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Abstract. We propose a novel approach to annotating weakly labelled
data. In contrast to many existing approaches that perform annotation
by seeking clusters of self-similar exemplars (minimising intra-class vari-
ance), we perform image annotation by selecting exemplars that have
never occurred before in the much larger, and strongly annotated, nega-
tive training set (maximising inter-class variance). Compared to existing
methods, our approach is fast, robust, and obtains state of the art results
on two challenging data-sets – voc2007 (all poses), and the msr2 action
data-set, where we obtain a 10% increase. Moreover, this use of nega-
tive mining complements existing methods, that seek to minimize the
intra-class variance, and can be readily integrated with many of them.
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1 Introduction

Detecting objects in images [1, 2] and actions in videos [3, 4] are among the
most widely studied computer vision problems, with applications in consumer
photography, surveillance and automatic media tagging. Typically, these stan-
dard detectors are fully-supervised, that is they require a large body of training
data where the location of the objects/actions in images/videos have been man-
ually annotated, as shown in Fig.1. With the emergence of digital media, and
the rise of high-speed internet, raw images and video are available for little to
no cost. However, the manual annotation of object and action locations remains
tedious, slow, and expensive, and as a result there has been a great interest in
training detectors with weak supervision [5–8].

For weakly supervised training of object detector, each image in the training
set is annotated with a weak label indicating if the image contains the object
of interest or not, but not the locations of the object. As shown in Fig. 2, a
weakly labelled data-set consists of two types of images: a set of weakly-labelled
positive images where the exact location of object is unknown, and a set of
strongly labelled negative images which we know for sure that every location in
the image does not contain the object of interest.
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(a) Bicycle Annotation (b) Hand-waving Annotation

Fig. 1. Manual annotation of object and action data-sets, which are required for fully
supervised detector training

Fig. 2. In the annotating of weakly labelled data task we have a set of images or videos
where the object or action of interest is present and a set of images or videos where
the object or action is not present. Absence of object or action is strong information,
as we know every part of the image or video is negative, whereas the presence of object
or action is weak information as we do not know where the object or action is located.

Automatically annotating weakly-labelled training data is typically posed as
a multiple-instance learning (mil) problem [5, 6, 8]. Within a mil framework, a
single image weakly labelled with data such as: “This image contains a bike.”
is represented as a bag containing a set of instances, or possible locations of the
object. Positive bag is used to refer an image containing at least one instance of
the class, while negative bags are those that contain no positive instances. Given
a set of positive and negative bags for training, the goal of mil is to train a
classifier that can correctly classify a test bag or test instance as either positive
or negative. The latter is more relevant in the context of detector learning. In
particular, taking a mil approach, the problem of detector learning can be solved
in two stages: in the first stage a decision is made as to which portion of the pos-
itive images represent the objects, and in the second stage a standard detector is
trained from the decision made in the first stage. This approach has substantial
pragmatic value, as it allows computationally intensive transductive [9] meth-
ods [8, 10] for automatically annotating the object location in the training data,
and efficient state-of-the-art detectors [2] to locate the objects in the test data.

Classical mil approaches [11, 12] make use of two different types of infor-
mation to train a classifier: intra-class and inter-class. Intra-class information
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concerns the selected positive instances. The information is typically exploited
by enforcing that the selected positive instances look similar to each other. In
contrast inter-class information refers to the difference in appearance between
selected positive and negative instances. This information is normally used by
introducing a constraint that all instances selected as positive look dissimilar to
the instances selected as negative. In the case of automatic annotation of object
locations [6, 8] a third type of information, saliency, is often exploited. Saliency1

refers to knowledge about the appearance of foreground objects, i.e. things [13],
regardless of the class of object to which they belong. Saliency may capture
generic knowledge regarding the typical size and location of objects in photos,
or express a relationship between the strength of image edges and the location
of object bounding boxes [14]. Saliency is typically used to prune the space of
possible object or action locations a priori, allowing us to consider a reduced set
of possible locations. The measure of saliency itself can also be used for selecting
positive instances.

