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Abstract. This study proposes the novel dilated divergence scale-space
representation for multidimensional curve-like image structure analysis.
In the proposed framework, image structures are modeled as curves with
arbitrary thickness. The dilated divergence analyzes the structure bound-
aries along the curve normal space in a multi-scale fashion. The dilated
divergence based detection is formulated so as to 1) sustain the distur-
bance introduced by neighboring objects, 2) recognize the curve normal
and tangent spaces. The latter enables the innovative formulation of
structure eccentricity analysis and curve tangent space-based structure
motion analysis, which have been scarcely investigated in literature. The
proposed method is validated using 2D, 3D and 4D images. The struc-
ture principal direction estimation accuracies, structure scale detection
accuracies and detection stabilities are quantified and compared against
two scale-space approaches, showing a competitive performance of the
proposed approach, under the disturbance introduced by image noise
and neighboring objects. Moreover, as an application example employ-
ing the dilated divergence detection responses, an automated approach
is tailored for spinal cord centerline extraction. The proposed method is
shown to be versatile to well suit a wide range of applications.

1 Introduction

Scale-space theory [1,2,3,4,5,6,7,8,9] has been actively studied for decades for the
recognition and detection of blob-like, curvilinear and planar local image struc-
tures. The conventional scale-space detection is performed by invoking a diffusion
process for the analysis of an image signal. The duration of the diffusion process
implicitly defines the detection scale. In this regard, scale-space approaches are
mainly designed to manipulate the diffusion tensor or post-process the resul-
tant image of the diffusion process to perform detection. During the analysis
at a particular scale-level, undersized image details and structures are generally
suppressed. Nonetheless, the intensity variation in the vicinity of structures is
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possibly independent to the structure. For instance, the widths of the separation
between bones and the attached soft tissue in medical images are small and do
not scale according to the sizes of the adjacent interested objects. These narrow
object separations can be annihilated at a coarse detection level for recognizing
large objects. In addition, for eccentric curves, such as ellipsoid or elliptical curvi-
linear structures, the disagreement of object scales along different orientations
is unconsidered in the aforementioned conventional scale-space techniques.

In this study, a dilated divergence based scale-space framework is proposed.
It is formulated to precisely capture thin edges of large structure and simulta-
neously avoid the disturbance introduced by other closely positioned objects.
The proposed method is designed to handle curves in multi-dimensional images.
The curve structures such as spherical, curvilinear, and planar or some volu-
metric structures can be generally modeled as curves with arbitrary thickness1.
Along the curve tangent space, intensity changes of the curves are minimal, while
abrupt intensity changes are observed across the structure boundary along the
curve normal space. The proposed method is devised to capture these abrupt
intensity changes. Object scales are estimated according to the responses ac-
quired in various scales. Furthermore, identifying the curve normal and tangent
spaces enables the analysis of structure eccentricity to recognize the structure
geometry, and the analysis of structure motion based on spatial-temporal curve
tangent space.

Distinct to the linear scale-space methods [1,3,6,8,9], the proposed method
considers fine image details for recognizing large structures. It is non-diffusion
based and hereby utilizes no expensive iterative computation as most of the non-
linear scale-space methods [2,4,5,7] require. At each detection scale, the detection
responses are acquired as a set of linear image filtering responses. It well handles
the curve eccentricity and is also helpful for low level curve motion estimation.
It is beneficial to a wide range of image processing application, such as road (1D
curves in 2D images) extraction, intracranial vein or spinal cord (eccentric 1D
curves in 3D images) segmentation, and coronary artery or trachea motion (2D
curves in 4D images) analysis.

2 Dilated Divergence

The divergence of a vector field f(x) is defined as

div(f (x)) ≡ |δC(x)|−1 lim
C(x)→0

∫
δC(x)

f(x+ y) · da, (1)

where C(x) is an infinitesimal region centered at x, y is the position vector
inside C, da is the outward normal of the region surface and its magnitude is
the infinitesimal area on δC. The divergence operator falls into the category
of second order derivatives operation. The scale-space methods in this category

1 E.g. blob-like, curvilinear and planar structures are zero-dimensional curves, one-
dimensional curves and two-dimensional curves respectively.
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mainly serve the detection of curve structures based on diffusion based image
smoothing, such as curvilinear structure analysis [7,9,10].

