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Abstract. Contextual modeling is a critical issue in scene understand-
ing. Object detection accuracy can be improved by exploiting tendencies
that are common among object configurations. However, conventional
contextual models only exploit the tendencies of normal objects; abnor-
mal objects that do not follow the same tendencies are hard to detect
through contextual model. This paper proposes a novel generative model
that detects abnormal objects by meeting four proposed criteria of suc-
cess. This model generates normal as well as abnormal objects, each
following their respective tendencies. Moreover, this generation is con-
trolled by a latent scene variable. All latent variables of the proposed
model are predicted through optimization via population-based Markov
Chain Monte Carlo, which has a relatively short convergence time. We
present a new abnormal dataset classified into three categories to thor-
oughly measure the accuracy of the proposed model for each category;
the results demonstrate the superiority of our proposed approach over
existing methods.

Keywords: abnormal object detection, generative model, sampling.

1 Introduction

Contextual modeling is a critical issue in scene understanding, particularly in
object detection [2–4, 1, 5, 6]. Contextual models exploit the prior knowledge
that in a specific scene, specific objects follow common or normal configurations,
such as “cars” on the “road.” Thus, conventional contextual models weaken “car”
bounding boxes floating over the “road,” or reinforce bounding boxes in correct
positions. However, detecting “cars” actually floating on the “road” is difficult if
contextual models only consider normal configurations. In this paper, we propose
a novel generative model that can detect out-of-context objects, also referred to
as abnormal objects.

Finding abnormal objects is an important and interesting task. With the
advent of image-manipulation tools such as Adobe Photoshop, the number of
artificially manipulated images continues to increase. Additionally, the ability to
detect abnormal objects can be useful in surveillance systems. Therefore, models
able to understand abnormal scenes are needed.
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Fig. 1. Examples of abnormal objects detected using the proposed method. Each image
contains the topmost abnormal object that violates co-occurrence, relative position and
relative scale among objects.

This paper focuses on abnormal object detection, that is, finding abnormal ob-
jects in given scenes. We define abnormal objects as those that do not match ex-
pectations set by the surrounding context or by common knowledge. Specifically,
abnormal objects (1) do not co-occur with surrounding objects (co-occurrence-
violating objects), (2) violate positional relationships with other objects (position-
violating objects) or (3) have relatively huge or small sizes (scale-violating
objects) (Fig. 1). Exploiting the distributions of normal objects is necessary
for abnormal object detection. This is because abnormality can be defined based
on the extent to which an object is not normal.

Four necessary properties of abnormal object detection methods are defined as
follows: (1) affluent object relations, (2) quantitative object relations, (3) affluent
context types, and (4) prior-free object search. First, affluent relations among
objects, such as a fully connected relation among objects, is critical because
abnormal objects rarely occur. If an abnormal object, such as a floating “car”, is
related with only one object, “road,” then identifying whether the target object is
abnormal or not becomes difficult, because models can only identify the floating
car’s abnormality once the “road” has been detected correctly.

Second, object relations, particularly relative position/scale relation, should
be defined quantitatively because qualitative representation is improper for de-
termining the contextual violations. For example, if the relative position is qual-
itatively defined, such as above, then “person” and “road” can be related by
the above relation. However, identifying the abnormality of a person hanging in
the air becomes difficult because the “person” is still above the “road”. Third,
contextual models become more informative when the more context types, such
as co-occurrence and relative position/scale among objects, are used [7]. Finally,
the models should not restrict the interpretation of scenes to find abnormal
object properly. If an abnormal object-detecting model has prior knowledge of
searching objects, then finding abnormal objects is nearly impossible because
abnormal objects do not exist in locations where they are expected.

We propose a novel generative model that generates both normal and abnor-
mal objects, following a learned configuration among the objects. This learned
configuration is determined by transforming a standard configuration, also called
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a Canonical Scene. This Canonical Scene, conditioned on a scene type, is a space
wherein normal and abnormal objects can exist, following their physical posi-
tions and scale. In this sense, the Canonical Scene is similar to the real world. In
the Canonical Scene, normal objects co-occur with each other without violating
relative position and scale among objects, but abnormal objects do not. The
proposed method can check whether the object configuration of the input scene
is similar to that of the Canonical Scene by modeling the generative model of
the Canonical Scene, thereby identifying abnormal and normal objects. The first
three aforementioned necessary properties for abnormal object detection models
are satisfied by the definition of the Canonical Scene. In addition, the proposed
model does not dictate which or where objects exist, which satisfies the final
property.

