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Abstract. We address the problem of unsupervised online segmenting human
motion sequences into different actions. Kernelized Temporal Cut (KTC), is pro-
posed to sequentially cut the structured sequential data into different regimes.
KTC extends previous works on online change-point detection by incorporating
Hilbert space embedding of distributions to handle the nonparametric and high
dimensionality issues. Based on KTC, a realtime online algorithm and a hier-
archical extension are proposed for detecting both action transitions and cyclic
motions at the same time. We evaluate and compare the approach to state-of-the-
art methods on motion capture data, depth sensor data and videos. Experimental
results demonstrate the effectiveness of our approach, which yields realtime seg-
mentation, and produces higher action segmentation accuracy. Furthermore, by
combining with sequence matching algorithms, we can online recognize actions
of an arbitrary person from an arbitrary viewpoint, given realtime depth sensor
input.

1 Introduction

Temporal segmentation of human motion sequences (motion capture data, 2.5D depth
sensor or 2D videos), i.e., temporally cut sequences into segments with different se-
mantic meanings, is an important step for building an intelligent framework to analyze
human motion. Temporal segmentation can be applied to motion animations [1]], ac-
tion recognition [2-4], video understanding and activity analysis [3, [6]. In particular,
temporal segmentation is crucial for human action recognition. Most recent works in
human activity recognition focus on simple primitive actions such as walking, running
and jumping, in contrast to the fact that daily activity involves complex temporal pat-
terns (walking then sit-down and stand-up). Thus, recognizing such complex activities
relies on accurate temporal structure decomposition [7].

Previous work on temporal segmentation can be mainly divided into two categories.
On one side, many works in statistics, i.e., either offline or online (quickest) change-
point detections [8], are often restricted to univariate series (1D) and the distribution
is assumed to be known in advance [9]. Because of the complex structure of motion
dynamics, these works are not suitable for temporal segmentation of human actions.
On the other side, temporal clustering has been proposed for unsupervised learning of
human motions [10]. However, temporal clustering is usually performed offline, thus
not suitable for applications such as realtime action segmentation and recognition.
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Fig. 1. Online Hierarchial Temporal Segmentation. A 22 secs input sequence is temporally cut
into two segments; a walking segment (S1) which is further cut into 6 action units, and a jumping
segment (S2) which is further cut into 4 action units.
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Fig. 2. System Flowchart. Input can be either Mocap, 2.5D depth sensor or 2D videos. Output
are temporal cuts for both action transitions and cyclic action units.

online

Online Temporal Segmentation
(action transitions & cyclic motions)

Segmented segments & action units @

fi g4 4t44.

L __Au 1 AU ) AU

Application: Online Action"Recognition/ Retrieval / etc

Motivated by these difficulties, we propose an online temporal segmentation method
with no parametric distribution assumptions, which can be directly applied to detect
action transitions. The proposed method, Kernelized Temporal Cut (KTC), is a tem-
poral application of Hilbert space embedding of distributions [[L1}, [12] and kernelized
two-sample test [[13, [14]] of online segmentation on structured sequential data. KTC
can simultaneously detect action transitions and cyclic motion structures (action units)
within a regime as shown in Fig.[[l Furthermore, a realtime implementation of KTC is
proposed, incorporating an incremental sliding window strategy. Within a sliding win-
dow, segmentation is performed by the two-sample hypothesis test based on the pro-
posed spatio-temporal kernel. The input and output of our system are shown in Fig.
In summary, our approach presents several advantages:

— Online: KTC can sequentially process the input and capture action transitions, which
is extremely helpful for realtime applications such as continuous action recognition.

— Hierarchical: KTC can simultaneously capture transition points between different
actions, and cyclic action units within an action regime, e.g., a walking segment con-
tains several walking cycles. This is important for realtime activity recognition, i.e.,
action can be recognized after only one action unit.
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— Nonparametric: nonparametric and high dimensionality issues are handled by the
Hilbert space embedding based on the spatio-temporal kernel, which can be directly
applied to complex sequential data such as human motion sequences.

