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Abstract. We address the problem of interactive facial feature localiza-
tion from a single image. Our goal is to obtain an accurate segmentation
of facial features on high-resolution images under a variety of pose, ex-
pression, and lighting conditions. Although there has been significant
work in facial feature localization, we are addressing a new application
area, namely to facilitate intelligent high-quality editing of portraits,
that brings requirements not met by existing methods. We propose an
improvement to the Active Shape Model that allows for greater inde-
pendence among the facial components and improves on the appearance
fitting step by introducing a Viterbi optimization process that operates
along the facial contours. Despite the improvements, we do not expect
perfect results in all cases. We therefore introduce an interaction model
whereby a user can efficiently guide the algorithm towards a precise solu-
tion. We introduce the Helen Facial Feature Dataset consisting of anno-
tated portrait images gathered from Flickr that are more diverse and
challenging than currently existing datasets. We present experiments
that compare our automatic method to published results, and also a
quantitative evaluation of the effectiveness of our interactive method.

1 Introduction

Accurate facial component localization is useful for intelligent editing of pictures
of faces, such as opening the eyes, red eye removal, highlighting the lips, or
making a smile. In addition, it is an essential component for face recognition,
tracking and expression analysis. The problem remains challenging due to pose
and viewpoint variation, expression or occlusion (e.g. with sunglasses, hair or a
beard). While the techniques have improved a lot over the past five years H—B],
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we are still far from a reliable and fully-automated facial component localization
system. For all practical purposes, an interactive, user-assisted face localization
would be necessary.

Our goal is a facial component localization system that achieves high fidelity
results with minimal user interaction. Our contributions are as follows:

1. A novel facial component localization algorithm designed to accommodate
partial labels. We use a part-based formulation which allows us to edit one
part without affecting the correct localization of other face parts. The land-
mark predictions of each face part are jointly fit by finding the global mini-
mum of the energy using dynamic programming.

2. An extension of the feature localization algorithm to accommodate partial
observations. We allow the user to specify landmarks and adjust the remain-
ing ones to minimize the residual error.

3. A new challenging dataset for facial component localization which contains
2330 high-resolution, accurately labeled face images and has larger degree of
out-of-plane orientation and occlusion typical of real-world scenarios.

We show that our system in a fully automated mode outperforms other state of
the art systems on this challenging dataset. Furthermore we show that the error
decreases significantly after only a minimal number of user corrections.

2 Related Work

Active shape model (ASM) [6] and Active appearance model (AAM) [7] form
classic families of methods for facial feature point detection. Comparing these
two models, ASM has the advantages of being more accurate in point (or contour)
localization, less sensitive to lighting variations and more efficient, hence is more
suitable for applications requiring accurate contour fitting.

Since the first introduction of the traditional ASM, there have been many ex-
tensions for improving its robustness, performance and efficiency. For example,
[8] employs mixtures of Gaussians for representing the shape, [9] uses Kernel
PCA and SVM, and models nonlinear shape changes by 3D rotation, [10] apply
robust least squares algorithms to match the shapes to observations, [11] uses
more robust texture descriptors to replace the 1D profile model and used k near-
est neighbor search for profile searching, and [|12] relies on Bayesian inference.

Among those extensions to classical ASM, the recent work of Milborrow and
Nicolls [1] with the introduction of the 2D profile model and denser point set
obtained promising results through quantitative evaluation. The recent work [4]
combines global and local models based on MRF and an iterative fitting scheme,
but this approach is mainly focused on localizing very sparse set of landmark
points.