We use a population-based Markov Chain Monte Carlo (Pop-MCMC) tech-
nique [8] to predict the existence of abnormal objects via the proposed model.
This technique generates samples from multiple, dependent chains, resulting in
a high mixing rate. With regard to optimization, Pop-MCMC has more chances
of escaping from the local optimum, making it a proper optimization tool for
multimodal and/or high dimensional models.

We also propose a novel annotated dataset that contains one or more abnormal
objects in each images to verify the accuracy of abnormal object detection tasks.
This dataset consists of three separate sets of scenes where (1) fewer co-occurring
objects and (2) location-violating objects exist, and (3) scale-violating objects
exist. Whether the proposed abnormal object detection methods are adequate
for finding each type of abnormal object must be verified. At present, only a few
studies on abnormal object detections have been conducted [1, 5]. This paper is
inspired by these studies.

2 Related Work

Although a variety of contextual models have been proposed over the past decade
[2–4, 1, 5, 9, 7, 6, 10, 11], contextual models that meet all four criteria for find
abnormal objects are difficult to find.

One group of such models incorporates object-object interaction [12] which
is used to directly enforce contextual relation among objects. In [9], a condi-
tional random field (CRF)-based contextual model provides only co-occurrence
statistics among objects to refine miss-labeled image segments. This work is fur-
ther expanded in [7] so that relative position context, such as “above/below”
and “inside/around,” among objects is qualitatively encoded in the CRF model.
Furthermore, [4] proposed a “far/near” relation between objects to reduce the
ambiguity of qualitative context representation. In [1], Choi represents the re-
lation among objects in a tree model for computational efficiency, taking only
a few significant relationship among the objects into consideration. This tree
model is more expanded in [5] to also encode “support” context, a geometric
context for prohibiting floating objects. The strategy of [3] is to first find easy
objects, and then search for difficult objects based on the locations of the easy
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Fig. 2. (a) Possible locations of objects in learned “outdoor” Canonical Scene. (b) The
graphical model of the Canonical Scene model.

objects. This model combines boosting and CRF to efficiently search for un-
known objects based on known ones, making it unnecessary to search the entire
image to locate objects. [6] leverages the qualitative spatial contexts of “stuff,”
such as “sky” or “road,” to improve object detection in satellite images.

Another group of contextual models indirectly embeds the contextual relation-
ship among objects via a latent variable, such as a scene. [2] correlates objects
through a common “cause” scene, thus including co-occurrence statistics in a
hierarchical Bayesian model. The same contextual information is exploited by
[10] to achieve scene classification, annotation, and segmentation altogether in a
single framework. [13] solves the object detection problem by assuming that holis-
tically similar images share the same object configuration. This method retrieves
normal, annotated images with similar Gist feature [14] and then constructs a
graphical contextual model to constrain which objects appear and where they
can be found.

3 Transformed-Canonical Scene Generating Model

Our goal is to model a joint distribution over scenes and objects; Simultaneously
inferring the scene type, which objects exist, where the objects are positioned,
and what the objects’ sizes are is made possible by maximizing distribution.
From these inferred ones, we also infer which objects are abnormal ones.

The proposed graphical model is described in Fig. 2(b). The observed variables
x and y can be considered as an input image of the whole system. We assume
that the input image is represented as

∑O
o=1 No number of image patches (can-

didate objects), where O is the number of object categories and No is the number
of candidate objects in object category o. Normally or abnormally located can-
didate objects are called just normal or abnormal objects, respectively, when the
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candidate objects are correctly detected. Each candidate objects is located at
xo,n and has the appearance score yo,n, where o represents an object category
and n is the index of an instance of the candidate object. x is a location matrix,
where the element xo,n is the location vector of the corresponding candidate ob-
ject. y is an appearance matrix, where the element yo,n represents a quantified
similarity between the appearance of object category o and the corresponding
candidate object. In this paper, O = 10 and No = 10 for all object category o.

