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Abstract In recent years, several authors have reported that spectral
saliency detection methods provide state-of-the-art performance in pre-
dicting human gaze in images (see, e.g., [1–3]). We systematically inte-
grate and evaluate quaternion DCT- and FFT-based spectral saliency
detection [3,4], weighted quaternion color space components [5], and the
use of multiple resolutions [1]. Furthermore, we propose the use of the
eigenaxes and eigenangles for spectral saliency models that are based
on the quaternion Fourier transform. We demonstrate the outstanding
performance on the Bruce-Tsotsos (Toronto), Judd (MIT), and Kootstra-
Schomacker eye-tracking data sets.

1 Introduction

There are many aspects that influence the human visual attention, but probably
one of the most well-studied is that visual stimuli and objects that visually stand
out of the surrounding environment automatically attract the human attention
and, consequently, gaze. In the last two decades, many computational models of
bottom-up visual attention have been proposed that model and try to help un-
derstand this inherent attractiveness, i.e. the visual saliency, of arbitrary stimuli
and objects in a scene (see, e.g., [6]). Moreover, predicting where humans look
is not only an interesting question in cognitive psychology, neurophysics, and
neurobiology, but it has proven to be an important information for many ap-
plication areas, e.g.: for efficient scene exploration and analysis in robotics (see,
e.g., [7, 8]), information visualization using image retargeting (see, e.g., [9, 10]),
or predicting the attractiveness of advertisement (see [11]).

In recent years, starting with the work by Hou et al . in 2007 [12], spectral
saliency models attracted a lot of interest (see, e.g., [1,3–5,7,12–15]). These ap-
proaches manipulate the image’s frequency spectrum to highlight sparse salient
regions (see also [16,17]) and provide state-of-the-art performance, e.g., on psy-
chological patterns (see [12]), for salient region detection (see [12]), and spatio-
temporal eye fixation prediction (see [2, 5]). But, what makes these approaches
particularly attractive is the unusual combination of state-of-the-art performance
and computational efficiency that is inherited from the fast Fourier transform.
An interesting development in this area is the use of quaternions as a holistic
representation to process color images as a whole [3, 4]. The quaternion algebra
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makes it possible to process color images as a whole without the need to process
the image channels separately and, in consequence, tear apart the color informa-
tion1. Given the definition of (real-valued) spectral saliency models, it does not
seem possible to calculate them on color images without separation of the image
channels if it were not for the quaternion algebra and its hypercomplex discrete
Fourier transform (DFT) and discrete cosine transform (DCT) definitions.

In this paper, we combine and extend the previous work on spectral saliency
detection. Most importantly, we integrate and investigate the influence of quater-
nion component weights as proposed by Bian et al . [5], adapt the multiscale
model by Peters et al . [1] and evaluate its effect on the quaternion-based ap-
proaches, and propose and evaluate the use of the quaternion eigenaxis and
eigenangle for saliency algorithms that rely on the quaternion Fourier trans-
form (see, e.g., [4, 12, 13]). Furthermore, we evaluate the choice of the color
spaces that have been applied in previous work (see, e.g., [2]) and also address
the influence of the quaternion DFT and quaternion DCT transformation axis.
We evaluate all algorithms on the Bruce-Tsotsos (Toronto), Judd (MIT), and
Kootstra-Schomacker data sets (see [18–20]) and analyze how well these models
can predict where humans look at in natural scenes. To this end, we use the well-
known area under curve (AUC) of the receiver operator characteristic (ROC) as
a measure of the predictive power (see, e.g., [2]).

In summary, we are able to improve the state-of-the-art on the Toronto, and
Kootstra-Schomacker data set in terms of the area under the ROC curve. On
the Judd data set, our approach is outperformed by Judd’s algorithm and we
achieve only the second best performance. This can be explained by the fact that
Judd’s algorithm explicitly models the influence of higher level concepts, which
are very prominent in Judd’s data set. However, the evaluated spectral saliency
algorithms achieve the performance at a fraction of the computational require-
ments of Judd’s algorithm. The proposed use of the eigenaxis and eigenangle sub-
stantially improves the performance of the quaternion Fourier approach (PQFT;
see [4]) and makes it the second best choice after the quaternion DCT signature
saliency (QDCT; see [3]). The use of multiple scales significantly improves the
results and the use of appropriately weighted color spaces is essential to achieve
outstanding performance using quaternion-based spectral saliency detection.

