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Abstract. Transfer learning can counter the heavy-tailed nature of the
distribution of training examples over object classes. Here, we study
transfer learning for object class detection. Starting from the intuition
that “what makes a good detector” should manifest itself in the form
of repeatable statistics over existing “good” detectors, we design a low-
level feature model that can be used as a prior for learning new object
class models from scarce training data. Our priors are structured, cap-
turing dependencies both on the level of individual features and spatially
neighboring pairs of features. We confirm experimentally the connection
between the information captured by our priors and “good” detectors
as well as the connection to transfer learning from sources of different
quality. We give an in-depth analysis of our priors on a subset of the chal-
lenging PASCAL VOC 2007 data set and demonstrate improved average
performance over all 20 classes, achieved without manual intervention.

1 Introduction

Object class recognition has achieved remarkable performance for a wide variety
of object classes [1]. The simultaneous recognition of many classes remains a
challenging problem, however, due to both increasing model complexity and
the required amount of training data. While image data is abundant for some
classes, recent studies [2-4] confirm the heavy-tailed nature of their distribution
over categories, fueling the need for learning algorithms that make efficient use
of scarce training data. For image-level object classification, transfer learning
has been widely adopted as a promising route towards reducing the amount
of required training images, by re-using knowledge from existing object class
models in the learning of new models. Transfer learning approaches differ in
the particular representation of transferable knowledge, ranging from shared
features [5, I6] over visual attributes [7-10] to classifiers at different levels in a
hierarchy [11H13]. They typically build on global image representations that are
consistent across different object classes, facilitating transfer learning.

This is different for object class detection. Today’s most successful detectors
are based on either fully rigid [14] or deformable |15] templates that capture the
precise spatial layout of visual features of the object class of interest. Their per-
formance depends crucially on the proper alignment of training images. Trans-
ferring knowledge between these models thus faces the additional challenge of
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Fig. 1. Left: Detection results on VOC2007 test set with varying number of training
instances. Right: Visualization of the learned models with low AP versus high AP.

aligning models prior to performing the transfer, i.e., establishing correspon-
dences between source and target models. While there have been attempts to
establish these correspondences by restricting transfer to topologically similar
classes and views [16], annotating parts [17], or borrowing or sharing those
training examples that happen to be well aligned |3, 4], the question “which
knowledge to transfer where” has not been answered in a principled fashion.

In this paper, we therefore refrain from global transfer learning requiring
model correspondences, and instead focus on local knowledge on the level of
individual features or small local feature arrangements. This local knowledge is
generic enough to be applicable in a spatially invariant fashion (as, e.g., pairwise
potentials in an MRF for segmentation), without the need for correspondences.

The starting-point of our approach is the intuition that “what makes a good
detector” — its ability to emphasize features that appear consistently across many
training examples of an object class while suppressing background noise — should
be evident (and measurable) for a given detector. In particular, we observe non-
accidental structures to manifest increasingly as the number of training images
and hence detector quality is increased (see Fig.[I]). Those structures comprise
very local details such as dominant gradient orientations as well as slightly big-
ger spatial structures, such as neighboring gradients forming continued line seg-
ments, corners, or parallel structures. Based on this intuition, we design a local
correlation model that aims to capture these non-accidental structures that seem
indicative of “good” detectors. It can be learned from one or several “good” ex-
isting detectors, and used as an informative prior to facilitate the learning of
new detectors from few training examples.

Our paper makes the following contributions. First, we approach the difficult
problem of transfer learning for object class detection by designing local-level
spatial priors that circumvent the need for establishing across-model correspon-
dences, based on today’s de-facto standard detector, the DPM [15]. Second, we
show that our priors capture structural information that is indicative of “good
detectors”, and can hence be used as measuring devices in order to assess the
performance of a given object class detector. For transfer learning, our priors can
predict the success of transferring knowledge from a specific source to a specific
target. And third, we perform an in-depth experimental study that demonstrates
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the ability of our priors to boost the performance of new detectors learned from
few training examples without manual intervention.

2 Related Work

Transfer learning has received increasing attention in the recent literature, mainly
following three different directions.