The dilated divergence of f is defined as Dr(f ) = −|δSr|−1 ∫
δSr

f ·da, where
Sr is a n-ball of radius r and n is the dimensionality of f . The sign of the
operator is reverted in order that bright structures produce positive responses.
For simplicity of discussion, the position vector x is omitted hereafter. Distinct
to the diffusion based scale-space approaches, the detection scale of the proposed
framework is governed by the detection radius r.

The above dilated divergence is general to process any vector field f in any
dimension. In this study, the image gradient is employed to form the dilated di-
vergence descriptor Dr(∇I). Employing the image gradient, this descriptor aims
at capturing information about the intensity changes occurring across object
boundaries. The descriptor is designed to convey a strong detection response at
the center of a curve structure, when the hypersphere radius coincides with the
structure semi-thickness. This situation implies that the boundary of the curve
structure touches the hypersurface, where the image gradient at the contact po-
sitions is aligned with da and Sr is centered at the center of the object. For the
hypersurfaces of other concentric hyperspheres associated with different radii,
dilated divergence produces low or no responses. It is because undersized hyper-
sphere cannot reach the object boundary while when a hypersurface overshoots
the object boundary, da is not parallel to the image gradient that penalizes the
response.

2.1 Anisotropic Dilated Divergence

Distinct to 0D curves which yield significant intensity variations along all di-
rections, the higher-dimensional curves exhibit low or no intensity changes in
one or more directions. Detection of these structures requires an orientation
sensitive descriptor. Given an arbitrary detection direction ν̂, an anisotropic di-
lated divergence is obtained as Dr((∇I · ν̂)ν̂). On the one hand, a well adjusted
detection direction helps selectively capture intensity changes along the curve
normal directions. On the other hand, through inspecting the anisotropic di-
lated divergence responses along various directions, structure orientations are
computed. The anisotropy of this descriptor subsequently enables the detection
of object scales along different principal directions, thereby yielding the analysis
of structure eccentricity. By generalized Stroke’s theorem, the anisotropic dilated
divergence operator is rewritten as,

Dr((∇I · ν̂)ν̂) = ν̂T
[

1

|δSr|

∫
Sr

H(I)dv

]
ν̂, (2)

where H is the Hessian matrix of the image. This equation allows the anisotropic
dilated divergence responses to be synthesized based on tensor 1

|δSr|
∫
Sr

H(I)dv.

Denoting this tensor by T r(I), it can be computed efficiently by applying the
Fourier transform,

T r(I) = −
4Γ (n+1

2 )

r
n
2 π

n−3
2

F−1
(
F(I)||ω||−n

2 ωωTBn
2
(2πr||ω||)

)
, (3)
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Fig. 1. (a-d) The anisotropic dilated divergence obtained based on a 2-D dirac image
function δ, j = 0, r = 16 and σ = 2. (a, b) The diagonal elements of T r,j that are
equivalent of the responses of Dr((∇δ · ν̂)ν̂) where ν̂ is the horizontal direction in (a),
and the vertical direction in (b). (c) The image of the off-diagonal elements of T r,j(δ).
(d) The image of Tr(T r,j(δ)), which is equivalent to the sum of the images shown in (a)
and (b). (e, f) Different responses obtained at the center of a 1D curve with elliptical
cross-section (major radius=64 unit-length) in a 3D image.

where F and F−1 are respectively the multidimensional Fourier transform and
inverse Fourier transform operators, ω is the frequency domain position vector in
cycle-per-unit-length, Γ is the Gamma function and Bk is the kth order Bessel
function of the first kind. The tensor based computation allows an analytical
form estimation of the most contributive detection direction, i.e.

argmax
ν̂

|Dr((∇I · ν̂)ν̂)| = argmax
ν̂

|ν̂T T r(I)ν̂|.

