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Abstract. Image-to-Class (I2C) distance has demonstrated its effec-
tiveness for object recognition in several single-label datasets. However,
for the multi-label problem, where an image may contain several regions
belonging to different classes, this distance may not work well since it
cannot discriminate local features from different regions in the test image
and all local features have to be counted in the I2C distance calculation.
In this paper, we propose to use Class-to-Image (C2I) distance and show
that this distance performs better than I2C distance for multi-label im-
age classification. However, since the number of local features in a class
is huge compared to that in an image, the calculation of C2I distance is
much more expensive than I2C distance. Moreover, the label information
of training images can be used to help select relevant local features for
each class and further improve the recognition performance. Therefore,
to make C2I distance faster and perform better, we propose an optimiza-
tion algorithm using L1-norm regularization and large margin constraint
to learn the C2I distance, which will not only reduce the number of local
features in the class feature set, but also improve the performance of C2I
distance due to the use of label information. Experiments on MSRC, Pas-
cal VOC and MirFlickr datasets show that our method can significantly
speed up the C2I distance calculation, while achieves better recognition
performance than the original C2I distance and other related methods
for multi-labeled datasets.

1 Introduction

Recently Image-to-Class (I2C) distance [1] is proposed to overcome the informa-
tion loss during feature quantization process in traditional bag-of-words (BOW)
model and has demonstrated its effectiveness for object recognition in several
single-label datasets. In the I2C distance, a feature set for each class is con-
structed by gathering all local features in the training images belonging to this
class, while the test image is also represented by a set of densely sampled local
features. The I2C distance from a test image to a certain class is defined as the
sum of Euclidean distance between every local feature in the test image and its
Nearest Neighbor (NN) in the class. In [1], they have shown I2C distance per-
forms better than bag-of-words model in several single-label datasets, though
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the whole feature set must be kept during the test phase and therefore increases
the memory usage.

(a) Image-To-Class Distance (b) Class-To-Image Distance

Image

Class

Fig. 1. The illustration of I2C distance (a) and C2I distance (b). Red and black rectan-
gles represent the local features located at the region of “car” and “street” respectively.
The NN search directions are represented by arrows from one side to the other side.
Red and black arrows represent the NN match between same region and different re-
gions respectively. Though region “street” may not be useful in the “car” class, the
NN match from region “street” to “car” in I2C distance (a) cannot be avoided, while
in C2I distance (b) it can be avoided.

However, the I2C distance may not perform well in a multi-label problem.
In this problem, a test image may contain several regions belonging to different
classes. Therefore the resulting feature set for this test image contains local
features belonging to multiple different classes and all local features have to
be counted in the I2C distance calculation, since it is unknown which local
feature belongs to which class before the I2C distance calculation. Consider an
example test image in Figure 1 (a), which mainly contains two regions: “car”
and “street”. When measuring the distance to each class, local features in every
region of the test image are counted in the final I2C distance. In this example,
local features located at “street” region are also counted in the I2C distance to
class “car”, while distances between these features and their NNs in the class
“car” (marked as black arrows) are useless and will make the I2C distance to
class “car” inaccurate. Such problem also exists when measuring the distance
between this image and class “street”. Since it is even more difficult to first
detect the region of “car” and “street” in this test image before the I2C distance
calculation, the I2C distance may not be suitable for the multi-label problem.

In this paper, we propose to use Class-to-Image (C2I) distance to measure the
distance between image and class for the multi-label problem.We could assume all
local features in each class are relevant to this class, either by manually removing
irrelevant local features or using some feature selection technologies. Therefore we
define the C2I distance as an inverse version of the I2C distance: the Euclidean
distance between each local feature in the class feature set and its NN in the feature
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set of the test image is summed up to form its C2I distance. Such an inversion can
solve the problem that I2C distance encounters in the multi-label problem. We
explain that by taking the same test image as example. Figure 1 (b) shows the
formation of C2I distance from class “car” to the test image. The feature set of
class “car” is constructed during the training phase and we should assume most of
its elements are located at the regions of “car”. If a test image contains a car as in
this example, the local features in class “car” will have better opportunities to find
their NNs located at the regions of car in this test image and thus a smaller C2I
distance than other images without a car. Irrelevant local features in the region
of other objects such as “street” in this test image is less likely to be matched as
NN features from class “car” and therefore less likely to influence themeasurement
accuracy of C2I distance compared to I2C distance.