In this paper, we ask a question: “Which of intra- and inter-class information
is more useful in practice?”. A close examination of a widely used benchmarking
data-set can give us some hints. The voc2007 data-set [15] is often used to eval-
uate object detectors and mil approaches. A typical class in this data-set has
approximately 300 associated images containing an object and 4,700 images not
containing that object. If 100 candidate object locations (instances) per image
are extracted using a saliency measure, this gives 470,000 strongly labelled nega-
tive instances vs. 300 true objects located somewhere within the 30,000 instances
in the positive images. Furthermore, object locations proposed by the saliency
measure may not include the true object location2. Therefore, when considering
intra-class distances, we have < 300 unlabelled similar positive instances in a
high-dimensional feature space vs. an inter-class distance based upon 470,000
strongly labelled instances in the same high-dimensional space. For object detec-
tion, the feature spaces tend to have thousands, or even hundreds of thousands
of dimensions. When using an rbf kernel, or nearest neighbour classifier in such
high dimensional feature spaces, the coverage provided by 470, 000 labelled nega-
tive instances provides substantially more useful inter information than the intra
information provided by the 300 positive instances.

This simple observation motivates our approach, which only makes use of the
inter-class information (strongly labelled negative examples), and is referred to
as negative mining. By combining negative mining with existing saliency mea-
sures [14] we are able to produce a classifier that outperforms the majority of
existing approaches to image and video annotation, and can be readily integrated
with many of them.

In this paper we show 1) how strongly labelled negative data can be used to
create a state-of-the-art classifier, bypassing the problem of resolving complex
interdependencies between the positive bags and 2) how our classifier can be

1 Typically learned from meta-data.
2 On the voc2007data-set, in 30% of the images the saliency measure of [14] fails to
propose a valid location.
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fused with several existing approaches to mil-based image annotation [8, 16, 17],
where it invariably leads to an improvement over the method it was fused with.

2 Prior Works

Traditional approaches to mil [11, 12] were applied to image-level categorisation.
We are interested in a related but different problem of selecting which instances
in the positive training set are true positives, and our literature review focuses
on those approaches which have been successfully applied to the annotation of
weakly labelled data.

The mi-svm formulation of Andrews et al. [17] makes use of both inter and
intra-class information, as it seeks a linear classifier that maximise the margin
between the positive and negative instances. Both [5] and [7] make use of this
approach. They requires a set of initial positive instance and for that both [5]
and [7] use the entire positive image as the initial positive instance. We make
no such assumptions and will show that negative mining in conjuncture with
a saliency measure can outperform these mi-svm formulations. We also show
how fusing negative mining and saliency measures with mi-svm formulation can
further improve annotation accuracy.

Another method to use only inter-class and intra-class information is by Siva
and Xiang [16] for annotating weakly labelled action data. They also made use
of the distance to the nearest negative example, however they combine this
with intra-class measure into a single cost function. We show that our negative
mining measure alone outperforms their combined cost function on all data-
sets. Furthermore we propose the use of saliency which significantly improve the
results on the msr2 action data-set used in [16].

Deselaers et al. [6] and Siva and Xiang [8] made use of all three types of in-
formation: inter-class, intra-class and saliency. Deselaers et al. [6] only use their
intra-class measure in the first iteration then use the selected instances to iter-
atively tune their choice of inter-class and saliency measures on an additional,
manually-annotated, auxiliary data-set. Our experimental results strongly sug-
gest that inter-class information is more reliable and would provide more useful
information at initialisation. Siva and Xiang [8] treat inter-class and intra-class
information independently from each other, then fuse the results at a score level.
For their inter-class measure, they use the mi-svm formulation like [5] and [7].
They then merge intra-class and saliency in a single cost function used to select
a set of similar looking instances. Again we show that inter-class and saliency are
more meaningful measures and that combining inter-class and saliency leads to
greater accuracy than combining intra-class and saliency measures. We will also
show that the results of [8] can be further improved by fusing with our approach.

Fu et al. [18] also made use of the distance of instances from the negative
bags. They selected instances furthest from the negative bags and used them to
initialise cluster centres, which were then used to create the bag level feature
descriptors of [12]. Their goal was a bag-level classifier and we differ from them
in that we are interested in the direct annotation of the instances in the training
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set. Furthermore, unlike [18], we treat and evaluate negative mining as a classifier
in its own right rather than as a pre-processing heuristic.

