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Abstract. Spatial pyramid matching (SPM) based pooling has been the
dominant choice for state-of-art image classification systems. In contrast,
we propose a novel object-centric spatial pooling (OCP) approach, follow-
ing the intuition that knowing the location of the object of interest can
be useful for image classification. OCP consists of two steps: (1) inferring
the location of the objects, and (2) using the location information to pool
foreground and background features separately to form the image-level
representation. Step (1) is particularly challenging in a typical classifica-
tion setting where precise object location annotations are not available
during training. To address this challenge, we propose a framework that
learns object detectors using only image-level class labels, or so-called
weak labels. We validate our approach on the challenging PASCAL07
dataset. Our learned detectors are comparable in accuracy with state-
of-the-art weakly supervised detection methods. More importantly, the
resulting OCP approach significantly outperforms SPM-based pooling in
image classification.

1 Introduction

Image object recognition has been a major research direction in computer vision.
Its goal is two-fold: deciding what objects are in an image (classification) and
where these objects are in the image (localization). Intuitively, if we know which
objects are present, determining their location should be easier; alternatively, if
we know where to look, recognizing the objects should be easier. Therefore, it is
natural to think of these two tasks jointly [1–9].

However, in practice, classification and localization are often treated sepa-
rately. Object localization is generally deemed as a harder problem than image
classification even when precise object location annotations are available during
training. In the purely image classification setting, it may be seen as a detour to
attempt to localize objects. As a result, current state-of-the-art image classifica-
tion systems don’t go through the trouble of inferring object location informa-
tion [10–14]. Most classification systems are based on spatial pyramid matching

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part II, LNCS 7573, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

{olga,feifeili}@cs.stanford.edu
ylin@nec-labs.com
yukai@baidu.com


2 O. Russakovsky et al.

Fig. 1. We present object-centric spatial pooling (OCP), a method which first local-
izes the object of interest and then pools foreground object features separately from
background features. In contrast, Spatial Pyramid Matching (SPM) based pooling [15]
(top), the most common spatial pooling method for object classification, results in in-
consistent image features when the object of interest (here, a car) appears in different
locations within images, making is more difficult to learn an appearance model of the
object. For the purpose of easy illustration, circles (yellow) denote object-related local
features, triangles (green) denote background-related local features, and the numbers
indicate the fraction of the respective local features in each pooling region.

(SPM) [15] which pools low-level image features over pre-defined coarse spatial
bins, with little effort to localize the objects [10–12].

This paper proposes a novel object-centric spatial pooling (OCP) approach
for image classification. In contrast to SPM pooling, OCP first infers the loca-
tion of the object of interest and then pools low level features separately in the
foreground and background to form the image-level representation. As shown
in Figure 1, if the location of the object of interest (a car in this case) is avail-
able, OCP tends to produce more consistent feature vectors than SPM pooling.
Therefore, object location information can be very useful for further pushing the
state-of-the-art performance of image classification.

Of course, the challenge for OCP is deriving accurate enough location
information for improving classification performance. If the derived location in-
formation is not sufficiently accurate, it can end up hurting classification accu-
racy. There is interesting previous work on learning object detectors using only
image-level class labels (or weak labels) [16, 17]. Although these methods yield
impressive localization results, they are formulated as detection tasks and have
not been shown to be helpful for improving image classification performance.
Methods such as [1–7] attempt to localize objects to improve image classifica-
tion accuracy but only demonstrate results on simple datasets such as subsets of
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Caltech101 classes. In contrast, we evaluate our proposed OCP method on the
highly cluttered PASCAL07 data [14], where we are able to localize objects with
accuracy comparable to state-of-the-art weakly supervised object localization
methods [16, 17] as well as to significantly improve image classification perfor-
mance. To the best of our knowledge, this paper is the first to use weakly su-
pervised object detection to improve image classification on PASCAL07, which
is considered a challenging object detection dataset even when bounding box
annotations are provided for training.

2 Related Work

Classification. Many state-of-the-art image classification systems follow the
popular image feature extraction procedure [10–12] shown in Figure 2. First,
for each image, low-level descriptors like DHOG [18] or LBP [19] are sampled
on a dense grid. They are then coded into higher dimensions through vector
quantization, local coordinate coding (LCC) [10] or sparse coding [12]. Finally
the coded vectors are pooled together, typically using SPM [15] pooling, to
form the image-level representation. Much research in image classification has
been focused on the former two steps, namely on different types of low-level
descriptors [18–20] and coding methods [10, 12, 21–23]. In this paper we focus
on the spatial pooling step, replacing the popular SPM with our object-centric
pooling.

