a sample data can
belong to 1 of the (+)clusters, with prob. p(+ = c1+) + p(+ = c2+) = 1.
Similarly the same sample can also belong to either of the negative clusters with
p(− = c1−) + p(− = c2−) = 1. Therefore the mutual information between 2
random variable ‘+’ and ‘−’ is given by

I(+;−) =
∑

‘+′∈{c1+,c2+}
‘−′∈{c1−,c2−}

p(+,−) log(
p(+,−)

p(+)p(−)
) (2)

I(+;−) here can also be interpreted as ‘co-occurrence’ character: given one data
sample from a particular ‘+’ cluster, how much do we know about which ‘−’
cluster that it belongs to. A higher co-occurrence indicates stronger overlapping
of the cluster areas, and is thus preferred.

Given K different binary partitions on (+/−) samples respectively, we eval-
uate K2 pairs of associations according to Eqn. 2 and then select the top K
associations (we use K = 20 through all the experiments). For each of top
ranked associations, let the cluster centers be C+1, C−1, C+2 and C−2, we use
LDA to find the 1D projection vector vproj that best separate one pair of positive
and negative cluster centers from the other pair (Fig.5(c)). A partition of the
score space is thus defined by the projection vector vproj and a 1D threshold τ .
To avoid the partition becoming ill-posed again as in Fig.5(a), we fix vproj for
our system and, during the model optimization stage, we optimize the threshold
τ within the range of the middle of the two projected old cluster centers.

2.2 MoE Model

The general mixture of expert model is formulated by

P (Y |X) =
∑

E

P (E|X)P (Y |X,E), (3)
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where P (E|X) is the ‘gate’ function, indicating which model is responsible for
generating each data. The output of the gate function directly depends on the
input X , which differentiates between MoE methods and boosting-based models.

In our case of score fusion, we are looking for a score mapping s(X) ∝ P (Y =
1|X), and can still adopt the probability representation for a maximum likelihood
solution of the model parameter θ = (w(L), w(R), τ)

L ∼
∏

X

P (Y |X, θ)

=
∏

X

[ ∑

i=L,R

G(i)(X, τ)P (Y |E(i)(X,w(i)))
]
, (4)

where, the gate of left child as an example is given by

G(L)(X, τ) =

{
1 if X · w ≤ τ
0 otherwise

(5)

The hard decision in Eqn.5 can also be made soft by introducing a transition
region (Fig.4), so that the fusion output will be smooth across the boundary.

We use linear models for local experts, with likelihood function from experts
being

P (Y |E(i)(X,w(i))) = exp{−‖X · w(i) − Y ‖2}. (6)

The maximum likelihood model solution of Eqn.4 cannot be solved directly be-
cause of the summation term within the multiplication loop. Therefore, we have
to iteratively update the ‘expectation’ of the gate response and ‘maximization’
of the likelihood at local experts. Because Gi only involves a single parameter τ ,
once the local experts are updated at each iteration, we can enumerate τ along
1D and directly obtain the optimal value according to Eqn.4.

2.3 Local Expert Training

Let X = (x1, . . . , xM , 1n) be an N -by-M + 1 likelihood matrix with entry
X(n,m) the score output on clip n from base classifier m, and 1n a n-by-1
vector appended for adjusting the global offset. Y ∈ {0, 1}n is the binary vector
of training labels, and Λ a diagonal matrix with Λ(n, n) = G(x(n)), indicating
the gate response on the score vector of video clip n. Λ(n, n) = 1/0 (or something
in the middle), indicates the video clip n is within/outside the local region (or
in the transition region).

The maximum likelihood solution for w of Eqn. 6 is in the same form of the
MMSE representation:

w∗ = argmin(X ∗ w − Y )TΛ(X ∗w − Y ). (7)

The regularizedMMSE solution is given by w = (XTΛX+λI)−1XTΛY . Instead
of λ-regularization, we apply a non-negative constraint on all weights wi ≥
0, i = 1, . . . ,M . Note that the weight wM+1, corresponding to the offset term,
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Table 1. Pseudo-code of training (top) and testing (bottom) our model

1. Generate K random binary partitions on both the positive and negative samples
2. Take K positive and K negative partitions to form K2 pairs of associations
3. Extract projection vectors from top K association pairs based on Eqn.2
4. For: each projection vector vk
5. Learn kth MoE model according to Eqns. 4,5,6.