The latent variables s, c, and l can be considered as outputs of the system.
The variable s ∈ [1, 2, . . . , S] is a scene category of the given image where S is the
number of scene categories. The matrix c is a correctness matrix of appearance,
where the element co,n is a boolean-valued flag. When the flag is set to 1, the
corresponding candidate object is similar to object o in appearance. The matrix
l is a location type matrix, where each element lo,n is also a boolean-valued
flag. lo,n = 1 means that the corresponding candidate object is positioned at
a normal location of object category o. Note that the “location” is used to
represent context information because this paper assumes that the co-occurrence,
position, and scale information of the objects are geometrically represented. We
assume that two or more objects can exist in the same scene if and only if
they co-occur with each other. Moreover, both the position information and
scale information of the objects can be geometrically represented by using the
“undo” projectivity technique, which is described in the following section. This
paper distinguishes between normal and abnormal objects through geometric
representation by assuming all normal objects, not “stuff,” are located on the
ground plane. In summary, all context information are compactly represented as
objects’ locations.

3.1 Image Representations and Assumptions

This paper adopts object-level image representation (such as [15, 1]), which
differs from conventional low or mid-level representations of images, such as
colors, SIFT or bag of visual words. Representing an image at object-level is
necessary because our goal includes modeling the object’s position/scale in the
real world based on the objects in the image.

An image is described as a set of candidate objects, {(xo,n, yo,n)|1 ≤ o ≤
O, 1 ≤ n ≤ No}. This set can be a set of bounding boxes generated by applying
conventional object detectors on a given image, but only the top No scored
candidate objects are used among the outputs of the object o detector. xo,n =
(bo,n, ho,n) is the location and height of the corresponding candidate object,
where bo,n is a y-coordinate of the candidate object’s center and ho,n is the height
of the candidate object. We do not consider an x-coordinate and the width of a
candidate object because these values are not informative [14]. Thus, the words
“scale” and “height” are used interchangeably. yo,n is a score that represents
the similarity between the appearance of the corresponding candidate object
and that of the object category o. yo,n can be calculated by applying an object
detector (such as [16]) to the corresponding candidate object.
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We transform the location of the candidate object from the image coordinate
into the camera coordinate to exploit the position relationships and the scale
information between the objects. For this purpose, we apply Hoiem’s “undo”
projectivity technique [17], assuming that all instances of the same object cate-
gory o have the same physical height. The object’s location, that is, in an image
coordinate is transformed into a camera coordinate by the following triangu-
lation [1]: Go,n = (Gy

o,n, G
z
o,n) = (

bo,n
ho,n

Ho,
f

ho,n
Ho). The coordinates are calcu-

lated based on the center location bo,n of the candidate object, the candidate
object’s height ho,n ∈ [h1, h2], the hand-crafted physical height of the objects
Ho ∈ [H1, H2], and the focal length f . This paper assumes that the height of
the images is normalized to one, the principal axis passes through the center
of the image, f = 1, h1 = 0.1, h2 = 1, H1 = 0.1, and H2 = 30. Furthermore,
with a normalization of the location space to S = [−0.5, 0.5]× [0, 1], we restate
the location of the corresponding candidate object as xo,n = fnorm(Go,n), which
represents both position and scale information.

This paper assumes that all instances of an object category o have the same
physical height. Thus, the relatively small object instance in the image also has
the same height as the normal objects in the camera coordinate. Even if the
small object is difficult to identify based on its height, the value of the second
component of the small object’s xo,n is larger than that of the normal ones. Thus,
the abnormal object can be identified using the second component of xo,n.

This paper employs the exact sense of “objects” used by [18]. Therefore, we
use “car object,” “person object,” or “sky stuff.” However, “object” and “stuff”
are called “object” if no confusion exists.

3.2 Canonical Scene for Location Model

This subsection presents one of the main idea of this paper: a novel approach
for designing the location model p(K,x|s, l, T ). This model measures whether
the candidate objects’ configuration in an input scene is similar to that of a
predefined scene template, also called the Canonical Scene. This idea can be
considered a template matching problem. Thus, the following processes are re-
quired: defining a scene template, matching transformation, and measuring the
similarity between the input scene and the template.