This optimization procedure results in an eigen-decomposition at each local po-
sition. In which, the most contributive detection directions are the eigenvectors
of T r(I) associated with the largest absolute value of the eigenvalues.

2.2 Multi-scale Detection and Scale Selection

For curve analysis, the dilated divergence response is induced from the inter-
secting space between the hypersuface and object boundaries. In discrete image
analysis, the intersection is an n dimensional space. The dilated divergence re-
sponses are normalized according to the hypervolume of the intersection. Denote
σ is the voxel-length of an image, the image gradient can be regarded as piecewise
constant within an interval of σ. From this perspective, the scale normalization
is elaborated in Appendix A.

Meanwhile, applying the band-unlimited dilated divergence operator to the
band-limited discrete signal causes aliasing artifacts. This is overcome by a Gaus-
sian smoothing with a scale factor equal to σ in the dilated divergence operation.
With the Gaussian smoothing and the curve dimensionality based scale normal-
ization, the final anisotropic dilated divergence tensor is calculated as,

T r,j =−
(

r√
2rσ − σ2

)j 4Γ (n+1
2

)

r
n
2 π

n−3
2

F−1
(
F(I)e−2πσ2||ω||2 ||ω||−

n
2 ωωTBn

2
(2πr||ω||)

)
,

(4)
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where j is the dimensionality of the curve, which is defined beforehand depend-
ing on the types of the desired curves. This tensor is symmetric and has n × n
entries which contains

∑n
i=1 i independent channels. For n = 2, Figs. 1a-c illus-

trate the three independent channels of T r,j and Fig. 1d exemplifies the trace of
T r,j . As multiplication in the frequency domain is equivalent to convolution in
the spatial domain, T r,j(δ) can be regarded as a group of image filters capturing
the intensity changes occurring at the interested scale defined by r. The scale-
normalized dilated divergence is capable of performing multi-scale analysis using
a set of pre-defined radius set. The maximum radius and radius-interval of the
radius set are respectively suggested to be the semi-thickness of the largest target
structure in the image, and 0.5σ according to the Nyquist rate. The best detec-
tion scale at each local position is chosen by comparing the responses obtained
across different scales.

During the scale selection, at each scale, the dilated divergence responses
influenced by descending and ascending intensity edges are assessed separately.
In the n eigenvalues of T r,j, the positive and negative ones are produced by
descending and ascending intensity transitions respectively. Denote the largest-
magnitude eigenvalue and its eigenvector at the scale r are γr1 and ϕ̂r1,

λr1 = max

{
max

δ∈{σ,1.5σ,2σ...r}
(
γδ1

)
, 0

}
+min

{
min

δ∈{σ,1.5σ,2σ...r}
(
γδ1

)
, 0

}
. (5)

This measure is formulated using the competition between the largest ascending
intensity change and the descending counterparts. It penalizes the responses
obtained from oversized scales, of which the detection hyperspheres overshoot the
object boundary and reach adjacent one exhibiting opposite intensity changes.
The optimal detection scale is selected based on the strongest detection responses
obtained over multiple scales up to the maximum detectable scale to be R,

r1 = min

(
arg max

r∈{1.5σ,2σ,2.5σ...R}
|λr1|

)
, ψ1 = λr11 , ê1 = ϕ̂r11 . (6)

The scale selection omits the smallest scale σ because at which the competition
is always disabled. This selection procedure searches for a scale where the re-
sponse magnitude first attains its maxima. It gives strongest responses at object
centers, while the signs of the detection responses are reverted across the object
boundaries analogous to other second derivatives based approaches.