3 Methodology

A formal definition of negative mining is given in section 3.1. Section 3.2 con-
tains a discussion of feature normalisation, which is essential for getting negative
mining to work as a mil method. Finally, we describe the saliency measure used
to define instances in images and videos in section 3.3.

3.1 Negative Mining

Consider a data-set consisting of a set of positive images I+i that contain the
object of interest and a set of negative images I−i which do not. Following [6]
and [8] we consider a set of 100 salient locations or instances xi,j=1...100 in each
image i. Each instance xi,j is represented by a bag-of-words (bow) histogram.
The goal is to select a single instance x+

i from each positive image I+ corre-
sponding to the correct location of an object of interest. The negative mining
algorithm accomplishes this by selecting the instance that maximises the dis-
tance to the nearest neighbour in any image containing only negative instances
x−
i,j ,

x+
i = argmax

x+
i,j

||x+
i,j −N(x+

i,j)||1, (1)

where || · ||1 is the L1 norm and N(x+
i,j) refers to the negative nearest neighbour

of x+
i,j . As mentioned earlier, for a typical voc class, we have 470,000 negative

instances (x−
i=1...4700,j=1...100) in a 2, 000 dimensional space. As such, the key to

an efficient algorithm is fast nearest neighbour look-up, and to handle the large
volume of data efficiently we make use of a KD-tree based approximate nearest
neighbour algorithm [19], with 16 trees.

This approach of mining the nearest negative instance relies on the abun-
dance of known negative instances and unlike [6, 8] requires no optimisation of
intra-class cost function, resulting in a computationally efficient algorithm. Fur-
thermore, unlike [8], this inter-class measure does not assume that the average
instance in each positive bag represents a positive instance, nor does it assume
that the entire image is a positive instance like [5, 7].

An important variation on (1) incorporates a saliency measure. If we have a
measure Φ(·), which serves as a prior of how likely an instance is to be an object
of interest, regardless of the choice of class, we can simply add Φ(x+

i,j) to our
negative mining cost:

x+
i = argmax

x+
i,j

(||x+
i,j −N(x+

i,j)||1 + Φ(x+
i,j)

)
(2)

Later in section 3.3, we define Φ(x+
i,j) for each of the data-sets considered.
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3.2 Normalisation Strategies

Finding the instance with the maximum negative nearest neighbour (nnn) dis-
tance in a positive bag is complicated by the drastic change in the size of proposed
instances. Consider Fig. 3(a) where we plot the distance from all the instances
in the positive bags of a single class to its nearest negative neighbour (Distance
= ||x+

i,j −N(x+
i,j)||1) vs. the instance’s size in pixel (sizeof(x+

ij)). The plot uses
standard normalised bow histograms, which are typically used for both object
and action detection:

ĥ(i) =
h(i)

∑B
i=1 h(i)

, (3)

where h is the bow histogram composed of B bins, and the L1 distance between
them3. We observe that the nnn distance for instances small in size are almost al-
ways much greater than the nnn distance associated with instances large in size.
This behaviour can be attributed to sampling artefacts: small boxes naturally
contain fewer densely sampled words. Compared to a large box, the distribution
of words associated with a small box is much more likely to have a few sharply
peaked modes, and many empty bins.

As a consequence, when selecting the instances that maximise the normalised
distance to the nearest negative instance we select very small instances in each
positive bag. The same behaviour can be observed for other type of distances
based upon normalised bow histograms (Fig. 3(d)). In the voc data-set, this
bias is extremely inappropriate, as the majority of images contain large object
instances, and on the voc2007 data-set this causes negative mining to perform
ten times worse than the random selection of positive instances. A similar degra-
dation in performance can be observed on the msr2 data-set [20].

On the contrary, if we use unnormalised histograms (Fig. 3(c)), together with
the L1 distance, we observe the opposite effect. Large instances contain many
dense words, and owing to the sheer number of words, typically have a large
distance from their nearest negative neighbour, while small instances lie very
close to their nnn. Although biased towards large instances this measure is
at least biased in the correct direction, and performs substantially better than
random.

To minimise the bias towards either large or small boxes, we consider the
novel measure of root-normalised histograms

ĥ(i) =
h(i)

√∑B
i=1 h(i)

. (4)

Empirically this measure performs better than either normalised or unnormalised
histograms. We compare the accuracy of weak annotation using negative mining
with the different nearest neighbour in section 4. Figure 3(b) shows the relation-
ship of distance vs. instance size of root-normalised histograms.