A first direction assembles new object class models from (components of) ex-
isting ones. Bart and Ullman |18] replace individual features of existing models
in order to learn new classes, while Torralba et al. |5] learn a shared feature
representation jointly from all classes. An entire branch of literature is dedi-
cated to forming object class models from attributes using generative (Ferrari
and Zisserman [19], Lampert et al. |7]) as well as discriminative (Wang and
Mori 9], Farhadi et al. []) techniques. Others determine viable attribute combi-
nations from linguistic knowledge bases (Rohrbach et al. [10]) and the web (Berg
et al. [20]). On the highest level of abstraction, entire object class models are
combined using stacking (Tommasi et al. [21]), multiple kernel learning (Luo et
al. |6]) or along paths of a hierarchy (Levi et al. |[11], Zweig and Weinshall [12],
Marszalek and Schmid [22], Li et al. [13], and Salakhutdinov et al. [3]).

A second direction represents new classes relative to a set of known classes.
Bart and Ullman [23] characterize new classes by means of their distance to
known classes in feature space. Wang et al. [2] reason about similarity differ-
ences between sets of classes. In the context of template-based object class de-
tection, Aytar and Zisserman [16] enforce closeness between a newly learned and
an existing model by means of ¢, regularization. While their approach delivers
remarkable performance for specific sets of classes, it is limited by the required
strict global alignment of templates.

A third direction explicitly aims to capture and transfer variations observed
in the training data between different classes on different levels of abstraction.
Miller et al. [24] transfer reoccurring spatial transformations between characters
for improved character recognition. Stark et al. [17] transfer variations in local
shape and global geometric layout of a part-based model, based on manually es-
tablished part correspondences. Fei-Fei et al. [25] consider a Bayesian framework
for image classification, where the posterior distribution over entire object class
models is adapted in response to incoming training data of a new class.

While our approach clearly follows the third direction, it is among few that
consider transfer learning for the challenging detection task based on state-of-
the-art detectors. To our knowledge, we are the first to consider spatial priors
that can capture correlation structures between features for this task, going
beyond the i.i.d. assumption of previous work [3, [16]. Further, in contrast to
previous work relying on global template alignment [3, [16], our focus is on local
information, which allows to leverage transfer even in adversary and generic
settings in an interpretable way (see Sect. [f]). In a Bayesian sense, these previous
works transfer mean parameters with diagonal covariance, while we build more
informative non-diagonal covariance — our contribution is orthogonal, and could
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be combined with existing techniques to the mutual benefit of both. Constructing
informative covariance for transfer learning has also been proposed by Raina et
al. [26] for text classification and Elidan et al. [27] for object shape modeling.

3 Preliminaries

We build upon the state-of-the-art sliding window object detector [15] that repre-
sents an object class as a mixture of multiple components, and each component
consists of a designated root and multiple part templates. We stress that the
ability of our approach to handle the full-fledged part-based incarnation of this
model is in contrast to recent prior work [16], where parts pose fundamental
challenges due to required template alignment. For the clarity of presentation,
we first restrict ourselves to single component mixtures without parts, but relax
that assumption in Sect. Bl and all experiments.

An object template according to |15] is specified by the model parameter w.
An image subwindow is represented by its feature vector x and scored by the
inner product w’ x. More specifically, given an image subwindow, it is first spa-
tially divided to m xn cells, and a histogram of oriented gradient is computed for
each cell [14]. Thus, the feature vector consists of a collection of cell-level features,
ie., X = [X1;X2;...;Xmn] € R™ where Vi € {1,...,mn}, x; € Rl and [ is the
dimension of the cell-level feature. We use “;” to denote the vertical concatena-
tion of vectors. Similarly, the model parameter can be decomposed in the same
Way W = [W1; Wa;...; W] € R™. We call each w; a cell model. The visualiza-
tion of an object model is shown in Fig. 2] (a). We can learn the object template
by collecting a set of labeled training instances (X,)) = {(x,y®)}¥,, and
minimizing the following loss function:

N

1 C , ,

L(w,X,Y) = 2WTW + N z:mau({o7 1—yOwTx} (1)
N~ 7 i=1
Lprior (W) ~ v

~
ﬁdata(wvxvy)

The loss function consists of two terms. The first is a hinge loss term Lgata
encouraging the model to classify training examples well. In a Bayesian inter-
pretation, the second term Lpior = éWTW encodes the prior belief that the
model is drawn from a zero-mean isotropic Gaussian. This constitutes an un-
structured prior, since it assumes that every coordinate in w is independent. The
quality of the model learned by minimizing (Il) depends heavily on the number
of (positive) training instances (see Fig.[I]). As can be seen, the test performance
is low for the case of few training examples due to overfitting.

4 Constructing Informative Structured Priors

As motivated in the introduction, the starting-point of our approach is the at-
tempt to capture local model statistics that are characteristic of “good” detectors
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Fig. 2. (a) Left: Pairwise neighborhood. Middle: Cross covariance between horizontal
pairs of cells. Right: Cell model covariance. (b) Eigen vectors of K, (learned from
horse) with increasing eigen values.

in the form of a prior. We hope (and verify in Sect. [6:2] and [63)) that such a prior,
when learned from an appropriate set of existing “good” detectors, manages to
transfer these “good” characteristics to a target class of interest, for which we
only have few training images available.

4.1 Local Correlation Structures in “Good” Object Class Detectors

According to Fig. [l (right), we focus our attention on two distinct characteristics
that we observe more prominently in the visualization of the “good” detectors
than in the visualizations of poorer detectors.

First, we focus on examining individual cell models. We observe that ac-
tivations of different gradient orientation bins do not seem entirely random,
but rather correlated. Neighboring gradient orientation bins are often active to-
gether, while the majority is entirely suppressed. We attribute this observation
to the fact that the template has to account for small variations in the local
gradient directions in order to be robust. In addition, if a certain gradient ori-
entation is encouraged, its orthogonal counterpart is often penalized. These are
verified by the learned covariance matrix from good bicycle models, as shown
in Fig. 2 (a)(right). It can be seen that similarly oriented gradients are usually
positively correlated, while orthogonal gradients are often negatively correlated.

Second, we extend our focus to local neighborhoods of cells. Again, we observe
obvious cross correlations between activations of gradient orientation bins. As
shown in Fig. [ (a)(middle), the cross covariance matrix has strong positive
diagonal and correlations between nearby orientations. Dominant orientation
bins of neighboring cells often follow similar patterns. They tend to coincide
(forming line segments), to disagree by an angle (forming curves and corners),
or to be roughly parallel, which we attribute to two causes. The first one is
that the template has to be robust to small spatial variations in the alignment
of training instances, causing neighboring cell models to show similar patterns.
The second one is that the gradient-based nature of the underlying HOG features
tends to capture object outlines, which are often smooth lines and curves.
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We conclude that these local correlation structures on the level of both in-
dividual cells, spanning different gradient orientation bins, and on the level of
neighboring cells, constitute valuable information that we would like to capture
in our priors for use in transfer learning. This is in contrast to many off-the-shelf
learning algorithms like SVM that represent the model as a flat vector, without
considering the underlying structure.

4.2 Learning Structured Priors

We focus on transfer learning at the model parameter level. Specifically, sup-
pose we want to learn a horse detector from a training set (X',)) (the target
domain). We are also given another set of labeled examples from some other
categories (X, Vs), e.g., cow (the source domain). Then the goal is to construct
an informative prior Lpyior(W, Xs,Ys) for the target domain from the source.
An obvious route taken by previous work [16] is to use the model w, learned
from the source as the mean for the target. In this case, the prior becomes
Lovior(W, X5, V) = 5|lw — w,||3, which assumes the strict global correspon-
dances between the source and target. Moreover, it assumes the coordinates of
w to be independent, similar to the umnformatlve prior }||w|/3. In contrast, we
aim to construct an informative structured prior L350 (w, Xy, V) = 2WTK W
without correspondance assumptions.