Other notable recent works exploring alternatives to ASM include [2]. In |2],
a robust approach for facial feature localization is proposed by a discriminative
search approach combining component detectors with learned directional clas-
sifiers. In [3], a generative model with shape regularization prior is learned and
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Fig. 1. Sample images from the Helen Facial Feature Dataset

used for face alignment to robustly deal with challenging cases such as expres-
sion, occlusion and noise. As an alternative to the parametric model approaches,
a principled optimization strategy with nonparametric representations for de-
formable shapes is recently proposed in ]

A Component based ASM is introduced in ﬂﬂ} which implements a set of
ASMs for facial features and stacks up the PCA parameters into one long vec-
tor, then fits those vectors in a single global model using a Gaussian Process
Latent Variable Model to handle nonlinear distribution. In comparison with our
approach, they do not model the global spatial configuration of features of faces
therefore may generate invalid configurations. In ﬂﬁ] the face components are
found by an AAM style fitting method and a discriminative classification is used
for predicting the movement of components. In another effort to explore the
configuration of face parts, Bayesian objective function are combined with local
detectors in } for localization of facial parts.

Motivated by the pictorial structure model in HE], we aim to decompose a
face shape into components, and model variations of individual components as
well as the spatial configuration between components. In HE], the face/human
pose inference problem is modeled as a part-based problem formulated as energy
minimization, where the energy (or cost) is expressed as the linear combination
of a unary fitting term and a pair-wise potential term. Following this work,
we represent the global face shape model as a set of inter-related components,
and model their spatial relationships. Unlike ﬂﬁ] where the unknown parame-
ter space is low dimensional, in our approach we need to estimate component
locations as well as shapes, which is a higher dimensional space. Therefore, we
adopt PCA to model both the component shape variation and the relative spa-
tial configuration. Due to the component decomposition, our approach is more
flexible in modeling face shapes for handling larger pose changes and has better
generalization capabilities than the standard ASM. Our approach uses PCA to
model the relative positions between components, hence it is simpler and more
efficient than M] which relies on expensive MRF inference.
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3 Helen Facial Feature Dataset

Our goal is a facial feature localization algorithm that can operate reliably and
accurately under a broad range of appearance variation, including pose, lighting,
expression, occlusion, and individual differences. In particular, it is necessary
that the training set include high resolution examples so that, at test time, a high
resolution test image can be fit accurately. Although a number face databases
exist, we found none that meet our requirements, particularly the resolution
requirement. Consequently, we constructed a new dataset using annotated Flickr
images.

Specifically, the dataset was constructed as follows: First, a large set of can-
didate photos was gathered using a variety of keyword searches on Flickr. In
all cases the query included the keyword “portrait” and was augmented with
different terms such as “family”, “outdoor”, “studio”, “boy”, “wedding”, etc.
(An attempt was made to avoid cultural bias by repeating the queries in sev-
eral different languages.) A face detector was run on the resulting candidate set
to identify a subset of images that contain sufficiently large faces (greater than
500 pixels in width). The subset was further filtered by hand to remove false
positives, profile views, as well as low quality images. For each accepted face,
we generated a cropped version of the original image that includes the face and
a proportional amount of background. In some cases, the face is very close or
in contact with the edge of the original image and is consequently not centered
in the cropped image. Also, the cropped image can contain other face instances
since many photos contain more than one person in close proximity.

Finally, the images were hand-annotated using Amazon Mechanical Turk to
precisely locate the eyes, nose, mouth, eyebrows, and jawline. (We adopted the
same annotation convention as the PUT Face Database |17].) To assist the Turk
worker in this task, we initialized the point locations to be the result of the
STASM [1] algorithm that had been trained on the PUT database. However,
since the Helen Dataset is much more diverse than PUT, the automatically
initialized points were often far from the correct locations.

In any case, we found that this particular annotation task required an unusual
amount of review and post-processing of the data in order to ensure high quality
results. Ultimately this is attributable to the high number of degrees of freedom
involved. For example, it frequently happened that a Turk worker would permute
components (swap eyes and brows or inner lip for outer lip), or alternatively shift
the positions of the points sufficiently that their roles would be changed (such as
selecting a different vertex to serve as an eye or mouth corner). Graphical cues
in the interface, as well as a training video and qualifying test were employed
to assist with the process. Also, automated processes were developed to enforce
consistency and uniformity in the dataset. In addition to the above, the faces
were reviewed at the component level manually by the authors to identify errors
in the annotations. Components with unacceptable error were resubmitted to
the Turk for correction.