3 This is equivalent to the histogram distance d(x, y) = 1−∑
k min(xk, yk) proposed

in [16].
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(a) Normalised (b) Root-normalised

(c) Unnormalised (d) Chi squared and L2 distances of
normalised histograms

Fig. 3. The L1 distances from all instances in the positive bags of the cat class in
voc2007 to the nearest negative instance plotted against the size in pixels of each
instance in the positive bag. The L1 distance is computed on a 2,000 word bow his-
togram formed from regular grid sift features. (a-c) illustrate the effect of different
normalisation strategies on bow histograms. We see that selecting the instance with
the largest distance to the nearest negative is correlated to the size of the instance and
this correlation is less pronounced for root-norm. (d) shows that this phenomenon is
not limited to the L1 distance.

3.3 Saliency

Saliency is used at two places in our framework. We require it to propose a small
set of viable instances or potential locations of objects and actions in each image
or video. We also require a saliency measure of how likely a location is to be an
object or action of any class, which we use in (2).

Instance Definition. To propose potential object locations on the voc2007
data-set, we use the generic object detector [14] which was also used in other
works on weak object class annotation [6, 8]. The first 100 samples from the
generic object detector per image are used as instances. For direct comparison
with [6, 8] we use version 1.01 of [14].
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To propose potential locations of actions in the msr2 video data-set we follow
the procedure in [16]. We run a person detector [2] on each video frame and select
a cuboid surrounding the detected person as a potential action location. From all
these possible cuboids, 200 instances are selected based upon the spatio-temporal
interest point (stip) density.

Instance Measure. To measure how likely an instance xi,j is to be a positive
location of any object (Φ(x+

i,j)), we use the value of objectness returned by the
generic object detector [14]. Objectness has also been used by [6] and [8] for this
purpose.

For the action data-set, current literature does not have an equivalent of
objectness. Instead we propose a simple heuristic, and choose Φ(x+

i,j) = 0.6D
where D is the density of stips in the defined cuboid. There are two reasons
for using stip density: first stip density is used to sample the potential action
cuboids (instances) from each video per [16] and, second, we expect motion where
ever there is an action being performed which will generate a lot of stips. We
weight stip density by 0.6 as it is simple heuristic in comparison with objectness
used for object detection.

4 Experiments

The data-sets and features used in our experiments are outlined in this section.
Our main analysis is the comparison of our negative mining result with state-of-
the-art results in section 4.1. Improvements in other mil formulations when fused
with the negative mining are given in section 4.2. Different histogram normali-
sation strategies are evaluated in section 4.3. Finally in section 4.4 we evaluate
a leave-one-out classifier, assuming we have complete manual annotation of the
training set, to determine the theoretical upper bound on the intra-class infor-
mation in comparison to the inter-class information.

Data-Sets. For object detection we use the challenging Pascal voc2007 data-
set [15] and for actionwe use themsr2 data-set [21]. For comparisonwith [8] we use
vocAll which consists of all 20 classes with no pose annotation, unlike [6] and [7]
who use manual pose annotation. For comparison with [6] and [7] we also include
the voc6x2 which consists of six classes (aeroplane, bicycle, boat, bus, horse, and
motorbike) where the left and right pose are considered as separate classes for a
total of 12 classes. For both vocAll and voc6x2 we only exclude images anno-
tated as difficult in the voc2007 data-set. As in the other works [6], all results are
presented as the percent of correct localisation, where correct localisation refers
to 50% overlap of selected instance with ground truth as defined in [15].

Features. For features we use bow histograms. For the voc data-set bow his-
tograms are formed from regular grid SIFT features constructed with vlfeat [22].
For the msr2 data-set bow histograms are formed using the histogram of flow
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and histogram of gradient feature at spatio-temporal interest points (stips) de-
fined in [23]. For both data-sets kmeans clustering is used to construct a 2,000
word codebook.

4.1 Comparison to State-of-the-Art

We report our comparison of negative mining with existing state-of-the-art image
annotation algorithms in Table 1 (refer to Fig. 8 for more detailed results and
Fig. 7 for illustrations). For the vocAll the negative mining (N) alone (27.1%)
outperforms both the inter-class (26.6%) and intra-class (23.9%) classifiers of
Siva and Xiang [8]. When negative mining is combined with saliency (N + Φ)
our performance (29.0%) is slightly better than the combined inter- and intra-
class method of [8] (28.9%).