We propose to learn both the within cell correlations, i.e., the cell model
covariance, and pairwise correlations between neighboring cells, known as cross-
covariance (we distinguish four different spatial relations according to Fig. 2l (a)).

We use a bootstrap technique to estimate both. Specifically, given the source
domain (Xs,Ys), we generate multiple samples by randomly sampling S sub-

sets of instances, resulting in {( S)) . For each (X @ b )7 we learn

wg) = argming, L(w, X(Z) ys ) as deﬁned in (EI]) Each Wg) gives us a set of

cell-level pairwise neighbors 77 = {(w gzg, (Z)) | (4,k) € M;} for each type of
neighborhood relation ¢ € 7 = {horizontal, Vertical7 diagl, diag2}. So the sample
set we use to estimate the cross-covariance X; € R>! is P, = Ulept(z). Xy is

then estimated by its sample average:

1 _ _
Xy = > (Wej — We i) (Wek — Wai)" (2)
[Pl ,
(Ws,g7ws,k)e7)t

where (W j, W 1) is the mean of all (w, ;, W, ) € P;. Similarly, we estimate the
cell model covariance matrix X, € R from its samples P, = U 1770 , Where

P = {w(z) | V5 indexing the cell model in wgz)}.

Given the pairwise cross-covariance matrices X;’s, and the cell model covari-
ance Y., we construct the “covariance matrix” X, € R™Mxmnl for the target
model, where m and n are the numbers of rows and columns in the target
template. X is a m x n block matrix, where each block X (; 1) € R*! is the
cross-covariance between the j-th and the k-th cell models. Given a pair of cells
(4,k) (assume j < k), X (;x) can take on one of 6 different values depending
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on the spatial relations between j and k. First, if (j,k) € N; for some t € T,
then X ;xy = Xy and Xy (1 5) = YT, Second, if j = k, then Yo (k) = e, L€,
the covariance for cell models. Finally, if cell j and k are not spatial neighbors,
Yo (k) = Xs,(k,5) = 0, which implies that Y is a block sparse matriz.
With X, we define our structured prior loss function as
L3t (w X Vo) = wl (I — A\ )w = w! K,w (3)

prior

where I is the identity matrix and K, = (I — A\X) [. X is a scalar constant and
serves two roles. First, it ensures a strongly convex prior, i.e., K > 0. X scales
the eigen values 7;’s of X5 such that all 1 —A; > 0. Second, A controls the degree
of transfer. The larger A\, the stronger we transfer. For A = 0, we get back to
the uninformative prior w”w. Note that K is still a block sparse matriz, where
non-zero blocks correspond to those cell pairs that are spatial neighbors.

4.3 Interpretation

We interpret our prior (@) from different perspectives. First, we directly make

sense of the informative part w” X,w. It can be decomposed as Z;"Z"I WJTECW]' +

D oteT 2o(j k)N, and j<k 2w Xywy. There are two types of terms. The first type
WJTECW]‘ for each cell encourages the target cell model to follow the most likely
directions (principal components) of the source cell models. The second type
WJTZth encourages a pair of cell models to follow the pairwise correlations
estimated from the source. For example, if X ;) > 0 (meaning that the g-th
coordinate of one cell model is positively correlated with the r-th coordinate of
its neighbor), we encourage the target w; , and wy, to take the same sign. Note
that if two similar gradient orientations are often either both encouraged or both
penalized for neighboring cells, this kind of “smoothing knowledge” is encoded
in the prior and enforced for the target.

From a regularization point of view, consider the eigen decomposition K, =
QAQT. Then we have w” K,w = || A2 QTw]|2. Under the orthogonal transforma-
tion QT instead of regularizing uniformly across all eigen directions ||QTw||3 =
|w||2, we penalize different directions of the eigen vectors proportional to their
corresponding eigen values. Fig. 2 (b) shows the sorted eigen vectors of K
learned from the horse model with increasing eigen values. As can be seen, these
eigen vectors encourage spatially neighboring cell models to have similar pat-
terns, which is the “smoothing effect” we expected.