There are two problems in C2I distance. First, the success of C2I distance in
the previous example relies on the assumption that most of the local features in
the feature set of class “car” are located at the regions of “car”. Since the training
images also contain multiple regions, we do not know which local features belong
to class “car” and which do not. Manually labeling every region to its class label
can solve this problem but this is very expensive and most datasets only provide
a list of class labels for each training image without pixel-wise or bounding
box label information. Second, the number of local features in a class is usually
much more than that in an image, resulting in a time-consuming C2I distance
calculation when compared to I2C distance.

To solve these problems, in this work, we propose an optimization algorithm
using large margin constraint and L1-norm regularization to learn the C2I dis-
tance. The feature set of each class is first constructed by gathering all local
features in the training images belonging to this class, same as that in I2C dis-
tance. Then we associate a weight to every local feature to distinguish the differ-
ent importance of each local feature, and formulate an optimization problem to
learn these weights. We try to use the label information to select relevant local
features based on their weights and reduce the size of feature set by L1-norm
regularization. Therefore, the objective function of our optimization problem is
comprised of two parts: the error term and the regularization term. In the error
term, label information is utilized by constraining in each triplet that the C2I
distance to the relevant image should be smaller than that to irrelevant image
with a large margin. In the regularization term, we use L1-norm on the weight
vector to generate a sparse solution as in [2,3]. To solve this optimization prob-
lem, we also propose an efficient gradient descent based solver, which can update
the weights and converge to the global optimum quickly. After the learning pro-
cedure, most of the weights get zero values due to the L1-norm regularization
and those local features with zero weight can be removed from the feature set,
while the remaining local features with non-zero weight are preserved to make up
the feature set. This reduction not only speeds up the C2I distance calculation,
but also decreases the memory usage. Using this optimization algorithm, we are
able to get better recognition performance with the learned C2I distance even
though the size of the resulting feature set is much smaller.
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Local features related
to Class “car”

Fig. 2. The example of C2I distance from training feature set of class “car” to some
test images containing a car object

We show in Figure 2 the example of our learned C2I distance from the train-
ing feature set of the class “car” for consistent description, to some test images
containing the car. Local features are initially densely sampled from training
images having a label of class “car”. After the learning algorithm of our op-
timization framework, only those local features with non-zero weight (Marked
with red rectangles in the Figure 2) are preserved to make up the final feature
set. The local features of test image are also densely sampled to form the image
feature set. To evaluate the C2I distance from the class “car” to each test image,
every local feature in class “car” needs to find its NN in the feature set of each
test image (Those local features matched as NN features in the test images are
also marked with red rectangles in Figure 2, and we can see that most of them
are correctly located at the region of car). The sum of Euclidean distance from
every local feature in class “car” to its NN feature in a test image multiplied by
the learned weight is defined as the C2I distance to this image. We summarize
the main contributions of this paper as follows:

– We propose to use C2I distance for the multi-label problem and show that
this distance performs better than I2C distance when test images contain
multiple class labels.

– We propose an optimization algorithm using large margin constraint and
L1-norm regularization to learn the C2I distance. With this optimization
algorithm, we are able to get better recognition performance, while the size
of feature set is significantly reduced.

– To solve this optimization problem, we propose an efficient gradient descent
based solver, which can update the weight and converge to global optimum
quickly.



234 Z. Wang, S. Gao, and L.-T. Chia

We organize the rest of this paper as follows. Section 2 briefly reviews previous
research related to our work. We describe the objective function and learning al-
gorithm in Section 3, and evaluate its performance compared with other methods
in Section 4. Finally, we conclude this paper in Section 5.

2 Related Work

Recent research tries to avoid the information loss in feature quantization pro-
cess, some methods measure the distance from set to set directly and some use
other strategies [4]. The former one can be roughly divided into three types:
The first one is I2I distance as proposed by Frome et al. [5,6], which shows good
performance in image classification and retrieval. However, its recognition per-
formance in image classification is not comparable to the second type of I2C
distance proposed in [1], which achieves state-of-the-art performance in several
single-label datasets. The effectiveness of I2C distance attracts many later re-
search work on it. For example, Wang et al. [7,8] learn a per-class Mahalanobis
distance metric and weighted I2C distance for improving the recognition per-
formance, Behmo et al. [9] learn an optimal NBNN by hinge-loss minimization
to further enhance its generalization ability, Tuytelaars et al. [10] propose a
kernelized version of I2C distance as complimentary to standard bag-of-words
based kernels, McCann and Lowe [11] modify the formulation of I2C distance
and propose a local NBNN method, which can not only speed up the distance
calculation, but also improve the recognition performance.