— Online Action Recognition and Transfer Learning: KTC can be applied to a va-
riety of input such as motion capture data, depth sensor data and 2D videos from an
unknown viewpoint. More importantly, KTC can be applied to online action recogni-
tion from OpenNI and Kinect by combining methods such as [[15]. The recognition is
performed without any training data from depth sensor, which is truly transfer learning.

2 Related Work

Temporal segmentation is a multifaced area and several related topics in machine learn-
ing, statistics, computer vision and graphics are discussed in this section.

Change-Point Detection. Most of the work in statistics, i.e., offline or quickest (on-
line) change-point detections (CD) [§], is often restricted to univariate series (1D) and
parametric distribution assumption, which does not hold for human motions with com-
plex structure. [[16] uses the undirected sparse Gaussian graphical models and performs
jointly structure estimation and segmentation. Recently, as a nonparametric extension
of Bayesian online change-point detection (BOCD) [9], [17] is proposed to combine
BOCD and Gaussian Process (GPs) to relax the i.i.d assumption in a regime. Although
GPs improve the ability to model complex data, it also brings in high computational
cost. More relevant to us, kernel methods have been applied to non-parametric change-
point detection on multivariate time series [[18,/19]. In particular, [18] (KCD) utilizes the
one-class SVM as online training method and [[19] (KCpA) performs sequentially seg-
mentation based on the Kernel Fisher Discriminant Ratio. Unlike all the above works,
KTC can not only detect action transitions but also cyclic motions.

Temporal Clustering. Clustering is a long standing topic in machine learning [20,
21]. Recently, as an extension of clustering, some works focus on how to correctly
temporally segment time series into different clusters. As a elegant combination of Ker-
nel K-means and spectral clustering, Aligned Cluster Analysis (ACA) is developed for
temporal clustering of facial behavior with a multi-subject correspondence algorithm
for matching facial expressions [6]. To estimate the unknown number of clusters, [22]
use the hierarchical Dirichlet process as a prior to improve the switch linear dynamical
system (SLDS). Most of these works offline segment time series and provide cluster
labels as in clustering. As a complementary approach, KTC performs online temporal
segmentation which is suitable for realtime applications.

Motion Analysis. In computer vision and graphics, some works focus on grouping
human motions. Unusual human activity detection is addressed in [5] using the (bipar-
tite) graph spectral clustering. [23] extracts spatio-temporal features to address event
clustering on video sequences. [1J] proposes a geometric-invariant temporal clustering
algorithm to cluster facial expressions. More relevantly, [1l]] proposes an online algo-
rithm to decompose motion sequences into distinct action segments. Their method is an
elegant temporal extension of Probabilistic Principal Component Analysis for change-
point detection (PPCA-CD), which is computationally efficient but restricted to (ap-
proximate) Gaussian assumptions.
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Action Recognition. Although significant progress has been made in human activ-
ity recognition [3, |4, [7, 24]], the problem remains inherently challenging due to view-
point change, partial occlusion and spatio-temporal variations. By combining KTC
and alignment approaches such as [25, [15], we can perform online action recognition
for input from 2.5D depth sensor. Unlike other works on supervised joint segmentation
and recognition [26], two significant features of our approach are, viewpoint indepen-
dence and handling arbitrary person with a few labeled Mocap sequences, in the transfer
learning module.

3 Online Temporal Segmentation of Human Motion

This section describes the Kernelized Temporal Cut (KTC), a temporal application of
Hilbert space embedding of distributions [L1/] and kernelized two-sample test [14,113],
to sequentially estimate temporal cut points in human motion sequences.

3.1 Problem Formulation

Given a stream input X 1.z, {wt} Le (z; € RPt, where D, can be fixed or change
over time), the goal of temporal segmentatlon is to predict temporal cut points c¢;. For
instance, if a person walks and then boxes, a temporal cut point must be detected. For
depth sensor data, x; is the vector representation of tracked joints. More details of x;
are given in sec. [fl From a machine learning perspective, the estimated {cl} ¢, can be
modeled by minimizing the following objective function,

({Cz i= 1a ZI Cci— 1:ci—17Xc71:ci+1—1) (1)

where X ¢;.c, -1 € RDx(ci+1=¢i) indicates the segment between two cut points ¢; and
ci+1(c1 =1, en,41 = Ly + 1). Here I() is the homogeneous function to measure the
spatio-temporal consistency between two consecutive segments. It is worth noting that,
both {c;} ¥, and N, need to be estimated from eq. Il Next, the main task is to design
I(-) and to online optimize eq.[Il As the counterpart, eq. [l could be offline optimized
by dynamic programming when N, is given, which is out of the scope of this paper.