Methods such as [1–7] use localization information learned in a weakly su-
pervised way to help boost classification accuracy by focusing on pooling low-
level object features without background features. However, most of them only
validate their approach on less cluttered and mostly centered datasets such as
subsets of Caltech101 categories, Oxford Flowers 17 dataset, etc. For example,
recently Feng et al. [7] presented a geometric pooling approach which resizes each
image to the same size and learns a class-specific weighting factor for each grid
position in an image. On the Caltech101 dataset, where most images are roughly
aligned and centered, this method greatly improves over the previous state-of-
the-art [10]. However, it has difficulty handling cluttered images like the ones of
PASCAL07 [14]. Further, Nguyen et al. [1] and Bilen et al. [2] explicitly mention
that some degree of context information (like road for cars) needs to be included
into the detected object bounding box in order to be useful for image classifi-
cation. This leads to very rough object localization even on simple datasets. In

Fig. 2. A popular image classification pipeline of state-of-the-art methods [10–12]. In
this paper we focus on the pooling step and propose an object-centric spatial pooling
approach which achieves superior classification accuracy compared to the SPM pooling.
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contrast, our work deals with high intra-class variability in object location and
our proposed generic object-centric spatial pooling approach yields both classi-
fication improvements as well as competitive object localization results on the
challenging PASCAL07 data.

If object location information is available during training, methods such as [24,
25] have been used to detect the object of interest, and [8, 9] showed how to
use the output of object detectors to boost classification performance. There
are two main differences compared our approach. First, we focus on the purely
classification setting where no annotations beyond image-level class labels are
available during training. Second, we learn a joint model for both localization and
classification instead of combining the scores of the two tasks as post-processing.

Weakly Supervised Localization. There is a large body of work on weakly
supervised object localization [16, 17, 26–28]. Most of these methods use HOG-
type low-level features [18] which are faster for detection but have been shown
to be inferior than bag-of-words models for classification [10, 25]. The current
state of the art is the work of Pandey and Lazebnik [17] which uses deformable
parts-based models [24] trained discriminatively in a weakly supervised fashion
for object localization. In contrast, our goal here is image classification (not
object localization) although we do utilize localization as an intermediate step.

3 Object-Centric Spatial Pooling (OCP) for Image
Classification

Let’s first use an empirical experiment to quantitatively see how object location
information can dramatically improve image classification performance. On the
PASCAL07 classification dataset [14], we trained two classifiers for each object
class: one classifier using features extracted from the full image, and the other
classifier using features extracted only from the provided tight bounding boxes
around the objects. We followed [10] in extracting image features and training
linear classifiers. Both classifiers were trained on the training set and tested on
the validation set. The former classifier (trained on full images) yielded 52.0%
mean average precision (mAP), whereas the latter classifier (trained and tested
on tight bounding boxes) achieved an astonishing 69.7% mAP. In comparison
the current state-of-the-art classification result with a single type of low-level
descriptor (which used a more involved coding method as well as significant
post-processing) [11] is just 59.2% mAP. Therefore, it is evident that learning
to properly localize the object in the image holds great promise for improving
classification accuracy.

Now, the challenge is deriving accurate enough location information to help
classification. Obviously, if the location information is not reliable enough, it
can easily end up hurting classification performance instead. Reliable localiza-
tion becomes very challenging on generic dataset like PASCAL07 [14] where
objects vary greatly in appearance and viewpoint, are often occluded, and ap-
pear in highly cluttered and unstructured scenes. In fact, most work on weakly
supervised localization uses simpler datasets [1, 2, 26–28]. Recently, Deselaers et
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al. [16] were the first to tackle PASCAL07. To simplify the problem, however,
they trained object class models separately for different viewpoints of objects.
We are interested in learning generic object detectors without any additional
annotations and evaluating classification performance on the original 20 object
classes. To the best of our knowledge we are the first to do so.

To this end, we introduce a novel framework of object-centric spatial pooling
(OCP) for image classification. OCP consists of two steps: (1) inferring the loca-
tion of the objects of interested; and (2) pooling low-level features from the fore-
ground and the background separately to form the image-level representation. In
order to infer the object locations, we propose an iterative procedure for learn-
ing object detectors from only image class labels (or weak labels). Very different
from existing methods for learning weakly supervised object detectors [16, 17],
our approach directly optimizes the classification objective function and uses
object detection as an intermediate step. This is described in Section 3.1. More
importantly, OCP enables feature sharing between classification and detection:
the resulting feature representation of OCP can be seen as both a bounding box
representation (for detection) and an image representation (for classification).
This is described in detail in Section 3.2. As we show in Section 4, such feature
sharing plays an essential role in improving classification performance.