However, I2C distance is not suitable for the multi-label problem since it
cannot distinguish local features from different regions in a test image. This
problem can be solved by the third type of C2I distance as shown in previous
section. Wang et al. [12,13] first use this distance for multi-instance learning
problems. However, they do not discuss the advantage of C2I distance over
I2C distance for the multi-label problem. The reduction of local features for
C2I distance calculation is also ignored, which is an important issue to make
C2I distance practical since the number of local features in a class is much more
than that in an image. Our work addresses this problem and uses L1-norm reg-
ularization to learn a sparse solution, so that the irrelevant local features receive
a zero weight and can be removed directly from the feature set, which can not
only accelerate the distance calculation, but also reduce the memory usage dur-
ing the test phase. Our work is similar to the weight learning method in [8].
Both methods use large margin constraint while [8] use L2-norm regularization
but we use L1-norm. This is also the difference between C2I and I2C distances.
In I2C distance, it is not necessary to use L1-norm regularization since no local
feature in each class requires to be removed before the NN search. Other similar
methods of using large margin or weighting model for the multi-label problem
includes [14,15].
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3 Learning Class-to-Image Distance

We briefly describe the notations used in this paper before describing the ob-
jective function of our optimization problem. For a class Ci, all the local fea-
tures extracted from the training images belonging to this class are gathered
together to make up the initial feature set of this class, and are denoted as
FCi = {fCi1, fCi2, . . . , fCimi}, where mi represents the total number of local fea-
tures in Ci and each local feature is denoted as fCik ∈ Rd, ∀k ∈ {1, . . . ,mi}. Simi-
larly, the feature set of an imageXj is denoted as FXj = {fXj1, fXj2, . . . , fXjmj},
where mj represents the total number of local features in image Xj . To calcu-
late the C2I distance from class Ci to image Xj , every local feature fCik in

FCi needs to find its NN feature in FXj , which we denote as f
Xj

Cik
. The sum of

Euclidean distance between every local feature fCik in FCi and its NN feature

f
Xj

Cik
is defined as the C2I distance from class Ci to image Xj and is denoted as

Dist(Ci, Xj):

Dist(Ci, Xj) =

mi∑

k=1

‖ fCik − f
Xj

Cik
‖2 (1)

where
f
Xj

Cik
= argmin

t={1,...,mj}
‖ fCik − fXj ,t ‖2 (2)

We associate a weight WCik to every local feature fCik in class Ci to distinguish
the different importance of each local feature and learn a weighted C2I distance.
All the weights can be put into a long vectorW and a distance vectorD(Ci, Xj) is
constructed as well with the same dimension to W , so the weighted C2I distance
is formulated as:

WT ·D(Ci, Xj) =

mi∑

k=1

WCik· ‖ fCik − f
Xj

Cik
‖2 (3)

The objective function of our optimization problem is composed of two terms: the
regularization term and the error term. In the error term, we form the triplet
constraints by selecting one class with one relevant image and one irrelevant
image for each triplet and constrain that the C2I distance from class Ci to the
relevant image Xp should be smaller than the distance to the irrelevant image
Xn with a large margin:

WT ·D(Ci, Xn)−WT ·D(Ci, Xp) ≥ 1− ξipn (4)

where ξipn is a slack variable in order to allow soft-margin. With these triplet
constraints, the learned weights are able to discriminate the different importance
of local features in the class. Higher important local features are likely to get
higher value weight and less important local features will get smaller weight,
while irrelevant local features will get zero value weight and are removed from
the feature set.