3.2 KTC-S

Instead of jointly optimizing eq.[I] the proposed Kernelized Temporal Cut (KTC) se-
quentially optimizes c;+1 based on ¢; by minimizing the following loss function,

‘C{Xcizcﬁ_T_l}(CiJrl) :I(Xcri:ci+1713XCi+1ZCi+T*1)? 1= 1>23 "'aNc -1 (2)

where ¢; (i = 1, cy.+1 = Ly + 1) is provided by the previous step and 7' is a
fixed length. We refer to this sequential optimization process for eq.[2las KTC-S, where
S stands for sequential. Sequentially optimizing £ is actually a fixed-length sliding
window process which is also used in [[19]. However, setting 7 is a difficult task and how
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to improve this process is described in sec.[3.3] Essentially, Eq.Rlis a two-class temporal
clustering problem for X ,.c,+7—1 € RP*T. The crucial factor is constructing I(-),
which is related to temporal version of (dis)similar functions in spectral clustering [20,
21,110] and information theoretical clustering [27].

To handle the complex structure of human motion, unlike previous work, KTC uti-
lizes Hilbert space embedding of distributions (HED) to map the distribution of X7, .1,
into the Reproducing Kernel Hilbert Space (RKHS). [11,/12] are seminal works on com-
bining kernel methods and probability distribution analysis. Without going into details,
the idea of using HED for temporal segmentation is straightforward. The change-point
is detected by using a well behaved (smooth) kernel function, whose values are large
on the samples belonging to the same spatio-temporal pattern and small on the samples
from different patterns. By doing this, KTC does not only handle nonparametric and
high dimensionality problems but also rests on a solid theoretical foundation [[11].

HED. Inspired by [12], probabilistic distributions can be embedded in RKHS. At the
center of the Hilbert space embedding of distributions are the mean mapping functions,

T

p(Pa) = Ey(k(a, ), n(X) = 1Yk, ®
t=1

where x!=7" are assumed to be i.i.d sampled from the distribution P. Under mild

conditions, p(P) (same for 1(X)) is an element of the Hilbert space as follows,

< p(Pa), f 5= Bolf(@), < p(X).f >= 3" f@)

Mappings (1(Py) and p(X) are attractive because,

Theorem 1. if the kernel k is universal, then the mean map p: Py — p(Pyg) is injec-
tive. [12]

This theorem states that distributions of & € R have a one-to-one correspondence
with mappings u(P). Thus, for two distributions P, and P,,, we can use the func-
tion norm ||u(Pg) — u(Py)|| to quantitatively measure the difference (denoted as
D(P,, P,)) between these two distributions. Moreover, we do not need to access the
actual distributions but rather finite samples to calculate D (P, P,,) because:

Theorem 2. Assume that ||f||ime < C for all f € H with |||f||x < 1, then with
1(Py)—u(X)|| < 2R7(H, Pg)+C\/—T~log(0)). [12]
As long as the Rademacher average is well behaved, finite samples yield error that
converges to zero, thus they empirically approximate (i(P ). Therefore, D(P, Py)
can be precisely approximated by using finite sample estimation ||u(X) — u(Y)|].
Thanks to the above facts, we use HED to construct Ixrc (X 1.1y, Y 1.7, ) to measure
the consistency between distributions of two segments as follows,

2
11, 29~ o Zk T @5) = 1o Zk yi:Y;) @



234 D. Gong et al.

Combining eq.2land eq. Ml c;; 1 is estimated by minimizing the following function in
matrix formulation as:
’ / / 1 .c! 1 /.
ci\H p-KTC c; ci lic; c;:T
/:’{Xci:ci+T—1}(c;) = _(ET) Kci:ciJrTflET’ ET - C/ eT - d.eT (5)
i i

where ¢} and d; are short notations for ¢; 11 — ¢; and ¢; + T — ¢;41. €4 € RV isa
binary vector with 1 for positions from ¢; to o and 0 for others. K 57;an1 € RTXT

is the kernel matrix based on the kernel function kx7c(-).