The resulting dataset consists of 2000 training and 330 test images with highly
accurate, detailed, and consistent annotations of the primary facial components.
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A sampling of the dataset is depicted in Fig. [l The full dataset is publicly
available at http://www.ifp.illinois.edu/~vuongle2/helen.

4 Facial Feature Localization

We first briefly review the global ASM, and then derive our new components-
based model and the facial feature localization algorithm.

4.1 Classic ASM

In the classical global ASM, the shape is holistically represented as a set of
pre-defined points, called landmarks, along the shape contour (Fig. [l left), and
described by a vector concatenating all the = coordinates of the ordered landmark
points followed by all the y coordinates. We relate one shape with another using
similarity transformation.

ASM is composed of two submodels: the profile model and the shape model.
At each landmark, the profile model is the normalized gradient vector in the
direction orthogonal to the shape boundaries. The profile distance is computed
as the Mahalanobis distance over the training set. The global shape model is the
statistics of the global shape vector for the training set, and is represented as a
PCA linear subspace.

Given a face rectangle obtained by a generic face detector, ASM fitting first
initializes the landmark points by placing the mean shap to the detected face
frame, and then repeats the following steps: (i) adjust each landmark points
independently by profile template matching; (ii) fit a global shape model to
the adjusted point set. Due to the greedy scheme, many of those individually
adjusted points might be incorrect, and the point set will be regularized based
on the global shape model.

4.2 Component-Based ASM

Shape Model. The classical global ASM relies on a dense correlation matrix of
all the member landmark locations in a single Gaussian model. As a consequence,
it imposes strong spatial constraints for every pair of landmarks in the face. These
constraints make the model work fairly well on studio data where the variances
are small and test images are similar to training samples. However, when applied
to natural photos with large variations in face postures and occlusions, the full
correlation matrix of the global ASM tends to be too strict and cannot be simply
generalized for wide variety of face configurations. An example of a failure case
for the global ASM is shown in Fig[2(a).

Inspired by this observation and the pictorial structure work [16], we introduce
a new component-based model referred to as the Component-based ASM (Com-
pASM) for handling the wide variety of variations in natural face images. In our

! The mean shape refers to the average of aligned shapes for training faces, where
alignment is done by fitting with similarity transformation.
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model, shape variation of each facial component is modeled independently, up
to a similarity transformation, and the relative positions of facial components
are encoded by a configuration model.

Fig. 2. (a) A failure example of the classic ASM on a face image by STASM [1]. The
bigger left eye constrains the right eye and the tilted right brow pulled the left brow
off the correct location. (b) A better fitting result using our CompASM.

We specifically consider a facial landmark set as a union of seven components:
‘jawline’, ‘nose’, ‘lips’, ‘left eye’, ‘right eye’, ‘left brow’, ‘eye brow’. Each compo-
nent has its own coordinate frame called local frame, centered at the center of
mass of the component. Those centers are successively represented in a higher
level canonical face frame called the configuration frame. An illustration of our
component-based model is shown in Fig3l

In this model, there are three coordinate frames: global, configuration and lo-
cal frames. The j-th landmark point of component ¢ has its global coordinates p;;
on the global coordinate frame, and local coordinates ¢;; on the local coordinate
frame.

In the local frame, the coordinates of landmark points for a component are
represented as a single shape model centered at the component’s centroid. It is
a combination of principal vectors by PCA:

¢ = G + P;b; (1)

where g; is the concatenation of g;;, ¢; and @; are the mean vector and the shape
basis learnt from the training data respectively, and b; denotes the set of linear
coefficients of the fitting.

In the configuration frame, the location of each component’s centroid is rep-
resented by a displacement vector ¢; from the face center. The linear subspace
representation of these vectors is learnt to be:

t=1+"r, (2)

where ¥ is configuration bases, and r denotes the set of PCA coefficients.
The global coordinates of the landmark points can be obtained from local
coordinate and configuration coordinates by a similarity transform:

pij = sR(qij + i) + to, 3)

where R, s and ty denote the rotation, scale and translation that align a face
shape from the global frame with the configuration frame; ¢; denotes the location
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Fig. 3. Illustration of our component-based model

coordinates of component ¢ in configuration frame. While t; are different from
component to component, the three similarity transform parameters in s and R
are shared among the components.