In the regularization term, if we impose L2-norm regularization on the weight
vector W like standard SVM framework, the sparseness of the weight vector
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cannot be guaranteed. Since the number of local features in a class is usually very
large, the sparsity of the learned weight is very important to make C2I distance
practical. Therefore, in this paper we use L1-norm regularization in the objective
function and try to learn a more sparse weight vector. The objective function
of our optimization framework with L1-norm regularization is formulated as
follows:

min
W

O(W ) = ||W ||1 + C
∑

i,p,n

ξipn (5)

s.t.∀ i, p, n : WT · (D(Ci, Xn)−D(Ci, Xp)) ≥ 1− ξipn

ξipn ≥ 0

∀ k : W (k) ≥ 0

where C is used to control the trade-off between regularization term and error
term. With this objective function, less important and irrelevant local features
will be more likely to receive a zero weight and be removed from the feature
set, making the size of final feature set smaller and therefore accelerating the
C2I distance calculation. To solve this new optimization problem, we propose a
gradient descend based method, which is able to effectively and efficiently update
the weight vector.

Since we guarantee the non-negativeness of weight vector, the L1-norm ||W ||1
can be reformulated as WT · e where e is a constant vector with all entries to be
1 and same dimension to W , and this optimization problem is convex w.r.t. W .
Therefore, the gradient descend based method can be used to iteratively update
the weight vector and is guaranteed to converge to the global optimum. In each
iteration, the weight vector is updated by taking a small step along the negative
gradient direction to reduce the objective function and then negative components
are truncated to zero to ensure the non-negativeness. To calculate the gradient of
the objective function over the weight vector W , we first rewrite this objective
function by replacing the slack variable ξipn using the triplet constraints. To
simplify, we denote D(Ci, Xn)−D(Ci, Xp) by Xipn. Since

ξipn = 0 if WT ·Xipn ≥ 1 (6)

and

ξipn > 0 if WT ·Xipn < 1 (7)

and WT ·Xipn + ξipn = 1

at each iteration t, we can first scan over all triplets to find a set of unsatisfied
triplets where ξipn > 0. We denote N t as the set of triplet indices such that
(i, p, n) ∈ N t if ξipn > 0. Then the objective function at tth iteration can be
rewritten as:

O(W ) = WT · e + C
∑

(i,p,n)∈Nt

(1−WT ·Xipn) (8)
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The gradient G(W t) at tth iteration can be calculated by taking the derivative
of the above objective function w.r.t. W :

G(W t) = e− C · (eT ·
∑

(i,p,n)∈Nt

Xipn) (9)

Therefore, the weight vector W t at tth iteration is calculated as:

W t = W t−1 − α ·G(W t) (10)

where α is the step size, which is tuned during the iterations using the method
in [16]. To satisfy the non-negativeness, all negative components of the weight
vector are truncated to zero after each updating. Since the whole optimization
problem is convex w.r.t. W , it is guaranteed to converge to the global optimum
after iterative updating.

The main computation bottleneck in this solving method is the calculation
of N t in each iteration t, since every triplet constraint needs to be checked by

calculating W tT · Xipn (If W tT · Xipn < 1, then ξipn > 0 and (i, p, n) ∈ N t).
This calculation is time-consuming as the dimension of W and Xipn depends on
the initial feature set size and is usually very huge, and the number of triplets
is also large. To accelerate this calculation, we can keep an active set for triplets
that have been violating the constraints and scanning only the triplets in the
active set during each iteration. The full scanning over all triplets is only made
at the beginning of the algorithm and every 10-20 iterations. Meanwhile, since
the weight vector is usually very sparse after a few iterations, the calculation of

W tT ·Xipn can be accelerated as only the non-negative components are involved
in the calculation. The whole work flow of updating the weight vector for each
class is summarized in Algorithm 1.

Algorithm 1. The Algorithm for Solving Our Optimization Problem

Input: step size α, parameter C and pre-calculated data Xipn

W 0 := e {Initialize the weight vector with all entries equal to 1}
Set t := 0
repeat

Compute N t by checking each error term ξipn
Update G(W t):

G(W t) := e− C · (eT ·∑(i,p,n)∈Nt Xipn)

Update W t:
W t := W t−1 − α ·G(W t)

Truncate negative components of W t to 0
Calculate new objective function
t := t+ 1

until Objective function converged
Output: Weight Vector W
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4 Experiment

In this section, We evaluate the performance of our method and compare it with
other related methods on three multi-label image datasets: MSRC 1, Pascal VOC
2011 [17] and MirFlickr [18].

4.1 Dataset Setup

We briefly describe the setup for each of the three datasets as follows:
MSRC dataset contains 591 images and 21 class labels, and the average

number of class labels per image is 2.46. We use 10-fold cross validation on this
dataset. Specifically, the dataset is divided into 10 parts and each time 9 parts
are used for training and the rest one is used for test, and the average result
over 10 runs is reported.