From a probabilistic model point of view, the prior w” K ,w corresponds to
a Gaussian Markov Random Field (GMRF) [28] with the graphical structure

! One tempting way to construct the prior is w” X7 'w, assuming X is a valid co-

variance matrix. However, Xs may not be positive definite. We think of X5 as an
affinity matrix (i.e., stronger correlation means higher affinity), which we use to di-
rectly construct the precision matrix of a Gaussian. We thus inherit a block sparsity
structure that implies the desired conditional independencies. Also note that the
regularization —w” X.w penalizes different eigen directions in the same order as
wlXtw.
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the same as the neighborhood system shown in Fig. 2 (a). It is related to dis-
crete MRFs for image segmentation. Instead of using an MRF to capture the
smoothness prior for nearby segment labels, we use the GMRF to capture the
correlation between nearby gradient orientations and neighboring cell models.

5 Learning Detectors with Structured Priors

Given the prior learned from the source, we combine it with the data loss term
to form the informed loss function as follows:

N
o ]' 2 '
LN w, X, Y) = Wl Kow + ]C; Y max{0,1-yIwx} (1)

Since the prior term is strongly convex (K is positive definite) and the data
term is also convex, the objective [ is convex. In fact, one can transform ()
to an equivalent regular SVM problem. Consider the eigen decomposition Ky =
QAQT. Define w = A%QTW, then we have

Tw =wlQA2A2QTw = wTQAQ W = wl K,w (5)

w
Similarly, define x = A=2QTx, then we have
Wig=(42QTW)T(A72Q"x) = wi(QA2 A7 2QT)x = w'x (6)

Given the transformed feature X and parameter w, the original @) becomes:
L (5, X, Y) = v~V W+ ZmaX{O 1—yOwTx®} (7)

Note that this is a regular SVM problem and can be solved by any existing highly
optimized algorithm or software package. We can recover the optimal solution
of {@) as w* =QA 2w

The former extends naturally to a part-based model with a mixture of multiple
components [15]. In this case, the model parameters consist of multiple blocks,
one for each pair of part and component, i.e., w = [w(l’l); .. .;w(”’p)], where p
is the number of parts and v is the number of components. We can construct a
prior K S(” ) for each of them, and the overall structured prior is a block diagonal
matrix K, = diag(K"Y, ... k&P kY KPP,

6 Experiments

In this section, we carefully analyze the performance of our proposed structured
priors, in three different settings. First (Sect. [6.2]), we come back to the question
of “what makes a good detector”, by analyzing the likelihood of sequences of
detectors of varying quality (learned from varying numbers of training images)
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Fig. 3. Log likelihood scores for sequences of target models with increasing quality
using both our priors learned from various sources and the uninformative prior

under our priors. We observe that model quality and model prior likelihood are
in fact correlated. Second (Sect. 6.3]), we apply our priors in a transfer learning
task, where we learn target class models from few training examples plus priors
learned from different sets of source classes. We give an in-depth analysis on a
subset of PASCAL VOC 2007 classes and compare adversary, generic, superordi-
nate, and close category priors. And third (Sect. [6.4]), we switch to a real-world
application scenario in which we demonstrate transfer learning for all 20 PAS-
CAL classes without any human intervention, by using either generic priors or
semantic relatedness measures mined from linguistic knowledge bases ﬂﬁ]

6.1 Basic Setup

We use the PASCAL VOC 2007 dataset ﬂ] containing 20 object classes. Learning
is done on the train/val sets and the entire test set is used for testing. We simulate
scarce training data by randomly subsampling 5 times from the original training
set, varying the number of training instances per component from 10, 20 to 40.
The mean and standard deviation over 5 runs are reported.

The baseline is the latest implementation of the state-of-the-art detector ﬂﬁ]
We first invest CPU time into a deeper analysis of a simpler root-only variant
in Sect. and [6.3] and then perform a broader and extensive study on the
fully part-based model for all categories in Sect. [6.4lOur priors are learned using
bootstrap (see Sect. 2) with sample number 5 and sample set size 160 per
component. The C' parameter of SVM is set to the default (and optimized)
0.002 from ﬂﬁ] for the baseline as well as our models. We did not tune the A
parameter and set it such that the largest eigen value of AXs is 0.9 (therefore,
Ks; > 0in @) in all experiments.