2 Related Work

Visual saliency is a concept that has been derived from human perception and
describes how likely it is that a stimulus attracts the attention (see, e.g., [6]).
Many factors influence the human attention and we have to distinguish between
bottom-up, data-driven as well as top-down, knowledge-driven aspects. In this
paper, we consider the traditional concept of visual saliency that is primarily
linked to the bottom-up attention that automatically attracts the human gaze.

1 A simple, illustrated example and discussion of the disadvantage of processing an
image’s color channels separately can be found in [5, Sec. 3.1].
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One of the most influential works is the feature integration theory by Treisman
and Gelade [21], which is probably the first model that used several feature
dimensions to calculate a saliency map of the image that tries to estimate how
salient each image region is. Since then many different saliency models have
been proposed to calculate such maps; for example, the well-known model by
Itti and Koch [22], attention by information maximization (AIM) [18], saliency
using natural statistics (SUN) [23], graph-based visual saliency (GBVS) [24],
context-aware saliency (CAS) [9,10], and Judd’s model that is based on machine
learning [19]. However, since reviewing the existing approaches is beyond the
scope of this paper, we refer the interested reader to the survey by Frintrop et
al . [6]. In the following, we summarize the most closely related work.

The first spectral approach for visual saliency detection was presented in 2007
by Hou et al . [12]. Since then, several spectral saliency models have been pro-
posed (see, e.g., [1,4,5,12–15]). Hou et al . proposed the use of the Fourier trans-
form to calculate the visual saliency of an image. To this end, – processing each
color channel separately – the image is Fourier transformed and the magnitude
components are attenuated (spectral residual). Then, the inverse Fourier trans-
form is calculated using the manipulated magnitude components in combination
with the original phase angles. The saliency map is obtained by calculating the
absolute value of each pixel of this inverse transformed image and subsequent
Gaussian smoothing. This way Hou et al . achieved state-of-the-art performance
for salient region (proto-object) detection and psychological test patterns. How-
ever, although Hou et al . were the first to propose this method for saliency
detection, it has been known for at least three decades that suppressing the
magnitude components in the frequency domain highlights signal components
such as lines, edges, or narrow events (see [16, 17]).

In 2008 [1], Peters et al . analyzed the role of Fourier phase information in
predicting visual saliency. They extended the model of Hou et al . by linearly
combining the saliency of the image at several scales. Then, they analyzed how
well this model predicts eye fixations and found that “salience maps from this
model significantly predicted the free-viewing gaze patterns of four observers for
337 images of natural outdoor scenes, fractals, and aerial imagery” [1].

Also in 2008 [4], Guo et al . proposed the use of quaternions as a holistic color
image representation for spectral saliency calculation. This was possible because
quaternions provide a powerful algebra that allows to realize a hypercomplex
Fourier transform (see [25]), which was first demonstrated to be applicable for
color image processing by Sangwine [26,27]. Thus, Guo et al . were able to Fourier
transform the image as a whole and did not have to process each color chan-
nel separately1. Furthermore, this made it possible to use the scalar part of the
quaternion image as 4th channel to integrate a motion component. However, in
contrast to Hou et al ., Guo et al . did not use the spectral residual. Most interest-
ingly, Guo et al . were able to determine salient people in videos and outperformed
the models of Itti et al . [22] and Walther et al . [28]. In 2010 [13], a multireso-
lution attention selection mechanism was introduced, but the definition of the
main saliency model remained unchanged. However, most interestingly, further
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Fig. 1. Visualization (see [30] on how to interpret it) of the quaternion Fourier spec-
trum of an example image for two transformation axes (1&2). Left-to-right, top-to-
bottom: original, eigenangles (1), eigenaxes (1), magnitude (1), eigenangles (2), and
eigenaxes (2). This illustration is best viewed in color.

experiments demonstrated that the approach outperformed several established
approaches in predicting eye gaze on still images.