2.3 Eccentricity Analysis and Structure Orientation

The curves which exhibit a 2 or higher dimensional normal space can possess
eccentric intensity patterns (e.g. 2D ellipse and tubular structures with ellipti-
cal cross-sections) and yield different object scales along various directions. In
eccentricity analysis, the procedures to extract detection responses, the optimal
detection orientation and scale selection are reiterated at all principal directions
of the curve normal space to capture the possibly disagreed object scales along
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different direction. Given the analysis of the first m−1 basis of the normal space
is completed, the mth basis is acquired by performing eigen-decomposition on,

(Qm)TT r,jQm, (7)

where Qm = IDTY −
∑m−1
i=1 êi(êi)

T , and IDTY is an identity matrix. This
produces at most n − m non-zeros eigenvalues. Denote the largest-magnitude
eigenvalue and the corresponding eigenvector are γrm and ϕ̂rm respectively, the
response at scale r is obtained based on the competition between the descending
and ascending intensity transition responses, analogous to Eq. 5,

λrm = max

{
max

δ∈{σ,1.5σ,2σ...r}
(
γδm

)
, 0

}
+min

{
min

δ∈{σ,1.5σ,2σ...r}
(
γδm

)
, 0

}
. (8)

Saddle points on the intensity surface at which the detection responses possess
different signs are not the focus of this study. The scale selection of eccentricity
analysis prefers the responses showing the same response sign as ψ1. The desired
scale level rm, response ψm and basis êm are,

rm = min

(
arg max

r∈{1.5σ,2σ,2.5σ...R}
(sign(ψ1)λ

r
m)

)
, ψm = λrmm , êm = ϕ̂rmm . (9)

An example of the responses and scales delivered by this eccentricity analysis is
given in Figs. 1e and f. Finally, the curve tangent space is the orientations along
which the object possesses minimal intensity variation. The orthogonal basis of
the curve tangent space is the non-singular eigenvectors of IDTY−

∑n−j
i=1 êi(êi)

T .

2.4 Spatial-temporal Curve Based Spatial Curve Motion Estimation

Structure motions can be assessed based on image sequences. In an nD image
sequence, a moving jD curve yields a (j + 1)D curve in the (n + 1)D spatial-
temporal image. This interpretation allows an intuitive estimation of the low
level curve motion without prior segmentation of the structures. The low level
curve motion assumes that the curve structure center translation across adjacent
time frame is small compared to the semi-thickness of the curve. As such, the
structure motion fields are piecewise linear inside the structure and the geometry
of a local segment of the curve is unaltered across adjacent time frames. This
suits the tracking of deformation induced curve movement, such as extracting
the motion of the aorta in image sequences [11].

To formulate the spatial-temporal curve detection, the spatial-temporal voxel
length along the time dimension is suggested to be less than or equal to 2σ.Define
a (n + 1)-by-n matrix C of which the first n rows form an identity matrix and
the (n+ 1)th row is zero, and let û1, û2, ..., ûj the curve tangent space orthogo-
nal basis. In the spatial-temporal image, the (j +1)D curve tangent space basis
are Cû1,Cû2, ...,Cûj and an additional basis denoted as τ̂ . Given the piecewise
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linear assumption, after the time elapsed by Δt, the curve tangent space basis
can be expressed as ûi +Δt 1

τ̂ ·T̂
(
CT τ̂

)
and thus, the spatial curve motion is,

1

τ̂ · T̂
CT τ̂ . (10)

3 Evaluation and Discussion

The proposed method is evaluated based on various criteria in three synthetic
and one clinical experiments. The synthetic experiments employ 2D, 3D and
4D images respectively, followed by spinal cord centerline extraction experiment
which involves 15 clinical image volumes. In the synthetic images, the inter-
ested objects have an intensity value 1 and the background intensity is zero.
The images are Gaussian-smoothed with a scale factor of 1 unit-length prior
to analysis. The proposed method is compared against two approaches, multi-
dimensional γ−Normalized Hessian method [3,9] and the three-dimensional opti-
mally oriented flux method [12], referred to as HESSIAN and OOF respectively
hereafter. These methods, including the proposed method are stemmed from
second order techniques. Nonetheless, distinct from the proposed method, HES-
SIAN omits image details during the analysis of sizable structures, while OOF
is developed only for non-eccentric curves embedded in 3D images. The image
features extracted from HESSIAN and OOF resemble those from the proposed
method in three aspects: they are low level detection approaches that convey
general-purpose features for possible subsequent application-specific analysis;
they provide scalar ”curveness” detection responses and corresponding principal
directions; and they are grounded on multi-scale analysis. The scale sets used
by the optimally oriented flux and the proposed method are identical, from 1
unit-length to 20 unit-length, with a 0.5 unit-length interval. They both employ
a pre-Gaussian smoothing with a 1 unit length scale factor (i.e. σ = 1 unit-length
for the proposed method). The scale set used by the Hessian method contains
the same number of scales and dynamic range, but with a fixed geometric step.