6.2 Likelihood Analysis

Before applying our priors in an actual transfer learning task, we commence
by giving an analysis of their log likelihood functions — ;WTK sw (ignoring the
normalization constant). Specifically, we consider sequences of detectors of a
target class, learned from varying numbers of training images (Fig. [3). Naturally,
these detectors are of different quality — low numbers of training images result



Structured Priors for Learning from Few Examples 363

in “poor”, while high numbers result in “good” detectors (which seems obvious,
and is in fact reflected by increasing AP values given as part of the x axis labels).
We then evaluate the log likelihood of each detector under different variants of
our priors. For each prior, we plot log likelihoods normalized by the highest
attained log likelihood value in the sequences for comparison.

The purpose of this experiment is to highlight two key aspects of our approach.
First, we want to verify that the specific form of structured priors that we are
proposing does in fact capture relevant model structures that are indicative
of “good” detectors (see Sect. {I]), and are hence worthwhile considering for
transfer. And second, we want to demonstrate that priors learned from different
sets of source models exhibit different characteristics in their log likelihood scores
w.r.t. a target class of interest, and can thus hint on the expected performance
of newly learned models using the priors.

Results. As target classes, we choose ones that we deem representative for dif-
ferent levels of baseline performance (see Fig. [I), namely, cow (weak), horse
(modest), and bicycle (strong). Fig. Bl plots the normalized log likelihood scores
by applying various priors to sequences of detectors of the three target classes,
learned from varying numbers of training examples (left: cow, middle: horse,
right: bicycle). For all three target classes, we consider priors learned from sets
of source classes of varying similarity to the respective target class, according to
human judgment. We distinguish (1) oracle priors (red curves), learned from the
target class itself, (2) adversary priors (cyan), learned from visually dissimilar
classes among VOC2007 classes (bus), (3) generic priors (blue), learned from all
but the target class, (4) superordinate category priors (green; horse, sheep for
cow; cow, sheep for horse; motorbike, bus, boat for bicycle), learned from classes
sharing the same superordinate class as the target class (omitting the target
class itself), and (5) close category priors (magenta; sheep for cow; cow for horse;
motorbike for bicycle) learned from the most similar class to the target class.

Indication of target detector quality. In Fig. Bl we first consider the oracle priors
(red curves), learned from the respective target class of interest. While these
priors are unrealistic in a transfer learning setting, we introduce them here for
the sake of a best-case analysis. In Fig. Bl we observe that the log likelihood
of detectors under the oracle priors (red curves) almost always increases with
the number of training examples, and is hence positively correlated with the
corresponding detection performance. This holds true for all three target classes
(plots in Fig.Blcontain AP values as horizontal axis labels). Le., the log likelihood
values under our proposed prior do in fact provide an indication of the quality
of the target class detector.

Indication of source quality. In Fig. [B we further observe a fairly consistent
ordering of log likelihood curves obtained by applying priors learned from dif-
ferent source classes to the respective target detectors. Specifically, the relative
score gap between the best and the worse models and/or the degree of positive
correlation between log likelihood values along a curve and the number of train-
ing examples increase from uninformative over adversary, generic, superordinate,
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and close category to oracle priors, for all three target classes (Fig. Blleft, middle,
and right), matching the intuitively expected ordering.

6.3 Transfer Learning

We continue by analyzing our structured priors in a transfer learning setting.
To that end, we follow the selection of source and target classes of Sect.
Tab. [ (a), 0 (b), and [l (c) give the detection results (mean average precision
and standard deviation) for target classes cow, horse, and bicycle, respectively. In
Tab. [l (a) (cow, weak baseline performance), we observe that the performance of
the baseline (leftmost column) can be improved by all variants of our structured
priors for all numbers of training images, with the only exception being adversary
priors for 10 training examples. The largest improvements are achieved by close
category priors (rightmost column) for 10 (3.93%) and by the superordinate
category priors for 20 (3.49%) and 40 (2.40%) training examples. The generic
priors consistently improve over the baseline (by 1.92% for 10, by 2.51% for 20,
and by 1.83% for 40 training examples). Strikingly, even the adversary prior
helps in two out of three cases (improving by 0.25% for 20 and 1.46% for 40
training examples).