Canonical Scene. Given a scene category s, a Canonical Scene Ls = {Lo,n,d}
is a set of locational random vectors of nth candidate object of object category
o, where d ∈ {0, 1}; Lo,n,0 and Lo,n,1 represent locations of abnormal and normal
candidate objects, respectively; and Lo,n,d follows truncated Gaussian distribu-
tions. For example, Fig. 2(a) represents a realized “outdoor” Canonical Scene
in which possible normal locations for “car,” “building,” and “tree” are defined.
Note that even though the range of Lo,n,1 is restricted in S, for simplicity, we
use Gaussian instead of truncated Gaussian distribution by assuming that all
masses of distributions of candidate objects’ location is inside of the restricted
domain. Likewise, truncated Gaussian distributions are approximated as uniform
distributions by letting locations of abnormal candidate objects follow uniform
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distributions. This paper represents the parameters of Gaussian and uniform
distributions together as αs,o,d.

Matching Transformation. The Canonical Scene is transformed to match the
input scene. This matching transformation can be arbitrary, depending on the
applications. Only isometric transformation is considered in this paper because if
changing the scale of the Canonical Scene would make identifying abnormal ob-
jects difficult. For example, if a scene has many “person” objects and one floating
“person,” the distance from the ground plane to the floating “person” is a critical
clue for identifying the abnormal object. However, if the scale of the Canonical
Scene is changed, the distance would becomes vague. Thus, the two-dimentional
(2-D) isometric matching transformation T only consists of translation [τ 0]

′

and rotation Rθ, where −π
2 < θ < π

2 . Moreover, isometry is only restricted on
congruence mapping with no reflection, and is therefore invertible.

Similarity Measure. Matching measures can be defined in many ways, such
as SAD, SSD, and maximum-likelihood measure [19]. The maximum-likelihood
similarity measure between the Canonical Scene and the input scene is defined
as

mT
s,l(Ls,x) ≡

∏

o,n

mT
s,lo,n(Lo,n, xo,n), (1)

where mT
s,lo,n

(Lo,n, xo,n) is an arbitrary similarity measure between a template
feature Lo,n and an image feature xo,n. This paper measures the similarity be-
tween the locations of candidate objects in the transformed Canonical Scene
T (Ls) and the locations of candidate objects in the input scene x, where T is
the isometric transformation by T . Because Lo,n = {Lo,n,0, Lo,n,1}, matching
one of them to xo,n is required. This paper defines the aforementioned matching
as follows: If lo,n = d, then Lo,n,d is mapped to xo,n. Thus, l control matches
between Ls and x.

Connection with the Location Model. If a Canonical Scene is properly
learned, the configurations of candidate objects in the Canonical Scene are the
same as those in the real world. For example, Fig. 2(a) is an “outdoor” Canonical
Scene in which possible normal locations of candidate objects, such as the normal
locations of “car” and “building”, are defined. The possible location of “car”
is on the ground plane on average and that of “building” is above the ground
plane. Moreover, “sofa” does not exist in the “outdoor” Canonical Scene. Normal
objects in the Canonical Scene co-occur with each others and exist without
violating relative position/scale among objects.

Because the Canonical Scene embeds objects as they are located in the real
world, the similarity between the Canonical Scene and an input scene can confirm
whether or not the configuration of candidate objects in the input scene follows
that of candidate objects in the real world. When letting mT

s,lo,n
(Lo,n, xo,n) ≡

p(Ko,n, xo,n|s, lo,n, T ), where T (Lo,n) = Ko,n, the location model p(K,x|s, l, T )
can be naturally interpreted as the maximum-likelihood measuremT

s,l of template
matching problems, thus also being possible to check normality.
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3.3 Joint Location and Appearance Model

A joint distribution p(s, l, c, T,K,x,y) is designed as a graphical model (Fig.
2(b)) to join the location model with the appearance model. The joint distribu-
tion is restated as

p(s, l, c, T,K,x,y) = p(K,x|s, l, T )p(y|c)p(s, l, c, T ) (2)

=

{
∏

o,n

p(Ko,n, xo,n|s, lo,n, T )
}

{
∏

o,n

p(yo,n|co,n)
}{

p(s)p(T )
∏

o,n

p(co,n|lo,n)p(lo,n)
}

,

where the first term is the location model, the second is the appearance model,
and the last term is the prior distribution over latent variables.