In 2009 [5], Bian et al . adapted the work by Guo et al . by weighting the
quaternion components2. Furthermore, they provide a biological justification for
spectral visual saliency models and proposed the use of the YUV color space,
in contrast to the use of the previously applied intensity and color opponents
(ICOPP) [4,13], and RGB [12]. This made it possible to outperform the models
of Bruce et al . [18], Gao et al . [29], Walther and Koch [28], and Itti and Koch [22]
when predicting human eye fixations on video sequences.

In 2012 [2], Hou et al . proposed and theoretically analyzed the use of the dis-
crete cosine transform (DCT) for spectral saliency detection. They showed that
this approach outperforms (in terms of the AUC) all other evaluated state-of-
the-art approaches – e.g., Itti and Koch [22], AIM [18], GBVS [24], and SUN [23]
– in predicting human eye fixations on the Toronto data set [18]. Furthermore,
Hou et al . pointed out the importance of choosing an appropriate color space.

Also in 2012 [3], Schauerte et al . used the definition of a quaternion DCT and
quaternion signatures to calculate the visual saliency and was able to outperform
the real-valued approach by Hou et al . [2]. This way they improved the state-of-
the-art in predicting where humans look in the presence and absence of faces.

3 Saliency Model

3.1 Basic Quaternion Definitions

Quaternion Algebra: Quaternions form a 4D algebra H over the real num-
bers and are – in principle – an extension of the 2D complex numbers [31]. A
quaternion q is defined as q = a + bi + cj + dk ∈ H with a, b, c, d ∈ R, where i,
j, and k provide the basis to define the (Hamilton) product of two quaternions
q1 and q2 (q1, q2 ∈ H):

q1q2 = (a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k) , (1)
2 Please note that the mentioned SW approach [5] is in principle equivalent to the

PFT approach by Guo et al . [4].
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where i2 = j2 = k2 = ijk = −1. Since, for example, by definition ij = k
while ji = −k the Hamilton product is not commutative. Accordingly, we have
to distinguish between left-sided and right-sided multiplications (marked by L
and R, respectively, in the following). A quaternion q is called real, if x = a +
0i + 0j + 0k, and pure imaginary, if q = 0 + bi + cj + dk. We can define the
operators S(q) = a and V (q) = bi + cj + dk that extract the scalar part and the
imaginary part of a quaternion q = a+ bi+ cj +dk, respectively. As for complex
numbers, we can define conjugate quaternions q̄ = a − bi − cj − dk as well as
the norm |q| =

√
q · q̄. Furthermore, we can define the quaternion scalar product

∗ : H× H → R

s = q1 ∗ q2 = a1a2 + b1b2 + c1c2 + d1d2 . (2)

Eigenaxis and Eigenangle: Euler’s formula for the polar representation using
the complex exponential generalizes to (hypercomplex) quaternion form

eμΦ = cosΦ + μ sin Φ , (3)

where μ is a unit pure quaternion (see [27] and [13]). Consequently, any quater-
nion q may be represented in a polar representation such as:

q = |q|eγΦ (4)

with the norm |q|, its eigenaxis γ

γ = fγ(q) =
V (q)
|V (q)| , (5)

and the corresponding eigenangle Φ

Φ = fΦ(q) = arctan
( |V (q)| sgn(V (q) ∗ γ)

S(q)

)
(6)

with respect to the eigenaxis γ, which is a unit pure quaternion, and where
sgn(·) is the signum function (see [27]). The eigenaxis γ specifies the quaternion
direction in the 3-dimensional space of the imaginary, vector part and can be seen
as being a generalization of the imaginary unit of complex numbers. Analogously,
the eigenangle Φ corresponds to the argument of a complex number.