A similar tendency can be observed in Tab. [ (b) (horse, modest baseline
performance). Our structured priors improve over the baseline for all numbers
of training images. Close category priors improve by 1.5% for 10, superordinate
category priors by 2.25% for 20, and generic priors by 0.72% for 40 training
examples. Again, generic priors consistently improve over the baseline (by 0.82%
for 10, by 1.74% for 20, and by 0.72% for 40 training examples). The adversary
priors improve by 0.27% for 10 training examples, and are comparable to the
baseline for 20 (—0.16%) and 40 (—0.15%) training examples.

For bicycle (Tab. [l (c)), our structured priors can improve over the strong
baseline for 10 and 20 training images in the close category incarnation (by 0.22%
for 10 and 0.37% for 20 training images). Only for the case of 40 training images,
the baseline detector already performs on a remarkable level of 41.09% AP, which
we miss by 0.5% using close category priors. Because of the strong baseline,
generic and adversary category priors can not further improve performance.

Connection to prior likelihood functions. For all three target classes (cow, horse,
and bicycle), we observe a trend in the ordering of performance values across all
numbers of training images. Performance typically increases from adversary over
generic and superordinate to close category priors, which is consistent with the
ordering established by means of prior log likelihood functions in Sect. [6.2] and
hence can be used as a predictor for transfer learning success (at least in theory,
since a sequence of target class models needs to be available for the prediction).

Summary. We conclude that transfer learning using our structured priors in fact
improves performance over the baseline in many cases, in particular for classes
with weak (cow) and modest (horse) baseline performance. Surprisingly, even the
generic priors provide valuable information for learning these classes, leading to
improved performance for all numbers of training images. Close category priors



Structured Priors for Learning from Few Examples 365

Table 1. Detection results using models with various priors

training #  baseline adversary generic  superordinate close
. 10 7.19+£3.69 6494321 9.114+3.09 10.29£2.15 11.12 4+ 2.42
(a) 9 20 8.17 £ 3.88 8.424+4.21 10.68 +3.85 11.66 +=3.30 10.90 £+ 3.13

40 12.51 £4.36 13.97 £2.61 14.34 £3.22 14.91 £2.10 14.32 £2.84
10 12.79 £2.94 13.06 £2.64 13.61 £1.03 13.37 £3.97 14.29 + 2.80

]

(b) % 20 19.55 £2.06 19.39 +£1.93 21.29 +1.91 21.80 +2.21 21.72 £1.97
= 40 24.70 4+ 3.82 24.55 +3.47 25.42 + 2.80 23.76 £4.26 24.01 +3.44
< 10 29.25 £3.67 27.64 £6.47 27.72 £5.68 28.60£5.39 29.47 £5.30

(c) & 20 35.98 £2.01 35.11 £2.96 34.95£2.79 35.87+£2.05 36.35 £2.42
e 40 41.09 £1.80 40.31 £2.36 40.33 £1.23 40.26 £2.35 40.60 £ 2.03

Table 2. Results on all 20 categories using uninformative, generic and semantic priors