3.1 Multi-scale Detection and Scale Selection

The first experiment concerns a single-layer spiral (Fig. 2a). The semi-width of
this structure gradually increases from 9 unit-length at the inner end to 10.125
unit-length at the outer end. Two sections of this structure are closely located
and their boundaries are in a distance of 1.5 unit-length apart. Fig. 2b demon-
strates the response computed from this structure. The anisotropic dilated diver-
gence produces positive responses inside the structure and forms a ridge at the
structure centerline. It returns negative responses in the vicinity of the structure.
The response pattern inside the structure at the optimal scale is consistent re-
gardless of the curve width change and the disturbance the adjacent segment. In
Figs. 2c and d, the response profiles along two different positions of the structure
are visualized. Inside the structure, the response ridges show a bifurcation-like
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– The profile shown in (c)
– The profile shown in (d)

(a) (b) (c) (d)

Fig. 2. A 1D curve in a 2D image with a unit pixel size. (a) The original image. (b) The
detection response image ψ1. (c, d) The intermediate multi-scale responses λr

1 obtained
at the highlighted positions shown in (a). The dotted lines illustrate the selected scales
based on Eq. 6 which coincide with the ground-truth scale (object semi-width).

(a)

— Proposed method — Proposed method (noiseless single-layer spiral)

— Hessian method — Hessian method (noiseless single-layer spiral)
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Fig. 3. An experiment of a noise corrupted spiral (1D curve) in a 2D image with a unit
pixel size. The radius of the spiral gradually increases from 2 to 10 unit-length. (a)
The Gaussian noise (0.2 standard deviation) corrupted spiral. (b) The estimated scales
based on the proposed method and the Hessian method. (c) The detection responses
based on the proposed method and the Hessian method.

pattern over various scales. The response ridge pair at undersized scales is in-
duced from the boundaries at two opposite sides of the structure. The ridge pair
intersects at the structure center when the scale coincides to the structure semi-
width and yield a sharp response peak. In Fig. 2c, the response peak sustains in
the oversized scales when no neighboring object interfere the detection. When
a neighboring object presents, the responses reported at oversized scales are at-
tenuated as evidenced in Fig. 2d. These attenuated responses are consequently
eliminated in the scale selection procedures (Eqs. 6 and 9).

Furthermore, a comparison between the proposed method and HESSIAN con-
cerning the multi-scale detection performance is conducted. It involves two set
of images - the noise corrupted spiral image (Fig. 3a) and seven noiseless single-
layer spiral images. The noiseless single-layer spirals are acquired by partitioning
the noiseless spiral into seven single-layer spirals. The study is performed along
the spiral centerline in the noisy spiral image and the corresponding single-layer
spiral images. Each single-layer spiral is further revolved outward by an an-
gular distance of π

8 radian (see Fig. 2a for the outermost single-layer spiral).
The extended portions of the spirals serve as neighboring objects which possi-
bly interfere the detection. These two sets of images offer three distinct testing
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conditions - noisy and with neighboring objects, noiseless and without neigh-
boring objects, and noiseless and with neighboring objects. For HESSIAN, the
largest-magnitude eigenvalue is used as the response at each scale and the final
responses are chosen according to the maximummagnitude responses over scales.
The resultant scales of HESSIAN shows large discrepancies to the ground-truth
in various cases (compare the purple and red curves against the black curve,
and see the corresponding root-mean-square errors (RMSEs) in Fig. 3b). In the
noiseless single-layer spiral tests (the purple curve in Fig. 3b), HESSIAN un-
derestimates structure scales at the beginning of each layer. It is because the
further revolved portion of the spiral interferes the detection. These underesti-
mated scales resemble the scales estimated from the noisy spiral (see the overlaps
between the red curve and the lower envelop of the purple curve in Fig. 3b).