3.2 Quaternion Images

Every image I ∈ R
M×N×C – with at most 4 color components, i.e. C ≤ 4 – can

be represented using a M × N quaternion matrix

IQ = I4 + I1i + I2j + I3k (7)
= I4 + I1i + (I2 + I3i)j (symplectic form), (8)

where Ic denotes the M × N matrix of the cth image channel. It is common to
represent the (potential) 4th image channel as the scalar part (see, e.g., [27]),
because when using this definition it is possible to work with pure quaternions
for the most common color spaces such as, e.g., RGB, YUV and Lab.
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Weighted Quaternion Color Components: Naturally, as done by Bian et
al . [5] and also related to the recent trend to learn feature dimension weights
(see, e.g., [32] and [19]), we can model the relative importance of the color
space components for the visual saliency by introducing a quaternion component
weight vector w = [w1 w2 w3 w4]

T and adapting Eq. 7 appropriately:

IQ = w4I4 + w1I1i + w2I2j + w3I3k . (9)

In case of equal influence of each color component, i.e. uniform weights, Eq. 7 is
a scaled version of Eq. 9, which is practically equivalent for our application.

3.3 Quaternion Transforms and Transformation Axis

Quaternion Discrete Fourier Transform: We can transform a M×N quater-
nion matrix f using the definition of the quaternion Fourier transform FL

Q [30]:

FL
Q[f ](u, v) = FL

Q(u, v) (10)

FL
Q(u, v) =

1√
MN

M−1∑
m=0

N−1∑
n=0

e−η2π((mv/M)+(nu/N))f(m, n) ,

see Fig. 1 for an example. The corresponding inverse quaternion discrete Fourier
transform F−L

Q is defined as:

F−L
Q [F](m, n) = fL

Q(m, n) (11)

fL
Q(m, n) =

1√
MN

M−1∑
u=0

N−1∑
v=0

eη2π((mv/M)+(nu/N))F(u, v) .

Here, η is a unit pure quaternion that serves as an axis and determines a direc-
tion in the color space. Although the choice of η is arbitrary, it is not without
consequence (see [30, Sec. V]) and can influence the results. For example, in RGB
a good axis candidate would be the “gray line” and thus η = (i + j + k)/

√
3.

In fact, as discussed by Ell and Sangwine [30], this would decompose the image
into luminance and chrominance components.

Quaternion Discrete Cosine Transform: Similarly, it is possible to define
a quaternion discrete cosine transform:

DL
Q[f ](u, v) =

2√
MM

M−1∑
m=0

N−1∑
n=0

ηf(m, n)βM
u,mβN

v,n (12)

D−L
Q [F](m, n) =

2√
MM

M−1∑
u=0

N−1∑
v=0

ηF (u, v)βM
u,vβN

m,n (13)

with βM
u,m = cos

[
π
M (m + 1

2 )u
]

(see, e.g., [3]). However, as can be seen when
comparing Eq. 10 and 12, the definition of DL

Q is substantially different from
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Fig. 2. Example images (top) from the data sets (see Sec. 4.1) that illustrate the
difference of the PQFT (middle) and proposed EigenPQFT (bottom) saliency maps

FL
Q, because the factors βM

u,m are real-valued instead of the hypercomplex terms
of FL

Q, as discussed by Schauerte et al . [3]. However, both definitions share the
concept of a unit pure quaternion η that serves as a transformation axis.

3.4 Eigenaxis and -angle Spectral Saliency

Similar to the real-numbered definition of the spectral residual by Hou et al . [12],
let AQ denote the amplitude, Eγ the eigenaxes, and the eigenangles EΘ (see
Sec. 3.1) of the quaternion image IQ:

Eγ(x, y) = fγ(IQ(x, y)) (14)
EΘ(x, y) = fΘ(IQ(x, y)) (15)
AQ(x, y) = |IQ(x, y)| . (16)

Then, we calculate the log amplitude and a low-pass filtered log amplitude using
a Gaussian filter hσA with the standard deviation σA to obtain the spectral
residual RQ:

LQ(x, y) = log AQ(x, y) (17)
RQ(x, y) = LQ(x, y) − [hσA ∗ LQ] (x, y) . (18)

Finally, we can calculate the Eigen Spectral Residual (EigenSR) saliency map
SESR using the spectral residual RQ, the eigenaxis Eγ , and the eigenangle EΘ:

SESR = SESR(IQ) = hσS ∗ |F−L
Q

[
eRQ+Eγ◦EΘ

]| , (19)

where ◦ denotes the Hadamard product and hσS is a Gauss filter with standard
deviation σS. If σA approaches zero, then the spectral residual RQ will become
0, i.e. limσA→0+ RQ(x, y) = 0, in which case we refer to the model as the Eigen
Spectral Whitening model (EigenSW or EigenPQFT).