Taking the mean of Eq[Blfor each component, we obtain: p; = sR(g +t;) + to,
where §; is the local coordinate of centroid of component ¢ and is effectively zero.
And we can re-write it as p; = sRt; + tg.

Further combining the equation for all components, the model can be written
as concatenated form as:

p = sRt+to. (4)

Eq.@ and Pl are directly used in the configuration fitting step in the shape search
algorithm. See Section for the detailed algorithm.

In CompASM, the configuration model constrains relative locations between
face components and is responsible for finding the orientation and scale of the
face and estimating optimal locations of components, while the local model for
each component is responsible for optimally fitting the component’s shape model
to the observation. In other words, each local model is fitted independently, hence
can handle larger global shape variations.

Furthermore, the fact that each component shape is a single connected contour
opens the possibility of jointly searching for multiple landmark points in the
profile model. The new profile model adopting joint landmark optimization is
introduced in the following section.

Profile Model. In the classic ASM ﬂa, m], during the profile fitting step, at each
of the N landmarks of a given component we consider M candidate locations
along a line orthogonal to the shape boundary. We evaluate the profile model
at each location and pick the one with the highest score. The problem with this
greedy algorithm is that each landmark location is chosen independently of its
neighbors and neighboring landmarks could end up far from each other.
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(a)

Fig. 4. An example of profile search by greedy method of classic ASM (a) and by our
Viterbi global optimization (b)

To address this problem we introduce a binary constraint for each pair of
adjacent landmarks to ensure that they are at an appropriate distance from
each other. We jointly fit all the landmark locations by finding the sequence of
candidate locations with a maximum sum of unary scores (at each candidate
location) and binary scores (at each pair of adjacent locations). We can find the
globally optimal such sequence in O(NM?) time using dynamic programming
(the Viterbi algorithm [18]).

Our unary score is the probability of candidate location ¢ of a given landmark,
defined as:

pi=(1—di)/(M—1) ()

where d; is the Mahalanobis distance at the candidate location, normalized so
that wa(dz) = 1 which ensures that wa (pi) = 1.

Our binary score is the probability that two adjacent landmarks are a given
distance = apart. We model it using a continuous Poisson:

mefA
P = oy (6)

where z is the Euclidean distance between the two locations and I is the gamma
function. We chose the Poisson distribution because it has a suitable PDF and
a single parameter A\ which we fit separately for each component.

To find the optimal set of candidate locations we run Viterbi, which maximizes
the sum of the log probabilities. In our experiment section we show that our
joint optimization of the landmarks outperforms the greedy approach in the
traditional ASM algorithm. In addition, our model easily accommodates user
interaction as discussed in Section Bl An example of the profile search results of
two methods is depicted in Fig[l

4.3 Owur Algorithm

Here we describe how we combine our new shape model and profile model into
the facial feature localization algorithm. Given an input image, after initializa-
tion by face detection, the shape model and profile model will be applied in an
interleaved, iterative way in a coarse-to-fine manner in the pyramid.
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In each particular iteration step, profile search is applied first, which gives
the suggested candidate locations of the landmarks. The landmark candidates
are then regularized by the local shape model. In each pyramid level, the fitting
process is performed by repeating configuration model fitting and local model
fitting until convergence.

The details of our facial feature localization method using CompASM is illus-
trated in Algorithm [II

Algorithm 1. Facial Feature Localization Algorithm

Detect faces, initialize the shape model based on the face rectangle
for each resolution level do
repeat
a. Do profile search for suggesting new landmark locations
al. Collect unary scores by profile matching
a2. Jointly find optimal path using the Viterbi algorithm
b. Update the landmark localtions with local shape and conf. model
bl. Find the centroid of suggested landmarks for each component
b2. Fit the centroids to the configuration model using Eql2 and [
b3. Apply the new configuration to the suggested landmarks using Eq3l
b4. Fit the local shape model PCA subspace to landmarks using Eq[Il
c. Form a new global shape by applying the inverse similarity transformation
until Number of points moved between two consecutive rounds < 20%
Map the localized result to the next resolution level
end for
Return the result from the highest resolution lvel