On the contrary, the scales estimated by the proposed method are accurate
(see the largely overlapped cyan, teal and black curves and the small RMSEs in
Fig. 3b) regardless of the presence of image noise and closely located objects. This
figure illustrates that the proposed method exhibits superior performance over
the Hessian method for scale estimation when neighboring objects exist. Similar
observation is found in the detection response values shown in Fig. 3c. The
proposed method delivers consistent and similar detection responses among the
noisy spiral and the noiseless single-layer spiral cases. When neighboring object
does not exist, HESSIAN gives a consistent responses despite of the scale changes
(see the upper envelop of the purple curve in Fig. 3c), analogous to the proposed
method. The response values of both methods are slightly reduced at the thinnest
part of the spiral because of the high structure curvature. Nonetheless, when
neighboring objects exist, HESSIAN responses drop significantly (the red curve
and the lower envelop of the purple curve in Fig. 3c).

3.2 Eccentricity Analysis and Structure Orientation

The eccentricity analysis experiment focuses on the accuracies of estimating
object principal axes and the object scales along the axes. It employs a noise
corrupted 3D spiral with elliptical cross-section (Figs. 4a and b). The proposed
method is compared against HESSIAN and OOF. This image has an anisotropic
voxel size that commonly exists in practical 3D image scans. Sinc interpolation
[9] is applied for HESSIAN and OOF method to produce isotropic voxels. The
responses of these methods at each scale level are the arithmetic mean of the
two largest magnitude eigenvalues [9,12]. Their optimal scales are chosen as the
maximum magnitude response over scales. At the optimal scales, the structure
orientations, major and minor axes are acquired as the eigenvectors associated
with the smallest, medium and largest magnitude eigenvalues respectively.

Along the centerline of the spiral, there are three local orientations - the
structure orientation, the major and minor axes. In addition, two object scales
- major and minor radii are involved. In Fig. 4c, the accuracies of the esti-
mated orientations of various axes based on different methods are shown. In
all cases, the proposed method yields significantly lower discrepancies to the
ground-truth than HESSIAN and OOF do. Theoretically, the eigenvalue ratios
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Fig. 4. The experiment on an anisotropic voxel-sized volume. The spiral major and
minor radii are 2 and 1 unit-length at the bottom and gradually increase to 8 and 4
at the top. The separation between layers is 1 unit-length. (a) The isosurface of the
spiral and its neighboring objects. (b) The z = 70 slice of the image volume corrupted
by additive Gaussian noise with a 0.3 standard deviation. (c) The mean acute angular
discrepancies (in radian) of different local axes measured along the centerline. (d) The
acute angular discrepancies (in radian) of the structure orientation estimated along the
centerline. (e) The optimal scales extracted by different methods.

of HESSIAN hint the structure eccentricity [13]. However, the disturbance intro-
duced by neighboring objects prohibits the eigenvalues from being extracted at
the desired scale. In addition, the circular cross-section assumption imposed by
OOF deviates from the elliptical cross-section of this spiral. Their estimation of
the structure orientation, the major and minor axes are therefore less accurate.
Fig. 4d depicts the profiles of the angular discrepancies of structure orientation
estimation based on different approaches. The large discrepancy cases of HES-
SIAN and OOF are observed in the entire spiral. It suggests that the estimation
error is independent to object scales. In Fig. 4e, the estimated object scales for
the spiral cross-section are presented. The scales estimated by HESSIAN and
OOF fluctuate in between the major and minor radii. In contrast, the proposed
method precisely estimates both minor and major radii and shows promising
accuracies with RMSEs less than one scale step (0.5 unit-length).
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3.3 Spatial-temporal Curve Based Spatial Curve Motion Estimation