If the input image is a single-channel image, then the quaternion definitions
and equations are reduced to their real-valued counterparts, in which case Eq. 19
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is identical to the single-channel real-numbered definition by Hou et al . [12]. Our
EigenSR and EigenPQFT definition that is presented in Eq. 19 differs from Guo’s
PQFT [4] definition in two aspects: First, it – in principle – preserves Hou’s spec-
tral residual definition [12]. Second, it relies on the combination of the eigenaxes
and eigenangles instead of the combination of a single unit pure quaternion and
the corresponding phase spectrum (see [13, Eq. 16] and [4, Eq. 20]), see Fig. 2
for an illustration.

3.5 Multiple Scales

The above saliency definitions only consider a fixed, single scale (see, e.g., [2–
5, 13]). But, the scale is an important parameter when calculating the visual
saliency and an integral part of many saliency models (see, e.g., [6]). For spectral
approaches the scale is (implicitly) defined by the resolution of the image IQ

(see, e.g., [33]). Consequently, as proposed by Peters and Itti [1], it is possible
to calculate a multiscale saliency map SM by combining the spectral saliency of
the image at different image scales. Let Im

Q denote the quaternion image at scale
m ∈ M , then

SM = S M (IQ) = hσM ∗
∑

m∈M

φR(S (Im
Q )) , (20)

where φR rescales the matrix to the target saliency map resolution R and hσM

is an additional, optional Gauss filter.

4 Evaluation and Discussion

4.1 The Data Set, Algorithms, and Measures

Data Sets: To evaluate the considered saliency algorithms, we use the following
eye-tracking data sets: The Toronto data set by Bruce and Tsotsos (see [18]),
which consists of 120 images (681 × 511 pixels) and the corresponding eye-
tracking data of 20 subjects that were free-viewing each image for 4 seconds.
The data set by Kootstra and Schomacker [20], which consists of 100 images
(1024 × 768 pixels) and eye-tracking data of 31 subjects that free-viewed the
images. The images are subdivided into 5 categories and were selected from the
McGill calibrated color image database [34]. Furthermore, we use the data set
by Judd et al. (see [19]), which is also known as MIT data set and is the largest
publicly available data set. It consists of 1003 images (varying resolution and
aspect ratio) and eye-tracking data of 15 viewers.

Algorithms: We evaluate the following spectral saliency methods3: spectral
residual (SR) [12], pure Fourier transform aka. spectral whitening (PFT) [4,13],
PFT at multiple scales (ΔPFT) [1], pure quaternion Fourier transform (PQFT)
3 Please note that our reference implementations are publicly available and free (BSD

License) to allow for fair benchmarking and evaluation by other authors in the future.
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[4,13], DCT signature (DCT) [2], and quaternion DCT signature (QDCT) [3]. We
mark algorithms that use multiple scales with a preceding Δ (imagine a stylized
image pyramid). To serve as a reference, we use the following algorithms4 as
baselines: the Itti and Koch model [22], graph-based visual saliency (GBVS) [24],
context-aware saliency (CAS) [9, 10], attention using information maximization
[18], and Judd’s model [19].

We evaluate how well the proposed algorithms perform for all color spaces that
have been applied in the closely related literature, i.e.: red-green-blue (RGB)
(see, e.g., [2, 12]), CIELAB (Lab) (see [2]), intensity and red-green/blue-yellow
color opponents (ICP) (see [4, 13]), and YUV which consists of the luma Y and
the two chrominance components U and V (see [5]).