5 User Interaction Model

In this section we describe our algorithm for user-assisted facial feature local-
ization. Once the automatic fitting is performed, the user is instructed to pick
the landmark with the largest error and move it to the correct location after
which we adjust the locations of the remaining landmarks to take into account
the user input. This interaction step is called an interaction round. This process
is repeated until the user is satisfied with the results. Our goal is to adjust the
locations of the remaining landmarks as to minimize the number of interaction
rounds.

Our update procedure consists of two main steps: Linearly scaled movement
followed by a Model fitting update.

In the Linearly scaled movement step, when the user moves a landmark p;,
we move the neighboring landmarks on the same contour as p; along the same
direction. The amount of movement for neighboring landmarks is proportional to
their proximity to p;. Specifically, we identify landmarks p, and p, on both sides
of p; which define the span of landmarks that will be affected. Each landmark
with index j € (a, ] moves by Z:Z x d where d is the user-specified displacement
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vector of pE. The landmark p, is specified as the closest along the contour to
p; of the following three landmarks: (1) the one |n/4] landmarks away, where
n is the number of landmarks in the component, (2) the nearest user-corrected
landmark and (3) the end landmark if the component contour is open. The
landmark pp on the other side of the contour is determined analogously.

After the first step, in most cases, the neighboring points of p; have moved
close enough to the real curve that their profile models can snap to the right
locations. That enables the second step of Model fitting update. In this step, we
do several component based ASM fitting iterations at the highest resolution.
Unlike regular ASM fitting, in these iterations we update only the current com-
ponent. We also adjust the fitting so that the user-corrected landmarks don’t
move. Specifically, as we describe in Section [ our fitting step iterates between
shape model and profile model fitting. During the shape model fitting, we uti-
lize constrained linear least squares to find the best location of the component
given that it must go through the fixed landmarks. In our profile fitting, as we
describe in Section 2] we specify candidate locations for each landmark and use
the Viterbi algorithm to find the optimal contour. For user-specified landmarks,
we choose the user-specified location as the only candidate location, thereby
forcing Viterbi to find a path through the user-specified landmarks.

6 Experiments

6.1 Comparison to STASM

Our algorithm is designed to allow for high independence and freedom in com-
ponent shape so that it can deal with natural photos with higher variations than
the studio data. Nevertheless, we needs to assure that it can work adequately
well on standard studio data as well. Therefore, in our first experiment, we com-
pare our algorithm with STASM [1, [19] on standard datasets that they have
chosen in their work. In this experiment, following [19] we train we train our al-
gorithm on MUCT dataset [19] and test on BioID dataset [20]. MUCT contains
3755 images of 276 subjects taken in studio environment. Bioid consists of 1521
frontal images of 23 different test persons taken at the same lighting.

On the BiolD test set, the fitting performance of STASM which features
the stacked model and 2D profile trained on MUCT is reported to be the best
among current algorithms [19]. The MUCT and BioID point sets includes five
standalone points; therefore their shapes cannot be separated into single con-
tours. Consequently, we are not able to use Viterbi optimized profile searching
in this experiment. Following STASM, we evaluate the performance using the
me-17 measure. This measure is the mean of distance between fitting result of 17
points in the face to the manually marked ground truth divided by the distance
between two eye pupils. The comparison of the two algorithms’ performance is
shown in Table[Il The result shows that both of the algorithms’ results on BioID
are very close to perfect and STASM made a slightly lower error.

2 Note that neighboring landmarks in our dataset are equidistant.
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Fig. 5. CDF of me-194 error for CompASM and STASM on the Helen dataset

Table 1. Comparison of STASM and CompASM on the two test sets. For
MUCT/BiolD we use the me-17 measure. For Helen, we use the me-194 measure.