3.1 Classification Formulation

We assume we are dealing with the binary image classification problem since
multi-class classification is often solved in practice by training one-versus-all
binary classifiers. Given N data pairs, {Ii, yi}Ni=1, where Ii is the ith image and
yi ∈ {+1,−1} is a binary label of the image, the SVM formulation for binary
image classification with OCP becomes

min
w,b

1

2
||w||2 + C

N∑

i

ξi (1)

s.t. yi max
B∈BB(i)

[
wTPB(Ii) + b

] ≥ 1− ξi (2)

ξi ≥ 0 ∀i (3)

where w is SVM weight vector, b is bias term, PB(Ii) is the image feature rep-
resentation of image Ii using OCP with given bounding box B, and BB(i) is the
collection of all bounding box windows within image Ii. BB(i) can be obtained
by either densely sampling sliding windows or by using salient regions [25]. We
do not require any ground truth localization information in this optimization.

Interestingly, the above formulation can also be viewed as multi-instance
learning (MIL) for object detection [1]. However, as in [1], the traditional MIL
formation often only uses the foreground for constructing the bounding box
features and discards the background information. This has its drawbacks in
both detection and classification. As a result, the method of [1] was not able
to accurately localize objects even on simpler datasets such as Caltech101; it
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tended to choose regions which were larger than the object of interest to encom-
pass contextual information for classification. We fix these drawbacks by using
a foreground-background representation, as described below. As a result, we are
able to localize objects on the significantly more challenging PASCAL07 [14]
with accuracy comparable to state-of-the-art weakly supervised object localiza-
tion methods [16, 17].

3.2 Foreground-Background Feature Representation

In the classification formulation in Eq. 3, the foreground-background feature
representation of OCP provides a natural mechanism for feature sharing be-
tween classification and detection. In fact, even for standalone detection and
classification, the foreground-background feature representation is advantageous
compared to traditional foreground-only feature representation.

Foreground-Background for Classification. The foreground-background
feature representation provides stronger classification performance than its
foreground-only counterpart. This is not surprising since the background pro-
vides strong scene context for classification [4, 29]. For example, for the class boat,
the surrounding water in the image may provide a strong clue that this image
contains a boat; similarly, seeing road at the bottom of an image can strongly in-
dicate that this image is likely about cars. Going back to the classifiers trained on
the tight bounding boxes as described at the beginning of Section 3, if we replace
the foreground-only feature representation with the foreground-background rep-
resentation, we further improve the classification mAP from 69.7% to 71.1%.
This highlights the fact that the foreground-background feature representation
carries important information for classification which may be missing in the
foreground-only representation. This is illustrated in Figure 3.

Foreground-Background for Detection. Object detectors trained with the
foreground-background features also tend to yield more accurate bounding boxes
during detection. Since the foreground and background models are learned
jointly, they will prevent the object appearance features from leaking into the
background, and context features from leaking into the foreground. This is illus-
trated in Figure 4. To validate the effectiveness of the foreground-background fea-
ture representation for detection, we also experimented on PASCAL07, training
fully supervised object detectors using the foreground-only and the foreground-
background feature representation respectively. It was no surprise that the

aeroplane boat chair diningtable horse sofa

Fig. 3. Example images which were misclassified using just the foreground representa-
tion but correctly classified when using the foreground-background representation
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Fig. 4. Bounding boxes bb1 and bb2 have a similar foreground-only feature represen-
tation, but they are very different under the foreground-background representation.
Here, the numbers denote the count of object-related descriptors. For bb1, parts of
object that leaked into the background will be greatly discounted by the background
model.

foreground-background feature representation yielded significantly better detec-
tion performance. Here we skip the details of the experiments for simplicity since
supervised detection is not the major focus of this paper. In Figure 6 in the ex-
perimental results section, however, we show the differences in detections made
with the foreground-only and the foreground-background model in our OCP
framework.

With the foreground-background representation of OCP, optimizing the for-
mulation in Eq. 3 can be seen as a simultaneous detection and classification
procedure. This is because the foreground-background representation can be
seen as both a bounding box representation (for detection) and an image-level
representation (for classification).