ΔPQFT, EigenPQFT, ΔEigenPQFT, EigenSR, ΔEigenSR, and ΔQDCT are
methods that are first introduced and evaluated in this paper. Except for the
PQFT in combination with YUV that was proposed by Bian et al . [5], the
influence of the quaternion component weight has not been evaluated for any
quaternion-based algorithm.

Evaluation Measure: We follow the evaluation procedure described by Hou
et al . [2] and use the center-bias corrected area under the receiver operating
characteristic curve as performance measure. As has been shown in prior art
(see, e.g., [33]), the human gaze is often biased toward the center of an image.
To remove this bias (see [2] and [35]), we define a positive and a negative sample
set of eye fixation points for each image. The positive sample set contains the
fixation points of all subjects on that image. The negative sample set contains
the union of all eye fixation points across all images from the same data set,
but excluding the samples of the positive sample set. Each saliency map can be
thresholded and the resulting binarized (saliency) map can be considered to be
a binary classifier that tries to separate positive and negative samples. Thus, for
each threshold, the true positive rate is the proportion of the positive samples
that fall in the positive region of the binarized (saliency) map. Analogously, the
false positive rate can be calculated by using the negative sample set. Sweeping
over all thresholds leads to the receiver operating characteristic (ROC) curves.
The area under the ROC curves is a widely used compact measure for the ability
of the saliency map to predict human eye fixations. Chance would lead to an AUC
of 0.5, values < 0.5 indicate a negative correlation, and values > 0.5 indicate a
positive correlation (perfect prediction is 1.0).

4.2 Experimental Results and Discussion

We kept the image resolution fixed at 64 × 48 pixels in the evaluation, because
in preparatory pilot experiments this resolution has constantly shown to provide
very good results on all data sets and is the resolution most widely used in the
4 When available, we used the publicly available reference implementation from the

authors. For the Itti and Koch model we used the implementation by Harel [24], which
achieved a better performance than the iLab Neuromorphic Vision Toolkit (iNVT).
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Fig. 3. Example of the influence of quaternion color component weights on the AUC
performance for QDCT, EigenPQFT, EigenSR, and PQFT on the Toronto data set.
Using the default quaternion transformation axis η = (i + j + k)/

√
3.

literature (see, e.g., [2,3]). For multiscale approaches 64×48 pixels is consequently
the base resolution. For the Gaussian filtering of the saliency maps, we use the
fast recursive filter implementation by Geusebroek et al . [36].

The achievable performance depends substantially on the data set, see Tab. 1.
We can rank the data sets by the maximum area under the ROC curve that
spectral algorithms achieved and obtain the following descending order: Toronto,
Judd, and Kootstra. This order can most likely be explained with the different
characteristics of the images in each data set. Two image categories are dominant
within the Toronto data set: street scenes and objects. Furthermore, the images
have relatively similar characteristics. The Judd data set contains many images
from two categories: images that depict landscapes and images that show people.
The second category is problematic for low-level approaches that do not consider
higher-level influences on visual attention such as, e.g., the presence of people
and faces in images. This also is the most important aspect why Judd’s model
excels on this data set. The Kootstra data set is the data set with the highest
data variability. It contains five image categories, close-up as well as landscape
images, and images with and without a strong photographer bias.

RGB is the color space with the worst performance. While Lab provides the
best performance on the Toronto data set, it is outperformed by YUV and
ICOPP on the Kootstra and Judd data set. Since YUV is the best color model
on the Kootstra and Judd data set and is close to the performance of Lab on
the Toronto data set, we advise the use of the YUV color space.