Kernel. The success of kernel methods largely depends on the choice of the kernel
function [11]. As mentioned before, the difficulty of human motion, is that both spatial
and temporal structures are important. Thus, we propose a novel spatio-temporal kernel
kxTc(-) as follows,

kiro(@i, ;) = ks (@, ;) kr (i, ;) = ks(xi, ;) kr(A(z;), A(z;))  (6)

where kg(-) is the spatial kernel and kr(-) is the temporal kernel. A(z) is the esti-
mated local tangent space at point «. kg(-) and kr(-) can be chosen according to the
domain knowledge or universal kernels such as Gaussian. For instance, the canonical
component analysis (CCA) kernel [28] is used for joint-position features as,

kSO (@i, @) = exp(—Asdoca(ms, x;)?) @

where dcca(+) is the CCA metric based on M x 3 matrix representation of €
R3M < 1. Or in general, we set them as,

ks(xi, x;) = exp(—As || ;i — x;|?)

~ ~ ~ ~ 8
ke (B@:), A,) = exp(-Ar0(A(w). Alz))) ®
where \g is the kernel parameter for kg(-) and Ar is the kernel parameter for kg(-).
6(-) is the notation of principal angle between two subspace (range from 0 to 7).

In short, the spatio-temporal kernel kxrc captures both spatial and temporal dis-
tributions of data (a visual example in Fig. [3), which is suitable to model structured
sequential data. As special cases, kg degenerates to spatial kernel if Ay — 0 and to
temporal kernel if Ag — 0.

Optimization. Unlike the NP-Hard optimization in spectral clustering [21]], eq. [5 can
be efficiently solved because the feasible region of ¢; 11 is [¢; + 1, ¢; + T — 1], allowing
to search the entire space to minimize £(c;+1). For each step, minimizing eq. [3 has
complexity at most O(T?) to access kxrc(-).

3.3 KTC-R

Sequentially optimizing eq. [1]is given in sec. 3.2l However, this process may not be
suitable for realtime applications. A key feature of human motion is temporal variations,

! M is the number of 3D joints from Mocap or depth sensor.
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Fig.3. An illustration of KTC-R. Left: tracked joints from depth sensor, right: K£13 €
RIOOXL0 for window X 1.190. The decision to make no cut between frame 1 to 110 is made
before the current window with a maximum delay of 7y = 80 frames.

i.e., one action can last for a long time or only a few seconds. Thus, it is difficult to use
a fixed-length-T" sliding-window to capture transitions. Small values of 7" cause over-
segmentation and large values of 1" cause large delays (1" = 300 for depth sensor results
in 10 secs delay). To overcome this problem, we combine incremental sliding-window
strategy [1] and two-sample test [14, [13] to design a realtime algorithm for eq.[3 i.e.,
KTC-R (Fig. ).

Given X 1.1, = [x1,...,x1,] € RP>*L+ KTC-R sequentially processes the varying-
length window X = [xy,,, ..., Tn,+1,] at step t. This process starts from n; = 1 and
Ty = 2Ty, where Ty is the pre-defined shorest possible action length. At step-t (assume
the last cut is ¢;), if there is no captured action transition point, the following updating
process is performed,

niy1 = ng, Ty = Ty + 0T )

else if there is a transition point,
Civ1 =mng + Ty —To,ne1 = ciy1, Ty =T (10)

where 07T is the step length of increasing the window. This process ends when ny— L, <
To. As shown in eq. [9 and eq. X .1, is sequentially processed and all cuts c; are
estimated when the algorithm requires the (¢; + 7o — 1), frame (same for non-cut
frames). This fact indicates STC-R has a fixed-length time delay 7}, as shown in Fig.[3l

At each step, deciding on a cut (at frame n, + T} — T}) is equivalent to the following
hypothesis test,