3.3 Optimization

Now that we have defined our objective and our foreground-background feature
representation, we discuss how to optimize this formulation. The optimization
in Eq. 1 is non-convex because of the maximization operation in the constraints,
thus we need to be careful during optimization to avoid local minima. In par-
ticular, since we are not given any localization information during training, our
optimization algorithm consists of an outer loop that bootstraps the background
region from the foreground and an inner loop that trains the apperance model.

Outer Loop: Bootstrapping Background Regions. In a purely classifica-
tion setting, no foreground and background annotations are provided initially.
We initialize the background region by cropping out a 16-pixel border of each
image. Then the outer loops bootstraps the background by gradually shrink-
ing the smallest bounding box considered in the bounding box search (BB(i)
in Eq. 1). Thus we begin localizing using large windows and iteratively allow
smaller and smaller windows as we learn more and more accurate models. As
the background region is allowed to grow, the algorithm learns more and more
accurate background models. If the algorithm goes too aggressively, it will end
up in bad local minima. For example, if the localization is so inaccurate that
many features from the object of interest appear in the background region, the
model would learn that objects features actually belong to the background. This
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would lead to bad classification models which are hard to correct in later itera-
tions. However, as long as such bad local minima are avoided, the specific rate of
shrinking the foreground region does not affect performance in our experiments.

Inner Loop: Learning the Appearance Model for Detection. Given the
current constraint on the background size, we need to learn the best object ap-
pearance model. This is done in two steps: (1) detection, where given the current
appearance model we find the best possible object location from positive images
(images that are known to contain the object of interest); and (2) classification,
where given the proposed bounding boxes from positive images as positive ex-
amples and a large sample of bounding boxes from negative images as negative
examples, we construct the bounding box representation using OCP and then
train a binary SVM classifier for discriminating the positive bounding boxes from
the negative bounding boxes. In contrast to more common treatments which
would need another loop to bootstrap the difficult negative bounding boxes and
iteratively improve the SVM model, here we get rid of this loop by solving an
SVM optimization directly with all (often millions) negative bounding boxes.

We make use of the candidate image regions proposed in an unsupervised fash-
ion by [25] to avoid both sampling too many negative windows for classification
and running sliding windows search for detection. Since the candidate bounding
boxes aim to achieve high recall rate (> 96%), we ended up with 1000∼3000
candidate bounding boxes per image. For PASCAL07, we have 5011 images in
the training and validation sets. Therefore, for each inner loop, we need to solve
for 20 binary SVMs with about 10 million data examples. Furthermore, our fea-
ture representation for OCP is very high-dimensional: we used a codebook of
8192 for LLC coding [10], pool the low-level features on the foreground region
using 1 × 1 and 3 × 3 SPM pooling regions [15], and separately pool all low-
level features features in the background, thus resulting in a feature vector of
dimension 8192 × 11 = 90112. Indeed, if we save all the feature vectors from
the 5011 images, this would require more than 700G of space. Most off-the-shelf
SVM solvers would not be able to handle such a large-scale problem. So, we
developed a stochastic gradient descent algorithm with averaging using a similar
idea to [30]. We were able to run an inner loop in 7∼8 hours and to finish the
training (inner look and outer loop) in about 3 days on a single machine.

4 Experiments

We validate our approach on the challenging PASCAL07 dataset [14], containing
5011 images for training and validation, and 4952 images for testing. This dataset
consists of 20 object categories, with object instances ocurring in a variety of
scales, locations and viewpoints.

Image Representation. For low-level features, we extract DHOG [18] features
with patch sizes 16 × 16, 25 × 25, 31 × 31 and 46 × 46. We then run Linear
Locality-Constrained (LLC) coding [10] using a codebook of size 8192 and 5
nearest neighbors. For the baseline representation, we pool the DHOG features
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using 1 × 1 and 3 × 3 SPM pooling regions [15] over the full image. Thus each
image is represented using a feature vector of dimension 8192 × 10 = 81920.
For our object-centric pooling, we use the same SPM representation but on the
foreground region and also pool over all low-level features in the background
separately, thus giving us a feature dimension of 8192× 11 = 90112.