VOC2011 dataset is a much larger dataset, which contains a total of 28,952
images annotated into 20 classes. However, the majority of images in this dataset
are single-labeled, on average about 1.44 labels per image. To better evaluate
our method for the multi-label problem, we select a subset where most of images
have more than one label. Specifically, We randomly select images with multiple
labels such that each class contains at least 50 training and 50 test images, which
leads to 1777 images used in our experiment and the average number of class
labels per image is increased to 2.12. This random selection is conducted 5 times
and the average result is reported.

MirFlickr dataset consists of 25000 images downloaded from Flickr.com.
There are 1386 tags which occur in at least 20 images. We use the most common
30 content based tags as suggested by [18] in our experiment and select at least
100 image for each class, resulting in average 2.47 class labels per image. The
selected image collections are equally divided into the training and test sets and
we run 5 random partitions to report the average result.

In each dataset, we use SIFT feature [19] as our descriptor densely sampled
at every 10 pixels to make up the feature set for training and test images. We
evaluate our method of Learning the C2I distance with weight learned using
L1-norm regularization, which is denoted as “LC2I-L1”, and compare it to:

– “LC2I-L1-FS”, which only uses the local features with non-zero weight to
calculate the C2I distance but does not multiply with the learned weight, to
show the performance of our Feature Selection strategy;

– “C2I”, the original C2I distance summed up by Euclidean distance from all
local features without feature selection and weighting;

– “C2I-DVW-FS”, C2I distance with the Feature Selection method of se-
lecting Discriminative Visual Words used in [20];

– “LC2I-L2”, the Learned C2I distance with weight learned using L2-norm
regularization, which is solved using the method in [5].

1 http://research.microsoft.com/en-us/projects/objectclassrecognition/
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We also compare with other related methods:

– “I2C”, the original NBNN method in [1];
– “LI2C”, the Learning of weighted I2C distance [8];
– “Local NBNN”, an improved I2C distance [11];
– “NBNN Kernel” [10], I2C distance as input of One-vs-All SVM with

histogram intersection kernel
– “BoW”, Bag-of-Words model [21] for image representation with One-vs-All

SVM of histogram intersection kernel.

We use mean average precision (MAP) to evaluate and compare different meth-
ods in our experiment as in [17]. All the NN searches involved in C2I and I2C
distance calculations are approximated by kd-tree implemented by VLFeat [22],
with 5 kd-trees in each feature set and a maximum of 100 comparisons for each
NN search, which does not show much difference on the final MAP compared to
that of accurate NN search.

4.2 Experiment Result

Table 1 shows the result of different methods on the three datasets, and we can
see that the proposed method, “LC2I-L1” significantly outperforms all other
methods. In particular, the improvement over the original C2I distance can be
divided into two parts: feature selection by removing local features with zero
value weight and the discrimination of different importance for the preserved
local features by their associated non-zero weight.

The improvement over the first one of feature selection can be seen by com-
paring the performance of “LC2I-L1-FS” to “C2I”. “LC2I-L1-FS” only uses the
weight to select relevant local features without weighting in C2I distance calcula-
tion, and its improvement over the original C2I distance shows that this feature
selection is able to remove the irrelevant local features that deteriorate the per-
formance of C2I distance. These irrelevant local features have to be put into the
initial feature set of each relevant class because the training images may also

Table 1. Performance comparison using MAP

Method MSRC VOC2011 MirFlickr

LC2I-L1 0.6379 ± 0.0020 0.3522 ± 0.0036 0.2561 ± 0.0029

LC2I-L1-FS 0.5679 ± 0.0037 0.3238 ± 0.0035 0.2306 ± 0.0061
C2I 0.3438 ± 0.0007 0.2180 ± 0.0016 0.1591 ± 0.0014

C2I-DVW-FS [20] 0.3387 ± 0.0041 0.2035 ± 0.0007 0.1534 ± 0.0012
LC2I-L2 [5] 0.5864 ± 0.0010 0.3016 ± 0.0001 0.2078 ± 0.0009