# aero cat pers bike chair plant bird cow sheep boat table sofa bott dog train bus horse tv  car mbike avg
base 18.9 7.1 0.9 39.9 0.7 1.2 0.9 11.8 6.0 5.4 14.4 12.6 8.4 1.0 20.2 20.3 14.7 27.9 5.3 22.5 12.0
S gen. 16.3 11.2 0.3 39.5 1.7 6.5 4.0 18.218.0 11.2 18.4 13.5 9.1 9.1 26.8 47.032.8 32.6 4.3 21.0 17.1
sem. 16.4 12.7 2.1 47.55.1 10.8 2.2 17.9 14.7 12.317.0 15.211.8 11.3 28.4 46.1 32.0 32.6 4.9 21.6 18.1
base 19.8 10.5 1.5 39.7 5.9 7.9 7.2 18.5 13.9 13.3 14.8 17.3 15.7 6.5 87.4 42.0 42.3 37.4 11.6 37.7 20.0
S gen. 21.8 15.4 0.6 53.3 12.4 9.6 4.8 23.419.6 14.3 18.9 24.7 20.7 9.4 24.5 48.1 36.9 37.5 21.8 38.4 22.8
sem. 23.4 14.1 0.7 53.513.6 7.9 6.8 22.6 20.9 14.3 17.7 25.3 21.1 9.8 26.9 48.543.3 37.6 23.7 34.1 23.3
base 25.7 14.4 4.1 53.4 11.9 10.7 6.4 20.4 17.7 14.2 21.6 21.8 16.6 8.8 38.1 46.4 46.7 38.9 24.2 40.6 24.1
3 gen. 26.9 16.5 4.0 56.3 14.6 11.9 8.6 23.9 19.0 13.7 23.6 20.4 18.0 6.5 23.7 47.3 53.0 37.2 35.2 42.6 25.1
sem. 26.0 15.5 6.1 55.6 13.5 7.0 8.3 24.0 18.1 14.1 18.3 22.5 9.6 7.3 26.3 47.4 51.5 34.7 44.8 39.9 24.5

improve over the baseline for all object classes for 10 and 20 training images,
and in 2 of 3 classes (cow, horse) also for 40 training images.

6.4 Transfer Learning Using Semantic Relatedness

Motivated by the good performance of both close category and generic priors,
we now extend the evaluation from the prototypical set of object classes in
the previous section to the full set of VOC 2007 classes. Furthermore, we now
switch to the full part-based model [15], in contrast to prior work limited to
small sets of classes only [16,[17] or to inferior root-template-only models [3, [16].
We aim at evaluating transfer learning using our structured priors in a realistic
setting, not using any human intervention. To that end, we propose the use of
Semantic Relatedness (SR) measures in order to determine which source classes
to consider as close category priors for a given target class, thus determining
sources and targets of knowledge transfer fully automatically. Specifically, we
determine the SR between all pairs of the 20 Pascal classes by querying Word-
net [29] and Wikipedia [30], using the implementation of [10]. This yields two
continuous-valued similarity matrices, which we average in order to increase ro-
bustness [10]. We determine the set of the 3 most semantically related classes to
each target class, which we use as the basis for learning close category priors. To
our knowledge, we are the first to consider SR for transfer learning in object class
detection. In addition, we consider generic priors that do not require any other
information than the set of all class labels, promoting fully automatic transfer.

Results. We give the results of both transfer learning using close category priors
from SR and generic priors in Tab. 2] (mean over 5 runs), and make the following
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observations. First, transfer learning improves the average performance over all
20 Pascal classes compared to the baseline for all numbers of training images.
Generic priors dominate for 40 (improvement over baseline 1%), close category
priors for 10 (6.1% improvement) and 20 training images (3.3% improvement).
Put differently, transfer learning wins in 50 of the considered 60 combinations
of object classes and numbers of training images. close category priors improve
over the baseline for 17 (10 training images) and 15 (20 training images) classes,
respectively. Furthermore, note that the improvement is more pronounced for
the part-based model than for the root-only model (e.g., 6.4% vs. 1.9% for the
cow class, generic priors, and 10 training images). Second, the intuition that
more specific priors should help more is reflected by the ordering of recognition
performance. Close category priors win for 26 and generic priors for 24 combi-
nations. The set of available close categories is of course very limited for the 20
Pascal classes. We thus expect further improvements for larger pools of classes.

7 Conclusions

We have considered transfer learning for object class detection, based on struc-
tured priors that we showed to be indicative of detector quality. Using these
priors, we could consistently improve over the performance of a baseline detec-
tor for different transfer learning scenarios, ranging from close category over
superordinate category to generic and even adversary priors. Leveraging the
generic nature of our priors, we could improve on average over all classes of the
challenging PASCAL VOC 2007 data set in a fully automatic fashion.
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