Hy : {x; 22—1 and {xi}zerTt_l are the same; H, : not Hy an

where n} is the short notation for n; + T3 — Tj. eq.[Tlis re-written by combining eq.
as follows,

£ = (B KT R 0

—Ho: Ly >6;:nyisnotacut; —Hy: Ly <6 :njpisacut

where ¢, is the adaptive threshold for the hypothesis test In fact, eq. [12lis directly
inspired by [[14] which proposes a kernelized two-sample test method. £, is analogous
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to the negative square of empirical estimation of Maximum Mean Discrepancy (MMD),
which has the following formulation,

T
1
MMD[FaXI:TlaYl:Tg} - (T2 Z k(wiawj)
1

. 13

9 T,,T2 1 T> (13)
- k(ziy;) + k(y;,y,))?
T1T2 i]zz:l ( K3 y]) T22 i]2=:1 (yZ y]))

where F is a unit ball in a universal RKHS H, and {z}}, and {y}fil are i.i.d. samples
from distributions P, and P,,. It can be shown that,

lim ‘ct = —MMD[]:, X?Lt:7zg—17Xn;:n,,+Tt—1]2 (14)
)\T—)O g g

if the same kernel in MMD is used as the spatial kernel in kxrc(-) (eq.[6) and kr(-)
degenerates to 1 as Ay — 0. Based on eq.[I4] ¢; is set as Br(t) + 6 where Br(t) is an
adaptive threshold which is calculated from the Rademacher bound [[14], and § is a fixed
global threshold which is the only non-trivial parameter in KTC-R (used to control the
coarse-fine level of segmentation).

Analysis. In summary, both KTC-S and KTC-R are based on eq. 3l The main dif-
ferences are, KTC-S performs segmentation by sequential optimization in a two-class
temporal clustering way, and KTC-R performs segmentation by using incremental
sliding-window in a two-sample test way. KTC-R requires more sliding-windows than
KTC-S, but for each one, there is no optimization, and accessing kxrc(-) O(Ty0T)
times is enough (linear to 7;). Only when a new cut is detected, O(T}?) times accessing
is required. Thus, KTC-R is extremely efficient and suitable for realtime applications.
It is notable that, even if the fixed-length sliding-window method (sec. 3.2) is im-
proved to make the decision whether a cut happens or not in X .c,+7—1, a small T
is still not reliable for realtime applications. The reason is that a clear temporal cut for
human motion requires a large number of observations before and after the cut. Indeed,
the required number of frames varies from action to action, even for manual annotation.

4 Online Hierarchical Temporal Segmentation

Besides estimating {c; }, decomposing an action segment X ..., ,, 1 into an unknown
number of action units (e.g., three walking cycles) if cyclic motions exists, is also
needed [29]. This is not only helpful for understanding motion sequences, but also for
other applications such as recognition and indexing. Thus, an online cyclic structure
segmentation algorithm, i.e., Kernelized Alignment Cut (KAC), is proposed as a gener-
alization of kernel embedding of distributions and temporal alignment [13,6]. By com-
bining KAC and KTC-R, we get the two-layer segmentation algorithm KTC-H, where
H stands for hierarchical. Action units segmentation is difficult for non-periodic mo-
tions (e.g., jumping), which are actions that are usually performed once locally. How-
ever, people can still perform two consecutive non-periodic motions, and these two
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motions are not identical because of intra-person variations, which brings challenges
for KAC.

KAC. As an online algorithm, KAC utilizes the sliding-window strategy. Each window
X, 4ns—Tm:a;+n:—1 1S sequentially processed, starting from ny = 27T, a1 = ¢,
where a; is j;, action unit cut. T}, is a parameter which is the minimal length of one
action units. We empirically find that results are insensitive to T,.
For each window X yn, 7,,:a;4n.—1, this process has two branches. The last
action unit continues: ny11 = n; + 01,; or there is a new action unit: aj41 =
aj +ng — Tpmynuyp1 = 275,. Here 07, is the step length. This process ends when
a new cut point ¢;4; received. Deciding whether X aj+ni—Tm:a;+ne—1 is the start of a
new unit or not can be formulated as,
St = SAlign (Xaj:aj+T,,L71> XajJrnt 7T,,,L:aj+nt71) (15)
—Hy:5 <€ raj+n—Tpisanewunit; — Hy: S > € :not Hy
where Sjign (+) is the metric to measure the structure similarity between X o .0, 47, ~1
and X 4 +n,—T,,:a;+n,—1, to handle intra-person variations. ¢; is an adaptive threshold
(empirically set by cross-validation) and ideally should be close to zero if alignment
can perfectly leverage variations. Similar to KTC-R, KAC has delay 7. In particular,
KAC uses dynamic time warping (DTW) [115, 6] to design Sk ac(+) by minimizing the
following loss function based on the kernel from eq. [6]