I2C (NBNN) [1] 0.3549 ± 0.0016 0.1508 ± 0.0011 0.1548 ± 0.0023
LI2C [8] 0.5231 ± 0.0017 0.1690 ± 0.0003 0.1619 ± 0.0016

Local NBNN [11] 0.6019 ± 0.0052 0.2669 ± 0.0018 0.1979 ± 0.0021
NBNN Kernel [10] 0.6054 ± 0.0033 0.2693 ± 0.0041 0.1782 ± 0.0009

BoW [21] 0.6110 ± 0.0024 0.3096 ± 0.0014 0.2299 ± 0.0033
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belong to multiple classes but the information that which region in the image
belongs to which class is not provided since this pixel-wise or bounding box hu-
man labeling is expensive. Due to the inclusion of these irrelevant local features,
the original C2I distance does not show better performance compared to I2C
distance on MSRC and MirFlickr datasets as shown in Table 1. However, with
the feature selection to remove these irrelevant local features, the performance
of C2I distance can be largely improved, as comparing “LC2I-L1-FS” to “C2I”.

The improvement over the second part of non-zero weighting can be recognized
by comparing the performance of “LC2I-L1” to “LC2I-L1-FS”. This improve-
ment shows the learned weight not only provides a feature selection strategy
to reduce the size of feature set and remove irrelevant local features, but also
discriminates the different importance of the preserved local features in the fi-
nal feature set by their associated non-zero weight to further improve the C2I
distance, which validates the effectiveness of our learning algorithm.

Compared to I2C distance related methods, our learned C2I distance is able to
achieve better recognition performance under the multi-label problem. Though
I2C distance of non-learning methods like NBNN and Local NBNN may benefit
from a larger feature set sampled from denser grids, their performances are still
worse than our method. To verify this, we have tried sampling at every 4 pixels
and find Local NBNN is only slightly improved to 0.2846 in VOC2011 dataset.
It should be noted the improvement over I2C distance methods is based on the
multi-label problem. When more images are single-labeled, e.g. in the full VOC
dataset, such large improvement is not expected. Due to the computation limi-
tation of our working machine for the heavy NN search in distance calculation,
we only try class “aeroplane”, “bicycle”, “car”, “chair” and “person” for the full
VOC 2007 dataset, and find the performance of our method is worse than I2C
distance (0.502 vs 0.649 [23]), while in our multi-label subset version of these
classes, our method significantly outperform NBNN (0.467 vs 0.247).

We also compare the performance of learning weight using L1-norm regular-
ization to L2-norm. By comparing “LC2I-L1” to “LC2I-L2” in Table 1, we can
see that even using L1-norm to learn a sparser solution, the recognition perfor-
mance is still better than using L2-norm, which again shows the effectiveness
of our learning algorithm. Meanwhile, the sparsity of the resulting feature set
learned by L1-norm is much lower than L2-norm. This is shown in Table 2,
where the sparsity is represented by the percentage of the number of preserved
local features compared to the original feature set. With L1-norm regularization,
only 3.35% local features are preserved in MSRC dataset and in VOC2011 and
MirFlickr datasets, this is reduced to only 0.26% and 0.31% respectively. This is
a much larger reduction on both computational cost of C2I distance calculation
and memory usage, since their complexities are linear to the size of class feature
set. To verify this reduction, we show in Table 3 the average running time of dis-
tance calculation for a test image over all classes and Table 2 shows the memory
usage for loading the training feature sets of all classes. All of the experiments
are running on a single core of Intel x86 Xeon CPU E7320@2.13GHz and
16GB memory.
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Table 2. sparsity comparison (Percentage of the number of local features compared
to the original feature set)

Method MSRC VOC2011 MirFlickr

LC2I-L1 3.35% ± 0.14 0.26% ± 0.01 0.31% ± 0.02

LC2I-L2 [5] 12.50% ± 0.10 5.86% ± 0.16 1.58% ± 0.32
C2I-DVW-FS [20] 18.45% ± 0.15 16.20% ± 0.09 16.85% ± 0.12

C2I,I2C [1] 100% 100% 100%

Table 3. running time comparison (second)