Dataset Algorithm Mean Median Min Max
MUCT/BioID STASM 0.043  0.040 0.020 0.19
MUCT/BioID CompASM/Greedy 0.045 0.043 0.021 0.23
Helen STASM 0.111  0.094 0.037 0.411
Helen CompASM/Greedy 0.097  0.080 0.035 0.440
Helen CompASM/Viterbi 0.091 0.073 0.035 0.402

While BiolD is an easy dataset for fitting algorithms to deal with, the He-
len dataset is a more challenging one. The Helen data consists of natural images
which not only vary in pose and lighting but are also more diverse in subject iden-
tities and expression. In this dataset, the face features are highly uncorrelated
with non-gaussian distribution which our model can exploit better. To measure
fitting performance on Helen, we use me-194, similar to the me-17 measure,
which calculates the mean deviation of 194 points from ground truth normalized
by distance between two eye centroids. We divided Helen images into training
set of 2000 images and testing set of 330 images. The comparison of STASM
and CompASM is shown in Table [l and Figure Bl Table [ shows that Com-
PASM outperforms STASM by 16%. The result proves that CompASM is more
robust over diverse face images. Some examples of fitting results of STASM and
CompASM are shown in Fig. 6l

6.2 Evaluation of User Interaction

Here we evaluate the effectiveness of our method described in Section [l to re-
fine the automatically determined facial component locations through user in-
teraction. Qualitatively, we wish to minimize the user’s effort in obtaining a
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Fig. 6. Some examples of fitting results on the Helen test set of CompASM (first row)
and STASM (second row)
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Fig.7. The mean me-194 error measure across the Helen test set as a function of
interaction round. One interaction round constitutes a single user action (see text for
details). Each curve is the mean value across the test set under varying experimental
conditions. Using both the linearly scaled movement and constrained refitting steps
results in the most effective reduction in error.

satisfactory fitting result. More concretely, we wish to observe how the fitting
error decays as a function of the number of interaction steps.

To this end, we simulate the user’s typical behavior when interacting with the
system, namely to choose the landmark point located farthest from its true posi-
tion and move it to its true position. After being moved, it becomes a constraint
for subsequent fitting rounds as described in Sec.

We repeat this procedure for a number of rounds and record the me-194 error
measure at each round. Fig. [[ depicts the distribution of the error across our test
set over 15 interactivity rounds. To evaluate the effectiveness of the two steps
of interactivity described in Sec. Bl we compare the performance of the case
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Fig. 8. Examples of a sequence of editing steps where the most erroneous point is
selected at each step. The red filled point denotes the point selected for editing. The
open yellow circles denote points that have already been edited and fixed.

where both of the update steps are done with that of the case where only one
of the steps is done, and also against a baseline where only the most erroneous
point is moved. The comparative effectiveness of these strategies is apparent in
Figll from which we can conclude that both steps used in conjunction are most
effective at reducing the overall error most quickly. Fig. [8 depicts some example
runs of the interaction process. More examples with animation are available at
the website http://www.ifp.uiuc.edu/~vuongle2/helen/interactive

7 Conclusion

In this paper, we proposed a new component-based ASM model (CompASM)
and an interactive refinement algorithm for practical facial feature localization
on real-world face images. CompASM extends the classical, global ASM by de-
composing global shape fitting into two modules: component shape fitting and
configuration model fitting. The model provides more flexibility for individual
component’s shape variation and relative configuration between components,
hence is more suitable for handling images with large variation. We improve pro-
file matching by introducing a new joint landmark optimization scheme using the
Viterbi algorithm which outperforms the standard greedy-based approach. We
also propose an interactive refinement algorithm for facial feature localization
to minimize fitting errors for bad initial fitting. Furthermore, a new challeng-
ing facial feature localization dataset is introduced which contains more than
2000 high-resolution fully annotated real-world face images. Experimental re-
sults show that our approach outperforms the state of the art on the new, real-
world facial feature localization dataset. Our interactive refinement algorithm is
capable of reducing errors quickly but there is space to improve it further by
learning from user’s behavior or by guiding the interaction through statistics of
landmark uncertainties, which we leave as our future work.
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