a;j+ni—Tp:a;+n;—1
Skac(Ky Mo m T W, W) (16)

where K is the cross-kernel matrix for two segments, and W and W, are binary
temporal warping matrices encoding the temporal alignment path as shown in [15].
Interested readers are referred to [[15, 6] for more details about S(-). Eq.[I6lcan be opti-
mized by using dynamic programming with complexity O(T?2), and Sx ac () measure
the similarity between the current action unit (a part) and the current window. Impor-
tantly, alignment methods such as DTW are not suitable for eq. 12l This is because
alignment requires two segments to have roughly the same starting and ending points,
which does not hold in eq.

KTC-H. By combining KTC-R and KAC, we can sequentially simultaneously capture
action transitions (cuts) and action units, in the integrated algorithm KTC-H. Formally,
KTC-H uses the two-layer sliding window strategy, i.e., the outer loop (sec. to
estimate ¢; and the inner loop to estimate a; between c¢; and the current frame from the
outer loop. Since KTC-R (eq.[12) and KAC (eq. both have fixed delay (7j and T',),
KTC-H is suitable for realtime transition and action unit segmentation.

Discussion. We compare with several related algorithms: (1) Spectral clustering [21]
can be extended to temporal clustering if only allowing temporal cuts (TSC) [10]. Sim-
ilarly, minimizing eq. 3l can be viewed as an instance of TSC motivated by embedding
distributions into RKHS. (2) PPCA-CD is proposed in [1l] to model motion segments
by Gaussian models, where CD stands for change-point detection. Compared to [1],
KTC has higher computational cost but gains the ability to handle nonparametric dis-
tributions. (3) KTC is similar to KCpA [19], which uses the novel kernel Fisher dis-
criminant ratio. Compared to [19], KTC performs change-point detection by using the
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incremental sliding-window. More importantly, KTC detects both change-points and
cyclic structures. This is crucial for online recognition, making action can be recog-
nized after only one unit instead of the whole action. (4) As an elegant extension of
Kernel K-means and spectral clustering, ACA is proposed in [6]] for offline temporal
clustering. KTC can be viewed as an online complementary approach to [6].

S Online Action Recognition from OpenNI

We use KTC-H to recognize tracked OpenNI data online, based on labeled Mocap se-
quences only. To the best of our knowledge, this is the first work towards continuous
action recognition from OpenNI in the transfer learning framework, without the need
of training data from OpenNI.

Recognition. In our system, action recognition is done by combining KTC-H and
sequences alignment. Assume there are N labeled Mocap segments (action units)
{X ! ocap € RIM*LiYN | associated with label I° € Z, where T = 1,2, ..., C indi-

_, € R3Ex(a541-a;)

cates C' action classes. Given a segmented action unit X ;.q,,,

from KTC-H, the estimated action label et s given by using Dynamic Manifold
Warping (DMW) [25],

Test
ajiajr1—1

arg,_min  Spaw (Xajiaa—1 (Kinocap: 1) (A7)
where K can be M or < M when indicating noisy and possible occluded tracking tra-
jectories from depth sensor data by using the OpenNI tracker. The spatial and temporal
variations between X and X are handled by DMW.

mocap

6 Experimental Validation

We evaluate the performance of our system from two aspects: (1) temporal segmenta-
tion on depth sensor, Mocap and video, (2) online action recognition on depth sensor.