4.1 Joint Classification and Localization

The main insight behind our approach is that object classification and detection
can be mutually beneficial. In particular, as the classification accuracy improves
we expect detection accuracy to improve as well, and vice versa. We begin by
verifying that this is indeed the case. Figure 5 shows the steady improvement in
mean average precision on both classification and detection over the iterations
(outer loop) of our algorithms. As a baseline (iteration 0), we use a classifier
trained on full images with the SPM spatial pooling representation, which is
equivalent to assuming an empty background region in foreground-background
representation. Interestingly, even after just one iteration, our classification mAP
is already 54.8%, which is 0.5% greater than the 54.3% SPM classification result.1

In the end our OCP method achieves 57.2% classification mAP, significantly out-
performing the SPM representation. In fact, it significantly outperforms even a
much richer 4-level SPM representation of size 8192 × 30 which achieves only
54.8% classification mAP. On the detection side, our approach was able to im-
prove the baseline of 6.10% detection mAP to the final 15.0%.

Fig. 5. Classification and detection mAP on the PASCAL07 test set over the iterations
of our joint detection and classification approach. The red solid line is classification
mAP, and the blue dotted line is detection mAP. We see a steady joint improvement
of classification and detection accuracy.

1 We make use of only one type of low-level image descriptor in contrast to [9, 31],
and don’t do any additional post-processing of the features in contrast to [10, 11].
The work of [10] gives 59.3% classification mAP on this dataset when using LLC
coding, but this relied on significant post-processing of the resulting image features.
To simplify the comparison, we do not involve the post-processing.
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It is important to note that jointly optimizing detection and classification us-
ing OCP as in Eq. 3 plays an essential role in achieving the joint improvements
for classification and detection. As we show below, when detection and classifica-
tion are optimized separately, higher detection accuracy may not always means
higher classification accuracy.

4.2 Image Classification

OCP significantly boost of classification accuracy on most of the 20 object
classes, as shown in Table 1. In particular, OCP achieves significant improve-
ment on the following categories: dog (7.3% improvement), bottle (7.1%), bicycle
(6.8%), sheep (6.2%), diningtable (5.9%), bus (4.6%), motorbike (4.3%) and even
1.3% on the notoriously difficult potted plant category. Noticeably, many of these
categories are relatively small objects (like bottles) embedded in cluttered envi-
ronments. OCP greatly improves classification accuracy on these categories by
making an effort to localize the objects.

Table 1. Classification AP of object-centric spatial pooling compared to the standard
SPM spatial pooling on the PASCAL07 test set

Method aero bicycle bird boat bottle bus car cat chair cow dining

SPM 72.5 56.3 49.5 63.5 22.4 60.1 76.4 57.5 51.9 42.2 48.9

OCP 74.2 63.1 45.1 65.9 29.5 64.7 79.2 61.4 51.0 45.0 54.8

Method dog horse motbike person plant sheep sofa train tv Mean

SPM 38.1 75.1 62.8 82.9 20.5 38.1 46.0 71.7 50.5 54.3

OCP 45.4 76.3 67.1 84.4 21.8 44.3 48.8 70.7 51.7 57.2

There are three categories that proved difficult for OCP to improve: chairs
(−0.9%), trains (−1.0%) and birds (−4.4%). For the bird and chair categories,
the objects are often occluded (e.g., birds are often occluded by trees, and chairs
are often occluded by people sitting on them), which make them very challenging
for detection even when bounding box annotations are available (see [14, 24]).
For the slight drop in the train category, since trains are already relatively well-
centered in images, SPM pooling alone yields very satisfactory classification
accuracy (71.7%) and is difficult to further improve.

We also investigate using the foreground-only (instead of the foreground-
background) feature representation when optimizing Eq. 3.2 This foreground-
only representation leads to an improvement from the baseline SPM model –
the mAP increases from 54.3% to 55.7%. This is a 1.4% improvement as com-
pared to the 2.9% improvement as in the case of our foreground-background

2 This experiment is a more assertive version of the technique described in Nguyen et
al. [1]: the optimization framework is similar to [1] but with significantly stronger
low-level descriptors (HOG descriptors [18] with LLC coding [10] compared to vector-
quantized SIFT [20]) and with much more negative training data.
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aeroplane bicycle bird boat car cow

Fig. 6. Images where object-centric pooling with the foreground-background model
(yellow) localizes objects more accurately than the foreground-only model (green)

representation. Figure 6 illustrates some location results, showing that fore-
ground-background representation often yields better localization.