The marginal location model
∫
p(Ko,n, xo,n|s, lo,n, T )dKo,n can be analyti-

cally represented. Because p(xo,n|lo,n,Ko,n) is defined as N (xo,n|Ko,n, Λo) when
the candidate object is correctly detected as a normal object, lo,n = 1, the
marginal location model is also a Gaussian with mean of Rθμs,o,1 + τ and co-

variance of RθΣs,o,1R
′
θ + Λo. Moreover, if lo,n = 0 and xo,n is independent on

Ko,n and follows a uniform distribution, then the marginal location model also
follows a uniform distribution. The appearance model p(yo,n|co,n) is adopted
from the conventional models [2, 1]. The p(yo,n|co,n) is indirectly defined by the

Bayes theorem, p(yo,n|co,n) =
p(co,n|yo,n)p(yo,n)

p(co,n)
, where p(co,n|yo,n) is defined as

a logistic regression model σ(γ
′
o,co,n [1 y]

′
). The scene distribution is defined as

p(s) ∼ Mult(η) and the transformation distributions p(T = (θ, τ)) is defined
as a bivariate Gaussian distribution N ((θ, τ)|β = (μ,Σ)) with no correlation
between θ and τ . The distribution over correctness of appearance p(co,n|lo,n)
is modeled by the Bernoulli distribution with parameter χo,lo,n and location
distribution p(lo,n) ∼ Bern(φo).

4 Parameter Learning

This paper explicitly estimates T to convert all random variables into observed
ones for learning Canonical Scenes. Given the scene/object-level annotated dataset
[20, 21], separate dataset D = {Ds} and use Ds to build the Canonical Scene
for scene category s. The distributions of Lo,n,1 are estimated by maximum a
posterior criterion by considering the relation T (Lo,n,1) = Ko,n,1. Assuming that
all objects on the images are located in the ground plane, then Algorithm 1 es-
timates T , which transforms objects on the ground plane to the slanted plane
in the camera coordinate. In this estimate, only the locations of “objects,” not
those of “stuff,” are used. Moreover, the distribution of object o’s normal location
Lo,n,1 which does not exist in a Ds is set to N (0,∞−1)

Learning the logistic regression model p(co,n|yo,n) = σ(γ
′
o,co,n [1 yo,n]

′
) in the

appearance model may seen trivial. However, when data classes are imbalanced,
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Algorithm 1. Estimation of the isometry T of an image

Input: Locations of normal objects, Ko,n,1, for all o and n
Output: T̂ : Lo,n,1 �→ Ko,n,1

1: Estimate line z = a0+a1y passing through pointsKo,n,1 by minimizing least square
errors

2: Ko,n,1 = Rθ̂Lo,n,1+[τ̂ 0]
′
, where Rθ̂ is a 2-D rotation matrix with θ̂ = − arctan( 1

a1
)

and τ̂ = − a0
a1

.

parameter learning with a conventional machine learning algorithm can reduce
the accuracy of the classification problem [22]. The data used in learning the
appearance model are also imbalanced. The data consist of a minor number of
correctly detected candidate objects, thus resulting in low accuracy for classi-
fying correctness. To handle this problem, we adopt conventional random over-
sampling: Uniform sampling on minor classes provides balanced data. However,
in our case, we apply more weight to samples with high yo,n. Other parameters,
such as β, η, φ, χ, and Λ, are experimentally set.

5 Pop-MCMC for MAP Inference

Maximizing posterior distribution (eq. (3)) is required to detect abnormal ob-
jects.

ŝ, l̂, ĉ = argmax
s,l,c

∫

p(s, l, c, T |x,y)dT. (3)

Because the integral in eq. (3) cannot be analytically solved and is computa-
tionally expensive, we approximate its value by assuming that most mass of the
distribution over T are concentrated at a single point. This assumption seems
valid because pictures are commonly taken in the conventional way. Therefore,∫
p(s, l, c, T |x,y)dT is approximated as p(s, l, c, T̂ |x,y), where T̂ is estimated by

solving the non-linear optimization problem using the gradient ascent method:
T̂ = argmaxT p(T )