Method MSRC VOC2011 MirFlickr

LC2I-L1 0.61 ± 0.03 0.63 ± 0.05 0.61 ± 0.04

LC2I-L2 [5] 3.02 ± 0.22 5.64 ± 0.53 1.86 ± 0.15
C2I-DVW-FS [20] 9.12 ± 0.41 21.08 ± 1.53 22.20 ± 1.01

C2I 51.95 ± 1.07 132.88 ± 5.03 129.72 ± 3.05
I2C [1] 5.08 ± 0.13 7.44 ± 0.61 14.29 ± 0.33

Local NBNN [11] 1.18 ± 0.09 3.04 ± 0.22 3.57 ± 0.15

Table 4. memory usage comparison (MB)

Method MSRC VOC2011 MirFlickr

LC2I-L1 5.91 ± 0.04 6.12 ± 0.05 5.38 ± 0.08

LC2I-L2 [5] 31.19 ± 0.51 65.38 ± 2.44 20.34 ± 0.40
C2I-DVW-FS [20] 101.88 ± 1.49 240.25 ± 3.72 254.08 ± 4.13

C2I,I2C [1] 547.88 ± 3.26 1508.94 ± 10.28 1512.23 ± 15.11

Compared to I2C distance, the original C2I distance needs much more expen-
sive computational cost since the number of local features in a class is much more
than that in an image, while both methods need the same amount of memory
usage to store the whole feature sets of classes for distance calculation. How-
ever, with our learning method using L1-norm regularization, only a very small
number of local features are preserved in the final feature set for each class.
Therefore, the computational cost of our C2I distance can be even lower than
I2C distance, and the memory usage is greatly reduced. Even compared to Local
NBNN, which is the most efficient method in I2C distance computation so far,
our method still needs less running time for distance calculation.

The method of “C2I-DVW-FS” clusters the feature set of each class to 1000
visual words and selects the top 64 most discriminative visual words. Local
features belonging to these visual words are selected to make up the final feature
set for each class and used in C2I distance. However, the result in Table 1 and
Table 2 shows that its recognition performance is even worse than the original
C2I distance, probably because label information is not utilized in the clustering
and selection procedure. Therefore this method cannot distinguish relevant local
features used in C2I distance. Meanwhile, its sparsity is not as good as our
learning method. In summary, our learned C2I distance not only achieves better
recognition performance, but also greatly reduces the computational cost and
memory usage.
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4.3 The Influence of Parameter C

We also analyze the impact of the trade-off parameter C in the objective function
5. Table 5 shows the MAP and sparsity under different C values ranging from
10−3 to 101 on MSRC dataset. With the increase of C, the size of the feature
set is always increased, meaning more local features are preserved and more
computational cost and memory usage are required. This can be recognized as
the increase of C makes the objective function pay less emphasis on the sparsity
of the weight vector and therefore resulting in more local features preserved.
However, when C is increasing, the recognition performance is first increased
but then decreased, as a large value of C might put too much emphasis on the
error term to cause over-fitting. The best MAP is achieved when C is equal to
10−2 on MSRC dataset. If we further increase C after this peak point, both the
recognition performance and efficiency are getting worse.

Table 5. MAP and sparsity of our method over different C value on MSRC dataset

C MAP Sparsity

10−3 0.6027 ± 0.0031 1.73% ± 0.03
10−2 0.6379 ± 0.0020 3.35% ± 0.14
10−1 0.6054 ± 0.0007 8.71% ± 0.23
100 0.5727 ± 0.0020 14.97% ± 0.51
101 0.5669 ± 0.0007 20.55% ± 0.95

5 Conclusion

In this paper, we have discussed the drawback of I2C distance in classifying
multi-label images and proposed to use C2I distance for dealing with multi-
label image classification. To select relevant local features for each class and
speed up the C2I distance calculation, we associated a weight for each local
feature densely sampled from images, and proposed an optimization algorithm
using large margin constraint and L1-norm regularization to learn these weights.
We also proposed a gradient descend based solver to efficiently and effectively
update these weights in the learning procedure. Experiments on three multi-
label datasets have shown that our learning algorithm can not only improve the
performance of C2I distance and outperform other related methods, but also
significantly reduce the number of local features in the class feature set and
greatly improve the efficiency.

However, it should be noted such performance and efficiency improvements
in the test phase is a trade-off of the additional training phase for learning the
C2I distance. The original C2I distance calculation in the training phase is com-
putation expensive since this is done before the learning procedure. Therefore,
when there are a large number of local features in the original feature set, an
initial local feature selection before the learning procedure may be required to
alleviate the computational cost of distance calculation in the training phase,
which would be a possible future direction.
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