In this experiment, a randomly deformed spiral (Fig. 5a) is used for studying the
accuracy of the structure centerline motion estimated by the spatial-temporal
curve analysis (Eq. 10). During the experiment, Frame-1 and Frame-7 are repli-
cated twice and padded to the volumetric sequence to handle the wrap-around
effect of the frequency domain based computation of Eq. 7. Based on Eq. 10,
the centerline motion of the Frames-2, 3, 4, 5, 6 are retrieved. The motion vec-
tor in the Frame-t is employed to predict the centerline position based on the
given position in the Frame-(t − 1). Denote q, Δq, c(q), m(q) are time, time
interval between adjacent frames, ground-truth centerline positions and the es-
timated motions at c(q). The predicted positions at the time q +Δq are given
as c(q−Δq)+2Δqm(q). The Euclidean distances (error) between the predicted
positions and the ground-truth positions are visualized in Fig. 5b. To help assess
the prediction results, Euclidean distances of the ground-truth centerline move-
ment is shown. Towards the end of the sequence, more cases of high curvature
positions appear and reduce the accuracy of the estimated curve motion.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7
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Fig. 5. Motion analysis experiment based on a Gaussian noise (with a 0.2 standard
deviation) corrupted, randomly deformed 3D spiral. The major and minor radii are
2 and 1 unit-length at the bottom of the spiral and gradually increase to 8 and 4 at
the top of the spiral. The spatial-temporal voxel size is 0.5 × 0.5 × 1 × 2 unit. (a)
The isosurface of the deforming spiral in different time frames. In Frames-3, 5 and 7,
the spiral is deformed by randomly (according to the uniform distribution) offsetting
64 control points in a range of [−0.15×image-length, 0.15×image-length] along each
dimension. These control point positions are linearly interpolated for Frames-2, 4 and
6. Voxel intensity is determined by using bicubic interpolation. (b) The discrepancies
between the estimated position and the true position of the spiral centerlines, numbers
are shown as ”Average centerline displacement compared to the ground-truth”.
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3.4 Application Example

In the final experiment, 15 volumetric T2-weighted magnetic resonance images
(T2-MRI) from the cervical and thoracic spinal regions are employed (Fig. 6).
In T2-MRIs, the cord is comprised of a grey center (grey matter) and a dark
border (white matter). The spinal cord is surrounded by a bright layer (cerebro-
spinal fluid), which exhibits varying thickness, and voxel intensity significantly
drops and fluctuates outside this layer. In addition, the intensity contrast across
the spinal cord boundary declines towards the bottom slice of an image due
to dispersal of the low intensity white matter. Thus, the intensity pattern of
the spinal cord is inconsistent, thereby leading to disturbance for spinal cord
analysis. As such, spinal cord analysis is extremely challenging.

In our dataset, the spinal cords are approximately vertically aligned 1D ec-
centric curves (elliptical curvilinear structures) which traverse every slice of the
volumetric images, having minor and major radii ranged from 6 to 15 unit-
length. In this experiment, the dilated divergence measures ψ1 and ψ2 are aggre-
gated as −min(ψ1, 0)−min(ψ2, 0) to contribute a speed field for shortest-path
extraction [14]. The multi-scale selection results based on the sum of the two
largest-magnitude eigenvalues of HESSIAN [9] and OOF [12] are employed as

x Ground-truth x Proposed method x OOF x HESSIAN

xx xx x
x

x
x
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image
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image
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Fig. 6. Five centerline extraction examples. (a, b) Axial views of regions-of-interest of
two cases, the original images and the speed fields computed by different methods. (c)
The quantitative centerline extraction result, and three examples of extracted center-
lines based on different methods. Errors are measured as the average distance between
extracted centerline point samples and the closest ground-truth centerline points.
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the speed field for centerline extraction comparison. Subsequent to the construc-
tion of the speed fields, two additional slices filled with an infinity speed value are
padded beyond the top and bottom slices of the speed fields. The shortest-path
source and destination are positioned at the corners of these two slices respec-
tively, constituting a fully automatic spinal cord centerline extraction algorithm.
This experiment concerns two aspects, handling eccentric curves surrounded by
structure possessing inconsistent intensity pattern; and finding the path corre-
sponding to the target curve in a large volumetric image (512×512×200 voxels,
voxelsize 1× 1× 2.1157 unit, 1 unit-length = 0.4727mm in this experiment), i.e.
reporting distinguishable and strong responses inside the curves as compared
to those inside irrelevant structures. Spinal cord-specific knowledge is excluded
from the formulation of the speed fields of all methods. Therefore, the exper-
imental results generally reflect the performance of the examined methods on
handling different eccentric curves.