4.3 Weakly Supervised Object Localization

Even though our primary goal is image classification, the proposed object-centric
spatial pooling also accurately localizes the objects of interest. PASCAL07 is
a very challenging dataset for weakly supervised localization (where bounding
box information is not available during training). Only a few recent works have
tackled this data (Deselaers et al. [16] and Pandey and Lazebnik [17]). They
focused on localizing only a handful of the object classes and use the available
viewpoint annotations during training to assist learning. In contrast, we work on
the full dataset without using these additional annotations to mimic the purely
classification setting.

Weakly supervised localization can be evaluated directly on the training set
(in our case the PASCAL07 trainval set) since only image-level class labels are
available during training. Following [16, 17] we compute localization accuracy as
the percentage of training image in which an instance was correctly localized by
the highest-scoring detection according to the PASCAL criterion (window inter-
section over the union ≥ 50%). On the 14 classes of PASCAL07-all3 introduced
by [16], our localization accuracy is 27.4%, which is comparable to 26% of [16]
using additional viewpoint annotations and 30.0% of [17].

As we’re most interested in inferring object location on unseen images, we
evaluate the detection accuracy on the test set as well. Table 2 compares our
detection average precision on six PASCAL07-6x2 classes [16] evaluated on all
test images with the current state-of-the-art in weakly supervised localization.
We obtain 22.8%, outperforming the previous best 20.8% of [17] which used
additional viewpoint annotations. On all 20 classes, we obtained 15.0% detection
mAP compared to 29.1% mAP of the state-of-the-art deformable part-based
model that used bounding box labels for detector training [24].

Figure 7 shows some examples of our detection results on PASCAL07 test set.
Localization is often quite reasonable, which is amazing considering the difficulty
of the dataset and the lack of any bounding box annotations during training.
Even on images with multiple object instances our method is sometimes able to
separate out the different instances.

3 PASCAL07-all includes all classes of PASCAL07 except bird, car, cat, cow, dog and
sheep [16].
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Table 2. Comparison of detection AP on the PASCAL07-6x2 test set for our method
versus [16, 17]. Both [16, 17] split up the objects by left and right viewpoint to make
the models easier to learn. We do not make use of these additional labels and learn a
single model for each object.

Method
aeroplane bicycle boat bus horse motorbike

Average
left right left right left right left right left right left right

Deselaers [16] 9.1 23.6 33.4 49.4 0.0 0.0 0.0 16.4 9.6 9.1 20.9 16.1 16.0

Pandey [17] 7.5 21.1 38.5 44.8 0.3 0.5 0 0.3 45.9 17.3 43.8 27.2 20.8

OCP 30.8 25.0 3.6 26.0 21.3 29.9 22.8
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Fig. 7. Foreground regions detected by the object-centric pooling framework on PAS-
CAL07 test images. The models are learned without any ground truth localization
information. Yellow boxes correspond to correct detections and red boxes are failed de-
tections. On images where multiple instances of a object class are presented, we show
the top few detections after running non-maximal suppression.

Interestingly, when we used the location information derived from the de-
formable part-based model mentioned above [24] learned with the help of bound-
ing box annotations, images features constructed using our image representation
with the foreground-background pooling yielded a classification mAP of 56.9%.
This is inferior to the aforementioned 57.2% classification mAP obtained using
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OCP, where our proposed approach in Eq. 3 did not use any bounding box an-
notations and only achieved 15.0% detection mAP. This strongly highlights the
importance of the formulation in Eq. 3, which uses classification as the major
optimization objective and jointly optimizes detection and classification when
solving the optimization.

5 Conclusion

We presented an object-centric spatial pooling (OCP) approach for improving
classification performance. The challenge of OCP is training reliable object de-
tectors with no available bounding box annotations as in a typical classification
setting. We propose a framework that directly optimizes classification objective
with detection being treated as an intermediate step. The key to this frame-
work is the foreground-background feature representation by OCP that natu-
rally enables feature sharing between detection and classification. Our results
on the challenging PASCAL07 dataset show that not only is the proposed OCP
approach able to improve the classification accuracy compared to using SPM
pooling, but it also yields very reasonable object detection results. We believe
this is an important step toward better image understanding – not only deciding
what objects are in an image but also figuring out where these objects are.

Our future work includes incorporating bounding box annotations during
training (from all or just a subset of images) to further improve the classification
performance. We are also very interested in exploiting even more powerful visual
features than the simple LLC feature as used in this paper. As demonstrates by
the motivation experiment described in the beginning of Section 3, there is much
room for improving classification performance by utilizing location information.
This paper is just an initial step toward that direction.
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