For the restricted voc6x2 data-set our negative mining (N) method (35.0%)
is similar to saliency (Φ) alone (34.8%), and when combined (N +Φ) the perfor-
mance increases (37.1%). The combined method is better than [7] without their
cropping heuristic and also better than [6] using a single feature. The inter-class
measure proposed by [8] works better on the single pose subset than our nega-
tive mining based inter-class measure. However, as we show in section 4.2, the
inter-class measure of [8] can be further improved by fusing its score with our
inter-class measure. Through the use of post-processing [7], multiple features [6]
and iteratively training object models [6–8] the annotation results can be fur-
ther improved to 49%, 50%, and 61% for [6–8] respectively. We do not compare
directly with these further refinements as our analysis is on the use of negative
mining as a classifier for the initial annotation of the weakly annotated data.
However, four rounds of iterative training of a detector using negative mining as
initialisation results in an annotation accuracy of 46%.

More interestingly we note that the intra-class measure reported in [8] is actu-
ally intra-class with saliency as they included objectness value in their intra-class
measure (Eq. 5 of [8]). However, the performance of their intra-class measure
(23.9%) is worse than simply using objectness alone (25.1%) for the vocAll set
(Fig. 4) and the same (34.8%) for the voc6x2 data-set. This clearly shows that
their use of intra-class measure, at best does not improve the performance, and
at worse significantly reduces the performance of saliency. In contrast, our inter-
class measure consistently boosts the performance of saliency on all data-sets.

On the msr2 data-set negative mining outperforms all existing methods. Our
proposed saliency measure (stip density) also outperforms mi-svm [17] by itself
but is not as strong as the methods of [16, 24]. However, saliency combined with
negative mining gives a 10% performance boost over all pre-existing methods,
including [24] which makes uses of a single manual annotation.

4.2 Fusion with Existing Classifiers

We combine negative mining and saliency with the intra-class, inter-class and
combined inter-intra class measure of [8] as well as the intra-class measure of [16].
Each measure provides a score for individual instance in the positive bag and
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Fig. 4. Results using negative mining (N), saliency (Φ), and combined negative mining
and saliency (N + Φ) methods

Table 1. Results using negative mining (N), saliency (Φ), and combined negative
mining and saliency (N + Φ) methods

Data-set
Pandey [7]** Localisation Siva and Xiang [8]* MI- Nguyen

NInit. Only Only [6]** Intra Inter Intra + SVM et al. Φ N+Φ

no crop with crop 1 Feat. 5 Feat. C∗ C† Inter C′ [17]* [5]*

vocAll Avg. N/A N/A N/A N/A 23.9 26.6 28.9 25.4 22.4 25.1 27.1 29.0

voc6x2 Avg. 36.7 43.7 35.0 39.0 34.8 39.0 39.6 38.7 24.9 34.8 35.0 37.1

*As reported in [8]. **As reported in [7] and [6] respectively.

Data-set [16] [24] MI-SVM Φ N N+Φ

msr2 Avg. 71.2 71.7 55.8 60.8 73.9 81.5

Table 2. Augmention of existing methods by fusing with our negative mining (N) and
saliency (Φ)

Data-set

Intra Intra Nguyen et al. Inter [8] Inter [8] Inter Inter Intra Intra
[8] [8] [5] MI-SVM + [8]+ [8]+ [16] [16]+

+ MI-SVM Init. Avg. N+Φ Intra Intra N+Φ
N+Φ Init. Img. [8] [8]+

One Iteration N+Φ

vocAll Avg. 23.9 28.8 21.3 26.6 29.6 28.9 30.2 21.4 24.3

voc6x2 Avg. 34.8 36.5 24.6 39.0 40.8 39.6 40.2 31.0 36.2

the instance that maximises the sum of all measure scores is selected as the true
positive instance. We weight all measures equally. Average results are shown in
Table 2 and more detailed per class results are in Table 4. Note that inter-class
measure of [8] is mi-svm [17] run for a single iteration and initialised with the
average instance in each positive bag. Initialising with average instance performs
better than initialising with the entire image, the method used by [5]. In all cases,
we show that a score level fusion with our method (combined negative mining
and saliency, N + Φ) consistently boosts the performance of all other methods
by between 1 and 5%.