6.1 Online Temporal Segmentation of Human Action

In this section, quantitative comparison of online temporal segmentation methods is
provided. KTC-R is compared with other state-of-the-art methods, i.e, PPCA-CD [1]
and TSC-CD [23,[10], where TSC-CD is a change-point detection algorithm based on
temporal spectral clustering by our implementation. PPCA-CD uses the same incre-
mental sliding-window strategy as sec. and TSC-CD uses the fixed-length sliding
window as sec. [3.21 Thresholds (e.g., § for KTC-R and thresholds for other methods)
are set by cross-validation on one sequence. Methods like ACA [6] and [22] can not
be directly compared since they are offline. Results are evaluated by three metrics, i.e.,
precision, recall and rand index. The first two are for cut points and the last one is
for all frames. The ground-truth for rand index (RI) is labeled as consecutive numbers
1, 2, 3, ... for different segments. Importantly, T} is set as 80, 250, 60 for depth sen-
sor, Mocap and video respectively, making KTC-R have 2.3, 2.1 and 1 seconds delay.
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Fig. 4. Examples of Online Temporal Segmentation. Top (Depth Sensor): a sequence includes
3 segments as walking, boxing and jumping. Noisy joint-trajectories are tracked by OpenNI.
Middle (Mocap): a sequence has 4579 frames and 7 action segments. Bottom (Video): a clip
includes walking and running. For all cases, KTC-R achieves the highest accuracy.

KTC-S achieves similar accuracy to KTC-R but with longer delay, details are omitted
due to lack of space. Results are very robust to Ty and 67". For instance, we got almost
identical results when Tj ranges from 60 to 120 in OpenNI data.

Depth Sensor. To validate online temporal segmentation on depth sensor, 10 human
motion sequences are captured by the PrimeSense sensor. Each sequence is a com-
bination of 3 to 5 actions (e.g., walking to boxing) with length around 700 frames
(30Hz). For human pose tracking, we use the available OpenNI tracker to automatically
track joints on human skeleton. K € [12,15] key points are tracked, resulting in joint
3D position x; in #3¢ to R*°. Although human pose tracking results are often noisy
(Fig.[dland Fig.[3), we can correctly estimate action transitions from these noisy tracking

Table 1. Temporal Segmentation Results Comparison. Precision (P), recall (R) and rand index
(RI) are reported

Methods  PPCA-CD (online) TSC-CD (online) KTC-R (online)

Depth  0.73(P)/0.78(R)/0.80(RI) 0.77(P)/0.81(R)/0.81(RI) 0.87(P)/0.93(R)/0.88(RI)
Mocap 0.85(P)/0.90(R)/0.90(RI) 0.83(P)/0.86(R)/0.88(RI) 0.86(P)/0.91(R)/0.92(RI)
Video - 0.78(P)/0.85(R)/0.82(RI) 0.85(P)/0.92(R)/0.88(RI)
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results. In particular, KTC-R (67" = 30) significantly improves the accuracy from other
methods (Table [T). The main reason is the joint-positions of noisy tracked joints have
complex nonparametric structures, which is handled by kernel embedding of distribu-
tions [14,113,112] in KTC.

—KTC-H. Besides action transitions, results on detecting both cyclic motions and tran-
sitions are reported by performing KTC-H (7}, = 50,7, = 1). Since other methods
don’t have the module, we report quantitative comparison on online hierarchial seg-
mentation by using KTC-H or other methods plus our KAC algorithm in sec. 4l Results
show (Table ) that KTC-H gets higher accuracy than other combinations. It is notable
that, because of the natural of RI, the RI metric will increase when the number of cuts
increase, even for low P/R, which is the case for hierarchial segmentation (including
two types of cuts).

Mocap. Similar to [, |6]], M = 14 joints are used to represent the human skele-
ton, resulting in joint-quaternions of joint angles in 42D. Online temporal segmentation
methods are tested on 14 selected Mocap sequences from subject 86 in CMU Mocap
database. Each sequence is a combination of roughly 10 action segments and in total
there are around 10° frames (120Hz). Since the implementation of PPCA-CD differs
from [1]] (such as only forward pass is allowed in our experiments), results are not the
same as in [1]. Table [1] shows that the gain of KTC-R (6T = 50) to other methods
in Mocap is reduced, compared with depth sensor data. This is because the Gaussian
property is more likely to hold for quaternions representation of noiseless Mocap data,
which is not the case for real data in general.