∫
p(K,x|s, l, c, T )dK. Because T follows Bivariate Gaussian

distribution, the mean of T is a proper initial for the gradient method.
This paper adopts a sampling method, which is called Pop-MCMC [8], to

solve the optimization problem (3). Pop-MCMC generates multiple samples,
also called chromosomes, from multiple Markov chains in parallel. This method
can make global moves because it exchanges information between samples, thus
leading to a higher mixing rate compared with conventional single chain MCMC
samplers. When it comes to an optimization problem, it is possible to escape from
local optimum via chromosomes of the Pop-MCMC. Therefore, optimization by
means of Pop-MCMC is efficient when the objective function is multimodal
and/or high-dimensional, such as the proposed model as well as MRF models
for stereo problems [23].

Note that detections should be scored for ranking and drawing precision-recall
curve to measure object detection results. The natural score for the detections
becomes the posterior marginals [1] or log-odds ratio [4]. The log-odds ratio
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can quantify oddness of realizations of random variables. In this paper, the log-
odds ratio represents how abnormal a candidate object is. The odd ratio of
object category o’s nth candidate object is calculated as follows: m((lo,n, co,n) =

(0, 1) = log
p((lo,n,co,n)=(0,1)|x,y)
p((lo,n,co,n) �=(0,1)|x,y) . This log-odd ratio can be approximated as [4]

and calculated by modifying the MAP inference of eq. (3).

6 Evaluation

6.1 Abnormal Dataset and Experimental Setup

The dataset should be separated into each types of abnormal object to allow
thorough evaluation of the accuracy of abnormal object detection models. The
new dataset1 consists of three different types of images (50 images each, for a
total of 150 images containing annotated objects that violate co-occurrence, rel-
ative position, and relative scale) and additional extra images that contain two
or more different types of abnormal objects. The abnormal objects are anno-
tated relative to normal objects contained in the normal dataset. For example,
a conventional normal dataset, such as LabelMe, consists of “cars” on the road,
and so a flying “car” is annotated as an abnormal object. Likewise, a “person”
who is taller than common adults is also annotated. Even though an abnormal
dataset has already been established [1, 5], the set is unsuitable for a thorough
evaluation of all three types of abnormal objects because the set has not been
separated into each type.

Two datasets, one normal and one abnormal, are used for training and test.
The SUN dataset [20, 1] is used for the first dataset which has scene-level anno-
tations as well as many annotated objects in a single image. Therefore, the SUN
is the proper dataset for training and testing the relationships among objects.
The second dataset is the proposed abnormal dataset. Object detector models
[16] and the parameters of the proposed model are trained on randomly sepa-
rated images from the SUN dataset. Evaluation is conducted on the test set of
the SUN dataset and the entire abnormal dataset. Two scene categories and ten
object categories2 are used to train and test the proposed model. The parame-
ters for the proposed model are α = −π

9 β = 5π
36 , t1 = −0.02, t2 = −0.004 and

Λo = 10−128 · I. Note that optimizing eq. (3) takes about two minutes using an
Intel Quad Core 3.3GHz PC platform with 8GB of memory.

We choose a hybrid model of co-occurrence contextual (CO) and support con-
textual (SUP) model [5] as the baseline method for abnormal object detection,
because our proposed model simultaneously detects abnormal objects that vi-
olate co-occurrence context and position/scale context. The number of objects
used in the baseline is 10+2 objects, including support objects such as “floor” and
“road.” These supporting objects, useless for the proposed model, are positively
necessary for the baseline method because of their dependency on supporting
objects. This baseline method is quantitatively (Fig. 3) and qualitatively (Fig.
4) compared with the proposed method.

1 L. Wei [24] has copyright on several abnormal images.
2 indoor, outdoor / bed, bottle, building, car, monitor, person, sky, sofa, toilet, tree.
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100 15.21± 0.91 9.71 ± 0.05
50 9.71± 0.53 4.55 ± 0.10
10 5.64± 0.91 2.53 ± 0.19
5 7.32± 2.50 3.38 ± 0.11

(e) average precision

Fig. 3. Quantitative comparisons. Each precision-recall curve ((a) to (d)) is generated
using classified abnormal datasets and a combination of the three classified datasets
and the extra abnormal images. Experiment (e) is conducted on mixtures of abnormal
and normal dataset. Each mixtures consists of a set of 150 images composed of 100%,
50%, 10%, and 5% abnormal images.