4.3 Effect of Normalisation Strategies

As mentioned in section 3.2 the normalisation of the bow histogram is vital for
nearest neighbour to work. Fig. 5 shows annotation accuracy with normalised,



604 P. Siva, C. Russell, and T. Xiang

Data-set vocAll voc6x2 msr2
Norm 1.4 2.3 14.7
Root-Norm 27.1 35.0 73.9
UnNorm 26.3 33.1 74.3
Rand 14.7 18.0 41.7

Fig. 5. Comparison of differ-
ent normalisation strategies.
See supplementary materials
for per class results.

Fig. 6. The localisation result using just negative
mining for the different bow normalisation strate-
gies. Normalised histogram tends to select small
boxes, unnormalised tends to select large boxes, and
root-normalised exhibits a weaker bias for large and
small boxes.

Table 3. Leave-one-out results evaluating the usefulness of intra-class distance (P)
when manually annotating all but one bag in comparison to negative mining (N) and
saliency (Φ). See supplementary materials for per class results.

Data-set Φ N N + Φ −P −P + N −P + Φ −P + N + Φ

vocAll Avg. 25.1 27.1 29.0 26.3 27.7 28.6 29.6

voc6x2 Avg. 34.8 35.0 37.1 38.1 37.3 38.4 39.2

msr2 Avg. 60.8 73.9 81.5 79.5 77.3 73.4 82.6

root-normalised and unnormalised bow histograms and L1 distance. We also
show the performance of randomly selecting an instance from each positive bag.

The performance of normalised histogram for selecting the instance that max-
imises the distance to the nearest negative is substantially worse than random
selection. This is because the use of normalised histograms actively selects the
smallest instance (bounding box) in each positive bag which is not the behaviour
you want for most bags (Fig. 6). Unnormalised histograms have the opposite
effect, that is they tend to select the largest instance (bounding box). Root-
normalised histograms tend to be a good compromise between normalised and
unnormalised for all data-sets. Only exception is on the msr2 data-set where the
unnormalised distance is slightly better due to the fact there are no overly large
instances proposed for the action data-set in comparison to the object data-set.

4.4 Leave-One-Out Positive Mining vs. Negative Mining

Our approach is based on the assumption that intra-class measure is not suitable
for the first step in annotating weakly labelled data due to the availability of
very few true positive data in a high dimensional space. To validate this we
take a leave-one-out approach in which we assume all but one bag is manually
annotated; this gives a theoretical upper bound on the intra-class information.
In this scenario the unannotated bag can be annotated by selecting the instance
that minimises the distance to its nearest manually annotated ground truth
data; in practice we are maximising the negative distance to be consistent with
(1). We also consider combining this leave-one-out intra-class distance with our
negative mining and saliency measures. We use the normalisation strategies (see
section 3.2) that maximise classification accuracy, being always normalised for



In Defence of Negative Mining for Annotating Weakly Labelled Data 605

Fig. 7. Sucesses
and failures of neg-
ative mining with
saliency (N + Φ)