1. For: each MoE model k
2. estimate fused score sk according to Eqns. 3,5,6.
3. Compute the final score s = avg{sk|k = 1, . . . ,K}

may be negative. When applied to a bank of base classifiers which perform no
worse than random chance, this constraint enforces the intuition that no such
classifier should be discredited by the fusion model. With this constraint, we have
found that the system has equivalent (or even better) generalization compared to
regularization, while still behaving as a convex optimization problem which can
be solved efficiently using existing toolboxes such as [19]. When base classifiers
have random performance for a particular event, the non-negative constraint can
produce a sparse solution (i.e., ∃ i s.t. wi = 0).

Because we do not assume that the scores are normalized across the base
classifiers, our model includes 1n in the likelihood matrix X and learns an extra
weight wM+1. Without constraining ‖w‖ to be a unit vector, the local fusion
expert simultaneously adjusts the offset and scale variance of each source.

The pseudo-code for training and testing of the Expert Forest model is given
in Table 1.

3 Experiments

Our experiments were performed with M = 5 base classifiers, each of which
estimates event probability based on a different multimedia feature.

– C1.(visual) Motion information is captured by a bag of words feature on
3D histograms of oriented gradients [20], which is classified by an SVM with
Histogram Intersection Kernel (HIK).

– C2.(visual) The relationship between events and objects is captured using
the Object Bank feature [21], computed using the reference code, and the
maximum response of each detector across the clip’s frames is classified with
an SVM using HIK.

– C3.(audio) Low-level audio information is captured using Mel-Frequency
Cepstral Coefficients (MFCCs), computed using the HTK Speech Recog-
nition Toolkit3, and an SVM with HIK is trained using a bag of words
quantization of the MFCC features.

– C4.(audio) Higher-level audio information is captured by Acoustic Segment
Models (ASM), which is classified using an SVM with HIK.

3 http://htk.eng.cam.ac.uk/

http://htk.eng.cam.ac.uk/
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– C5.(visual) The relationship between events and their environments is cap-
tured using the Gist feature [22], which is computed on a random 20 frame
subset of the video, and the 20 outputs of a per-frame linear SVM are aver-
aged to give the C5 base classifier score.

3.1 Experiment Design

We conducted 4 experiments to validate our proposed fusion method on different
video events and different base classifiers on the TRECVID2011 dataset. (a) De-
tecting five events (E1-E5) from the fusion of four base-classifiers (all except C4);
(b) Detecting ten events (E6-E10) from the fusion of all five base-classifiers; (c)
A stress test to evaluate the fusion system’s robustness by adjusting the quality
of the base-classifiers (E7); (d) A stress test on imbalanced label distribution. In
training the score fusion for E1-E15, the model is learned on an average of 140
positive instances and 2000 negative instances per event category. For E1-E5, the
model is tested on 4292 video clips with on average 2.3% of positive instances;
for E6-E15, the model is tested on 32037 video clips with on average 0.37% of
positive instances.

Our expert forest model uses K = 20 pairs of local experts, and we run
bootstrapping (with replacement) on the training data 20 times, each time using
the same number of labeled samples, and evaluate the area under the DET curve
(AUC) score each time, where lower numbers indicate better performance.

3.2 Baseline Models for Comparison

We compare the results of our score fusion model to several methods using the
same base classifier likelihoods. These methods are: score averaging, nonlinear-
SVM, RBF network, MMSE- and MFoM-based linear fusion, and a naive MoE
fusion without the partitioning of Sec. 2.1. The nonlinear-SVM and RBF network
are trained using LibSVM [23], using a Gaussian kernel, and we perform cross-
validation to optimize both the kernel width and the different weighting for
positive/negative instances (to handle label imbalance). The MoE model uses 4
local experts initialized using K-means and optimized using EM.

As mentioned in Sec.1.2, we use AUC to evaluate the fusion methods across
a range of operating points4; a random system will have AUC = 0.5. Such
a discrete metric is equal to the normalized Wilcoxon-Mann-Whitney ranking
statistic [24,17] and also similar to the average precision.

3.3 Results and Comparisons

The average AUC over the 20 runs on the 15 event categories are given in Tables
2 and 3. Our approach gives on average the best performance on all but one of

4 We do this instead of measuring performance at a particular operating point on the
curve, which may be evaluated as the proportion of inconsistent score pairs, e.g. a
negative clip ranked higher than a positive clip.
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Table 2. Fusion performance (AUC) on event 1-5, with 4 base classifiers. For
each event, the best AUC is shown in bold.

Event Best Base Avg. SVM RBF MoE MMSE MFoM Ours

Attempting a board trick .078 .075 .103 .078 .060 .062 .071 .055
Feeding an animal .199 .191 .209 .212 .172 .172 .175 .167
Landing a fish .065 .084 .112 109 .082 .061 .067 .055

Wedding ceremony .046 .042 .065 .043 .055 .030 .046 .035
Woodworking .124 .096 .135 .089 .079 .083 .089 .075

Table 3. Fusion performance (AUC) on events 6-15, with 5 base classifiers. For
each event, the best AUC is shown in bold.