6.2 Results

Precision-recall curves and average precision measures are used to evaluate ab-
normal object detection accuracy. These methods are conventional measures [25]
for object detection tasks.

The average precision in Fig. 3(e) shows that the proposed method out-
performs the baseline method on both the abnormal and mixed datasets. Our
method is robust in all three types of dataset, particularly in the position dataset
Fig. 3(b), as shown by the analysis of precision-recall curve (Figs. 3(a) to 3(c)).
The reason is that the proposed Canonical Scene method is more robust on
separating floating objects than the baseline method. Fig. 3(d) shows that our
method also outperforms in the combination of each type of dataset and extra
abnormal images. Fig. 3(e) shows average precision scores on 150 images with
varying ratios of abnormal and normal images. If we assume that a general im-
age set is composed of 5% of abnormal images, then this experiment verifies
the robustness of the proposed method on a general image set. The proposed
method may also be superior on the general image set based on the experiment
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Fig. 4. Qualitative comparisons. The results in the top and the middle-rows are gener-
ated using the baseline method and the proposed method, respectively. In each images,
the top-three abnormal objects are represented in bounding boxes. In the third row, the
distribution of objects’ locations in the Canonical Scene is represented with estimated
abnormalities.

results. Note that in Fig. 3(c) shows that the proposed method is weak at classi-
fying abnormal objects with abnormally huge or small sizes. Improperly learned
Canonical Scenes may cause this weakness.

The qualitative comparisons and results are shown in Figs. 4 and 5. Based on
the last row of Fig. 4, we can conclude that the proposed method exploits the
rich relations among objects and instance of objects. For example, the second
figure in the last row represents the distribution of a normal “person” in an
“outdoor” scene. The learned normal distribution of “person” is transformed to
cover “person” on the road. Therefore, the transformed distribution, or Canoni-
cal Scene, cannot cover the floating “person”, thus making it possible to classify
the floating “person” as an abnormal object. Fig. 5 illustrates the positive and
negative results of the proposed method. The negative results are due to the
improperly learned Canonical Scene, the experimentally set parameters, and the
weakness of the base object detectors.



Abnormal Object Detection by Canonical Scene-Based Contextual Model 663

sofa[0.57]

person[0.51]
person[0.45]

person[0.43]
person[0.43]

 

 
sofa[0.57]
person[0.51]
person[0.45]
person[0.43]
person[0.43]

car[0.96]

bed[0.37]

person[0.37]
person[0.34]

sofa[0.34]

 

 
car[0.96]
bed[0.37]
person[0.37]
person[0.34]
sofa[0.34]

person[0.52]

sofa[0.40]bed[0.39]
person[0.30]
bed[0.27]

 

 
person[0.52]
sofa[0.40]
bed[0.39]
person[0.30]
bed[0.27]

car[0.65]
bed[0.46]

toilet[0.35]

person[0.32]

sofa[0.32]

 

 
car[0.65]
bed[0.46]
toilet[0.35]
person[0.32]
sofa[0.32]

person[0.88]person[0.85]person[0.72]person[0.66]person[0.61]

 

 
person[0.88]
person[0.85]
person[0.72]
person[0.66]
person[0.61]

bed[0.31]

person[0.31]

sofa[0.29]

person[0.29]

bed[0.27]

 

 
bed[0.31]
person[0.31]
sofa[0.29]
person[0.29]
bed[0.27]

Fig. 5. Qualitative results. The images in the first, second and third columns consist of
co-occurrence-violating, relative position-violating, and relative scale-violating images,
respectively. In each image, the top-five abnormal objects are represented in bounding
boxes.

7 Conclusion

We proposed a generativemodel for abnormal object detection. Themodel mainly
exploited the rich and quantitative relations among objects and objects’ instances
via latent variables. Because of these considerations, our model outperformed the
state-of-the-art method for abnormal object detection. In addition, we were able
to thoroughly analyze the accuracy of the proposed method for different types
of abnormality by classifying evaluation dataset into three types. The analysis re-
vealed that our model is strong at detecting abnormal co-occurrence and position,
but not as effective at detecting scale-violating objects. We expect that accuracy
will be increased by fully learning of the proposed model.
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