Within each color space and across all data sets the performance ranking of
the algorithms is relatively stable, see Tab. 1. We can observe that with naive
parameters the performance of the quaternion-based approaches may be lower
than the performance of their real-valued counterparts. The extent of this effect
depends on the color space as well as on the algorithm. For example, for QDCT
this effect does not exist on the RGB and ICOPP color spaces and for Lab only on
the Kootstra data set. However, over all data sets this effect is most apparent for
the YUV color space. But, the YUV color space is also the color space that profits
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Table 1. Area under the receiver-operator characteristic curve (ROC AUC) of the
evaluated algorithms (0.5 is chance level, > 0.5 indicates positive correlation, and an
AUC of 1.0 represents perfect prediction). In the default configuration, the algorithms
use a uniform color component weight (except for the approach by Bian et al ., which
is denoted as PQFT/Bian), and the uniform transform axis η = (i + j + k)/

√
3. In the

optimized configuration, we use appropriate quaternion component weights and non-
standard axes. The overall optimal quaternion component weight vectors are roughly
[0.5 1 1 0]T, [0.2 1 1 0]T, and [0.8 1 1 0]T for Lab, YUV, and ICOPP, respectively. The
best overall performance can be achieved with a smoothing filter standard deviation (σs

and σM for single-scale and multiscale, respectively) of roughly 0.039 (image widths).
The optimal axis depends on the algorithm as well as on the color space. But, interest-
ingly, for RGB the most reliable axis is in fact the “gray line”, see Sec. 3.3. In general,
the influence of the quaternion FFT and DCT transformation axis is secondary to
the influence of the quaternion component weights. But, a badly chosen quaternion
transformation axis can substantially degrade the performance.

Area under the Receiver Operating Characteristic curve (mean)
Toronto Kootstra Judd

Method Lab YUV ICP RGB Lab YUV ICP RGB Lab YUV ICP RGB
Weighted Color Space and Non-Standard Axis

ΔQDCT .7201 .7188 .7174 .7091 .6104 .6125 .6110 .6007 .6589 .6751 .6712 .6622
QDCT .7195 .7170 .7158 .7066 .6085 .6119 .6106 .5994 .6528 .6656 .6623 .6552
ΔEigenPQFT .7183 .7160 .7144 .7035 .6053 .6082 .6064 .5963 .6527 .6658 .6617 .6559
EigenPQFT .7180 .7137 .7122 .7006 .6058 .6073 .6063 .5934 .6483 .6611 .6568 .6493
ΔEigenSR .7175 .7153 .7133 .7014 .6050 .6077 .6056 .5941 .6508 .6649 .6603 .6534
EigenSR .7162 .7129 .7112 .6990 .6038 .6068 .6044 .5912 .6467 .6601 .6554 .6470
ΔPQFT .7085 .6969 .6927 .6930 .5943 .5994 .5922 .5868 .6467 .6503 .6429 .6468
PQFT .7042 .6881 .6826 .6891 .5930 .5970 .5913 .5861 .6404 .6416 .6379 .6398
PQFT/Bian .7035 .6880 .6817 .6884 .5928 .5961 .5911 .5861 .6404 .6411 .6375 .6396

Uniform Color Space Weights and Standard Axis
ΔQDCT .7191 .7107 .7070 .7088 .6050 .6036 .6078 .6002 .6539 .6648 .6618 .6620
QDCT .7180 .7079 .7039 .7056 .6036 .6005 .6079 .5987 .6517 .6572 .6552 .6551
ΔEigenPQFT .7148 .7030 .7024 .7026 .6005 .5963 .6045 .5959 .6490 .6530 .6548 .6556
EigenPQFT .7141 .7006 .6982 .7006 .5984 .5939 .6023 .5934 .6461 .6496 .6518 .6491
ΔEigenSR .7142 .7135 .7006 .7013 .6003 .5951 .6028 .5937 .6477 .6504 .6534 .6531
EigenSR .7132 .6998 .6969 .6988 .5975 .5930 .6007 .5909 .6448 .6486 .6502 .6466
ΔPQFT .7022 .6925 .6868 .6927 .5803 .5826 .5877 .5850 .6431 .6441 .6380 .6465
PQFT .6974 .6858 .6796 .6884 .5788 .5808 .5860 .5846 .6368 .6368 .6271 .6396

Non-Quaternion Spectral Baseline Algorithms
DCT .7137 .7131 .7014 .6941 .6052 .6089 .6049 .5907 .6465 .6604 .6556 .6461
ΔPFT .7177 .7170 .7079 .7014 .6072 .6107 .6084 .5945 .6502 .6601 .6583 .6523
PFT .7140 .7120 .7025 .6958 .6057 .6079 .6058 .5908 .6445 .6590 .6572 .6446
SR .7156 .7144 .7051 .6983 .6059 .6090 .6061 .5916 .6462 .6599 .6573 .6461