In Figs. 6a and b, the proposed method gives strong detection responses at
the centerline of the spinal cord, while OOF and HESSIAN supply strong re-
sponses close to the boundary of the cord and lead to incorrect extraction. The
significant HESSIAN response difference between the cases shown in Figs. 6a
and b suggests that HESSIAN is extremely sensitive to the intensity fluctuation
outside the curve. Meanwhile, OOF is solely developed for circular curvilinear
1D curve. It reports strong responses in multiple positions on the curve cross-
section (Figs. 6a and b, OOF) and results in erroneous centerline extraction.
In addition, the largely overlapped cyan and red lines and crosses in Figs. 6a-c
illustrate the accurate centerlines extracted by the proposed method. On the
contrary, OOF and HESSIAN result in large disagreements in the extraction
result. Furthermore, the extracted centerlines of OOF and HESSIAN are driven
away from the spinal cords towards the tracking source points located at the
origin. It manifests that OOF and HESSIAN cannot supply distinguishable re-
sponses inside curve structures. Finally, the centerline extraction errors shown in
Fig. 6c further evidences the very accurate and stable centerline extraction based
on the proposed method, compared to those based on OOF and HESSIAN.

4 Conclusion

This paper proposes the novel dilated divergence based scale-space represen-
tation for curve analysis. The proposed scale-space framework is non-diffusion
based. Its computation is grounded on linear filters and therefore, it is efficient
and parallelizable. The proposed method is studied and validated in three as-
pects - scale selection, eccentricity analysis and spatial-temporal curve analysis.
In particular, the dilated divergence addresses analysis of structure eccentricity
and spatial-temporal curve tangent space which have been scarcely studied.

In the experiments, the proposed method is shown to be capable of sustaining
the disturbance introduced by closely positioned objects. It outperforms conven-
tional scale-space approaches in the comparison. The formulation of the proposed
framework is general to serve a wide range of applications. Investigation of the
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dilated divergence framework for detection of saddle points on intensity surface
for corner and junction recognition, structure centerline extraction, 0D curve
based-salient feature detection, curve segmentation and curve motion tracking,
particularly for high dimensional curves are the future direction of this research.
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A Appendix - Scale Normalization

Given a 1D curve in a 2D image where ν is the curve 1D-normal space, σ is the
edge diffuseness, which is analyzed by a circular region (Sr in Eq. 2) represented
as y =

√
R2 − x2, σ < R and image gradient has a unit magnitude within the

edge and is null anywhere else, the anisotropic dilated divergence response is,

1

πR

∫ R

R−σ

x

R

∫ √
R2−x2

−√
R2−x2

dydx =
2

πR

√
2Rσ − σ2.

An appropriate normalization is πR
2

√
2Rσ − σ2. Without loss of general-

ity, define an nD image patch J(x), which consists of a jD curve cen-
tered at the local position x. Denote û1, ..., ûj and ûj+1, ..., ûn are the or-
thogonal basis of the curve normal space and the curve tangent space
respectively. Eq. 2, the dilated divergence for J can be re-written as,

ν̂T
[

1
|δSr |

∫
Sr

H(J)
(∫

Sr
dû1...dûj

)
d ˆj + 11...dûn

]
ν̂. The inner integral is inde-

pendent to the image term (analogous to
∫√

R2−x2

−√
R2−x2 dy in the above 2D image

example). The nested integrals along the tangent space become a multiplicative
factor to the outer integrals operated along the normal space. As such, given ν̂
is one of the principal directions in the curve normal space and r equals to the
structure semi-thickness along ν̂,

Dr((∇I · ν̂)ν̂) ∝
(

r√
2rσ − σ2

)j
. (11)
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