Class
Siva and Xiang [8]* MI- Nguyen

NIntra Inter Intra + SVM et al. Φ N+Φ

C∗ C† Inter C′ [17]* [5]*

aeroplane 31.1 41.2 45.4 37.8 30.7 32.4 45.4 38.7
bicycle 18.5 17.7 20.6 17.7 16.5 16.9 20.2 22.2
bird 25.2 28.2 29.7 26.7 23.0 22.4 29.1 27.6
boat 13.8 13.3 12.2 13.8 14.9 19.9 14.9 21.0
bottle 03.3 05.3 04.1 04.9 04.9 04.1 04.5 06.6
bus 31.2 35.5 37.1 34.4 29.6 31.2 31.7 33.3
car 26.7 33.0 41.0 33.7 26.5 34.2 34.2 39.4
cat 42.1 50.1 53.4 46.6 35.3 41.8 48.4 46.0
chair 06.7 05.4 06.5 05.4 07.2 07.6 07.6 08.1
cow 28.4 30.5 31.9 29.8 23.4 31.2 27.7 34.8
diningtable 24.0 16.0 20.5 14.5 20.5 29.0 23.5 31.5
dog 33.3 36.1 40.9 32.8 32.1 33.0 35.9 38.0
horse 30.7 38.7 37.3 34.8 24.4 32.4 34.5 37.6
motorbike 34.7 44.1 46.5 41.6 33.1 38.8 39.6 43.3
person 14.3 20.6 22.3 19.9 17.2 21.3 21.9 23.0
pottedplant 09.4 11.4 10.2 11.4 12.2 09.4 14.3 11.4
sheep 26.0 25.0 27.1 25.0 20.8 31.3 25.0 28.1
sofa 25.3 23.6 32.3 23.6 28.8 24.0 29.7 34.5
train 42.9 47.9 49.0 45.2 40.6 32.2 45.2 43.7
tvmonitor 10.6 08.6 09.8 08.6 07.0 09.4 08.2 10.5

Average 23.9 26.6 28.9 25.4 22.4 25.1 27.1 29.0

Aeroplane left 42.2 43.8 37.5 42.2 26.6 39.1 50.0 39.1
Aeroplane right 38.5 59.6 55.8 57.7 25.0 42.3 44.2 50.0
Bicycle left 23.9 26.9 34.3 29.9 20.9 19.4 25.4 28.4
Bicycle right 33.9 30.7 30.7 19.4 25.8 29.0 27.4 30.6
Boat left 09.4 01.9 09.4 01.9 05.7 22.6 09.4 15.1
Boat right 13.8 13.8 12.1 13.8 15.5 22.4 10.3 20.7
Bus left 44.8 31.0 37.9 37.9 24.1 44.8 31.0 31.0
Bus right 29.7 43.2 43.2 43.2 21.6 40.5 29.7 35.1
Horse left 43.9 40.9 48.5 42.4 30.3 34.8 51.5 48.5
Horse right 33.9 54.8 51.6 56.5 22.6 30.6 45.2 45.2
Motorbike left 46.3 55.6 50.0 55.6 31.5 42.6 46.3 46.3
Motorbike right 57.5 66.0 63.8 63.8 48.9 48.9 48.9 55.3

Average 34.8 39.0 39.6 38.7 24.9 34.8 35.0 37.1
*As reported in [8]

Class [16] [24] MI-SVM Φ N N+Φ

boxing 40.7 57.4 20.4 57.4 75.9 83.3
clapping 79.4 70.6 61.8 67.6 73.5 82.4
handwaving 93.6 87.2 85.1 57.4 72.3 78.8

Average 71.2 71.7 55.8 60.8 73.9 81.5

Fig. 8. Results using negative mining (N), saliency (Φ), and
combined negative mining and saliency (N + Φ) methods

positive nearest neighbour, and root-normalised for negative distances. As with
the previous section, all scores were linearly mapped onto a [0, 1] range.4 Table 3
shows all comparisons with the intra-class distance on the voc2007 and msr2
data-sets.

4 The exception being Φ on the msr2 data-set, which was mapped onto [0, 0.6], see
section 3.3.
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Table 4. Augmention of existing methods by fusing with our negative mining (N) and
saliency (Φ)

Data-set

Intra Intra Nguyen Inter [8] Inter [8] Inter Inter Intra Intra
[8] [8] et al. [5] MI-SVM + [8]+ [8]+ [16] [16]+