Video. Furthermore, KTC-R is performed on a number of sequences from
HumanEva-2, which is a benchmark for human motion analysis [30]. Silhouettes are
extracted by background substraction, resulting in a sequence of binary masks (60Hz).
x; € NP+ is set as the vector representation of the mask at frame ¢. It is notable that,
D, (size of masks) in different frames may not be identical, so PPCA-CD can not be
applied. This fact supports the advantage of KTC, which is applicable for complex se-
quential data as long as a (pseudo) kernel can be defined. In particular, we follow [6]
to compute the matching distance of silhouettes to set the kernel. Results are shown in
Fig.d and Table.[Il As a reference, state-of-the-art offline temporal clustering method
ACA achieves higher accuracy than KTC-R on Mocap (96% precision). However, of-
fline methods (1) are not suitable for real-time applications, and (2) require the number
of clusters (segments) to be set in advance, which is not applicable in many cases.

6.2 Joint Online Segmentation and Recognition from OpenNI

We collect additional 5109 frames (N = 30) with 10 primitive actions from CMU
Mocap as the labeled (training) data for recognition. In order to associate labeled Mo-
cap sequences with data from other domains, joint-position trajectories (M = 15) are
used in eq. [[7] [25]. Testing data are previous collected sequences from depth sen-
sor, and online segmentation and recognition are simultaneously performed by KTC-H
and eq.[I7] A significant feature of our approach is, there is no extra-training process
for depth sensor, i.e., the knowledge from Mocap can be transferred to other motion



Kernelized Temporal Cut for Online Temporal Segmentation and Recognition 241

KTC- H

One Actlon Unit One Actlnn Unit

>

M M i
= 7777

Fig.5. Online action segmentation and recognition on 2.5D depth sensor. Top to bottom,
depth image sequences, KTC-H results and action recognition results. For segmentation, blue line
indicates the cut and different rectangles indicate different action units. The blue circle indicates
noisy tracking results. For recognition: distance to labeled Mocap sequences, and inferred 3MD
motion sequences.

> Motap séquences’

sequences, based on proper features. Tracked trajectories from OpenNI in an action unit
(segmented by KTC-H) are associated with labeled Mocap sequences from 10 action
categories.

Table 2. Online hierarchial segmentation and recognition on 2.5D depth sensor

Methods PPCA-CD+KAC KTC-H
Depth  0.72(P)/0.76(R)/0.89(RI)/0.71(Acc)0.85(P)/0.87(R)/0.94(RI)/0.85(Acc)

Although OpenNI tracking results are often noisy (highlighted by blue circles in
Fig. B, we achieve 85% recognition accuracy (Acc) from these noisy tracking results
(Table ), without any additional training on depth sensor data. This result does not
only benefit from DMW [25], but also from KTC-H. DMW requires the input only
contain one action unit, while KTC-H performs a critical missing step, i.e., accurate
online temporal segmentation, in order to perform recognition. As illustrated in Table
2, the accuracy on OpenNI is enhanced from 0.71 to 0.85, which strongly supports the
effectiveness of KTC-H. Furthermore, the complete and accurate 3//D human motion
sequences can be inferred by associating the learned manifolds from Mocap.

7 Conclusion

In this paper, we propose an online temporal segmentation method KTC, as a temporal
extension of Hilbert space embedding of distributions for change-point detection based
on the novel spatio-temporal kernel. Furthermore, a realtime implementation of KTC
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and a hierarchial extension are designed, which can detect both action transitions and
action units. Based on KTC, we achieve realtime temporal segmentation on both Mo-
cap, motion sequences from 2.5D depth sensor and 2D videos. Furthermore, temporal
segmentation is combined with alignment, resulting in realtime action recognition on
depth sensor input, without the need of training data from depth sensor.

Acknowledgments. This work was supported in part by NIH Grant EY016093 and
DE-FG52-08NA28775 from the U.S. Department of Energy.
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