Baseline Algorithms (algorithm-specific feature spaces)
CAS .6921 .6034 .6622
AIM .6986 .5749 .6662
Judd .6847 .5793 .7696
GBVS .6703 .5791 .6539
Itti .6492 .5672 .6433
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most from non-uniform quaternion component weights with an optimal weight
vector around [0.2 1 1 0]T, which indicates that the unweighted influence of the
luminance component is too high. When weighted appropriately, as mentioned
before, we achieve the overall best results using the YUV color space.

The influence of quaternion component weights is substantial, see Tab. 1, and
depends on the color space. As discussed it is most important for the YUV color
space. However, it is also substantial for Lab and ICOPP. Most importantly, the
best weights are relatively constant over all data sets. Accordingly, we advise the
use of the following weight vectors [0.5 1 1 0]T, [0.2 1 1 0]T, and [0.8 1 1 0]T for
Lab, YUV, and ICOPP, respectively. In general, the influence of the quaternion
transformation axis is secondary to the influence of the quaternion component
weights. However, a badly chosen axis can significantly degrade the performance.

The influence of multiple scales varies depending on the data set. For the
Toronto data set the influence is small, which can be explained by the fact
that the resolution of 64 × 48 pixels is nearly optimal for this data set (see [2]).
On the Kootstra data set the influence is also relatively small, which may be due
to the heterogeneous image data. The highest influence of multiple scales can be
seen on the Judd data set (e.g., compare ΔQDCT with QDCT).

We achieve the best single-scale as well as multiscale performance with the
quaternion DCT approach. With respect to their overall performance we can
rank the algorithms as follows: QDCT, EigenPQFT, EigenSR, and PQFT. With
the exception of Judd’s model on the Judd data set (discussed earlier), quaternion-
based spectral approaches and especially QDCT are able to outperform the base-
line methods on all three data sets. Furthermore, the proposed EigenPQFT is a
substantial improvement over Guo’s PQFT and is the 2nd best quaternion-based
approach. It is also able to achieve a better performance than the low-level base-
line algorithms on all three data sets. In consequence, using quaternion-based
saliency detection, quaternion component weights and multiple scales, we are
able to improve the state-of-the-art in predicting human gaze points.

The spectral approaches inherit the O(N log2N) arithmetic complexity of the
discrete fast Fourier transform and in practice also benefit from highly optimized
fast Fourier implementations. Thus, without going into any detail, the (quater-
nion) FFT- and DCT-based models that we evaluated can be implemented to
operate in less than one millisecond (single-scale) on an off the shelf PC (Intel
Core i5 @ 3GHz). This is an important aspect for practical applications and a
fraction of the computational requirements of most other approaches such as,
e.g., Judd (more than 30,000× slower on Judd’s data set), CAS (more than
40,000× slower), and AIM (more than 100,000× slower).

5 Conclusion

We analyzed quaternion-based spectral saliency approaches which use the
quaternion Fourier or cosine spectrum to calculate the visual saliency. Using
the Toronto, Kootstra and Judd eye-tracking data sets, we are able to show the
suitability of these approaches to predict human gaze in images and demon-
strated the influence of multiple scales, color space weights, and quaternion



128 B. Schauerte and R. Stiefelhagen

transformation axes. We integrated these aspects and presented a consistent
and comprehensive evaluation of spectral saliency models for predicting human
eye fixations. We were able to achieve the best results for low-level approaches
(i.e., without explicitly modeling the influence of higher level aspects such as,
e.g., faces) on all three data sets in terms of the area under the receiver-operator
characteristic curve.

In our opinion, the most important future work for spectral saliency detection
would be to define an appropriate color/feature space. As can be seen in the
results the color space has an important influence, but color space weighting can
only be seen as an intermediate step toward a more appropriate feature space.
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