+ MI-SVM Init. Avg. N+Φ Intra Intra N+Φ
N+Φ Init. Img. [8] [8]+

One Iteration N+Φ

aeroplane 31.1 37.8 27.7 41.2 46.6 45.4 45.8 31.9 36.6
bicycle 18.5 21.8 19.3 17.7 21.0 20.6 21.8 14.8 19.8
bird 25.2 27.0 20.3 28.2 29.7 29.7 30.9 24.8 26.1
boat 13.8 17.1 14.4 13.3 18.8 12.2 20.4 11.6 17.7
bottle 03.3 04.1 05.7 05.3 05.3 04.1 05.3 04.5 04.1
bus 31.2 31.2 31.7 35.5 37.6 37.1 37.6 25.8 23.7
car 26.7 39.8 29.0 33.0 40.7 41.0 40.8 21.5 22.9
cat 42.1 48.7 32.3 50.1 50.1 53.4 51.6 44.5 45.4
chair 06.7 08.5 07.4 05.4 06.7 06.5 07.0 06.1 06.5
cow 28.4 31.9 24.1 30.5 29.8 31.9 29.8 27.7 28.4
diningtable 24.0 32.0 15.0 16.0 26.5 20.5 27.5 18.0 24.5
dog 33.3 39.7 33.0 36.1 39.4 40.9 41.3 30.6 35.6
horse 30.7 38.7 17.1 38.7 41.8 37.3 41.8 30.3 33.1
motorbike 34.7 44.9 30.2 44.1 45.7 46.5 47.3 33.1 38.4
person 14.3 23.3 14.9 20.6 23.8 22.3 24.1 13.9 14.1
pottedplant 09.4 11.4 12.7 11.4 12.2 10.2 12.2 10.6 8.6
sheep 26.0 27.1 24.0 25.0 28.1 27.1 28.1 17.7 22.9
sofa 25.3 34.9 18.8 23.6 29.7 32.3 32.8 18.3 24.5
train 42.9 45.2 39.5 47.9 48.3 49.0 48.7 36.0 42.5
tvmonitor 10.6 10.5 08.2 08.6 09.8 09.8 09.4 05.5 11.3

Average 23.9 28.8 26.6 21.3 29.6 28.9 30.2 21.4 24.3

Aeroplane left 42.2 42.2 31.3 43.8 37.5 37.5 45.3 32.8 42.2
Aeroplane right 38.5 46.2 26.9 59.6 61.5 55.8 53.8 28.8 42.3
Bicycle left 23.9 28.4 25.4 26.9 28.4 34.3 31.3 25.4 23.9
Bicycle right 33.9 27.4 27.4 30.7 37.1 30.7 30.6 27.4 30.6
Boat left 09.4 17.0 07.5 01.9 15.1 09.4 13.2 05.7 15.1
Boat right 13.8 15.5 15.5 13.8 12.1 12.1 15.5 05.2 15.5
Bus left 44.8 34.5 24.1 31.0 34.5 37.9 37.9 34.5 37.9
Bus right 29.7 37.8 24.3 43.2 51.4 43.2 45.9 18.9 37.8
Horse left 43.9 50.0 24.2 40.9 51.5 48.5 50.0 47.0 48.5
Horse right 33.9 41.9 03.2 54.8 53.2 51.6 51.6 38.7 45.2
Motorbike left 46.3 46.3 31.5 55.6 50.0 50.0 50.0 46.3 42.6
Motorbike right 57.5 51.1 53.2 66.0 57.4 63.8 57.4 61.7 53.2

Average 34.8 36.5 24.6 39.0 40.8 39.6 40.2 31.0 36.2

This leave-one-out measure shows the maximal accuracy of a nearest neigh-
bour classifier on voc2007 and msr2 data-sets given the best possible annota-
tions, as such it can be seen as an approximate upper-bound for the quality
of any 1-nn algorithm. Despite this, on the full voc data-set, the classification
accuracy of negative mining substantially out-performs a nearest neighbour clas-
sifier based on positive distance alone, and is only 0.6% worse than the combined
classifier using both positive and negative distances. Similar results can be seen
on the msr2 data-set– negative mining and saliency together out performs all
but the combination of intra-distances, negative mining and saliency. On the
voc6x2 data-set the additional annotations of left and right and the fact that
truncated or occluded models are discarded, reduces the possible changes in ap-
pearance and makes intra-distances a more useful measure. Still, the combined
measure of all cues is only 2% better than negative mining and saliency, and this
is a reasonable trade-off for the much weaker annotation requirements.
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5 Conclusion

This work has presented a simple, robust, technique based upon negative mining.
By itself, this technique out-performs all previous existing techniques on the
msr2 and voc2007 (all views) data-sets. We have shown how this technique can
be readily combined with other approaches to mil, by fusing it as an additional
potential, and that doing so has always lead to a significant improvement in
performance over the original method. Our comprehensive experiments have
validated our approach. We believe that the conceptual and implementational
simplicity of our approach, alongside its state-of-the-art performance will make
it a valuable tool for increasing the performance of many more sophisticated mil
approaches in the future.
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