Event Best Base Avg. SVM RBF MoE MMSE MFoM Ours

Birthday party .115 .082 .138 .089 .071 .062 .061 .056
Changing a vehicle tire .144 .130 .106 .110 .112 .089 .113 .087
Flash mob gathering .043 .038 .076 .037 .028 .033 .031 .024

Getting a vehicle unstuck .105 .073 .115 .088 .060 .058 .057 .050
Grooming an animal .193 .209 .175 .159 .150 .153 .156 .148
Making a sandwich .123 .135 .128 .107 .106 .113 .101 .101

Parade .072 .063 .127 .072 .056 .055 .051 .047
Parkour .070 .092 .135 .099 .062 .067 .065 .058

Repairing an appliance .087 .066 .112 .057 .039 .074 .040 .035
Working on a sewing project .152 .190 .186 .174 .142 .156 .137 .133

the event categories. Averaged over the 20 runs on 15 event categories, our score
fusion produces an AUC of 0.075, which is 30% lower than the best base classi-
fier. MMSE and MFoM share the second tier of performance, with average AUCs
that are 10.0% and 9.4% higher than ours, on average. We also found that the
MFoM method, which optimizes the AUC score on the training data, does not
provide optimal AUC on unseen testing data. Moreover, MFoM’s optimization of
AUC is prone to termination at local minima, resulting in poorer performance.
The results also show that the nonlinear classification/regression methods of
SVM and RBFNN performed much worse than linear models as measured by
AUC. Although the non-linear methods may have stronger discriminative abil-
ity and give better performance at a particular operating point, the nonlinear
kernel mappings applied on the data break the original ranking from all the base
classifiers, reducing ranking performance of the system especially on unseen data.

Sample DET curves are shown in Fig 6, and illustrate that, while different
fusion methods may occasionally perform slightly better than ours at certain
operating points, we show better performance across the range of fused scores.

In addition, we stress test our algorithm by gradually decreasing the per-
formance of several base-classifiers, adding Gaussian noise to their scores. From
Fig. 7(a) it can be seen that both regularized MMSE fusion and MFoM are more
sensitive to such noise. On the other hand, MoE and our approach both perform
classifier selection, and are thus more robust to bad sources.

We conduct a second stress test to illustrate our robustness to label imbalance.
Let r be the ratio of negative samples versus positive samples for model training.
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(a) (b) (c)

Fig. 6. Sample DET curves on selected event categories. (a) Flash mob gath-
ering is the category with best performance, and (c) Grooming an animal is the worst.

(a) (b)

Fig. 7. Stress tests performed on the parkour event. With respect to both (a)
decreasing base-level classification accuracy and (b) unbalanced labels, our approach
out-performs other score fusion techniques.

We keep the positive samples fixed and re-sample the negative samples (with
replacement) to manipulate the negative sample ratio from r = 1 to r = 15
(Fig. 7b). MMSE fusion performs poorly when there are insufficient negative
samples, and only improves gradually. Though comparable to our method in
terms of robustness to noise, MoE has poor performance at low r, and lags our
method at higher r. On the other hand, MFoM and our approach show stable
performances over a range of r, with our method consistently performing better.

4 Conclusion and Future Work

We introduce a local expert forest model for score fusion that exploits changes
in the relative performance of a bank of base classifiers by partitioning the score
space and learning local weight sets which optimally combine scores in the result-
ing regions. We demonstrate this method on the TRECVID MED task, fusing
scores produced by 5 different base classifiers in order to detect 15 complex
events from an archive of more than 1000 hours of video. Our model shows a
significant performance advantage over other fusion methods, in terms of aver-
age AUC over 300 trial runs. Since TRECVID performance, generally speaking,
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correlates strongly with the number of low level features (and base classifiers)
fused, we plan additional experiments with more fusion inputs.

To date, our fusion weights have been determined based on the relative per-
formance of the base classifiers over regions of the score space, without taking
into consideration the properties of individual clips. We have found that, in ad-
dition to the output probability, the performance of the base classifiers correlates
with video metadata. As an example, the performance of the base classifier us-
ing HOG3d features has poorer performance on highly-compressed videos, as
compared to those with relatively less compression. In order to capture such
performance dependencies in our fusion model, we will investigate the use of
clip-level metadata in weighting, e.g. reducing the weight given to the HOG3d
classifier probability for highly-compressed video. This may be achieved, for in-
stance, by expanding the score space to include dimensions representing relevant
metadata measures and applying the existing partitioning method.
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