Skip to main content

Solution of the Optimal Stopping Problem for One-Dimensional Diffusion Based on a Modification of the Payoff Function

  • Conference paper
  • First Online:
Prokhorov and Contemporary Probability Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 33))

Abstract

A problem of optimal stopping for one-dimensional time-homogeneous regular diffusion with the infinite horizon is considered. The diffusion takes values in a finite or infinite interval ]a,b[. The points a and b may be either natural or absorbing or reflecting. The diffusion may have a partial reflection at a finite number of points. A discounting and a cost of observation are allowed. Both can depend on the state of the diffusion. The payoff function g(z) is bounded on any interval [c, d], where a < c < d < b, and twice differentiable with the exception of a finite (may be empty) set of points, where the functions g(z) and \({g}^{{^\prime}}(z)\) may have a discontinuities of the first kind. Let L be an infinitesimal generator of diffusion which includes the terms corresponding to the discounting and the cost of observation. We assume that the set \(\{z : Lg(z) > 0\}\) consists of a finite number of intervals. For such problem we propose a procedure of constructing the value function in a finite number of steps. The procedure is based on a fact that on intervals where Lg(z) > and in neighborhoods of points of partial reflections, points of discontinuities, and points a or b in case of reflection, one can modify the payoff function preserving the value function. Many examples are considered.

Mathematics Subject Classification (2010): 60G40, 60J60, 60J65.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broadie, M., Detemple, J.: American capped call options on dividend-paying assets. Rev. Financ. Stud. 8(1), 161–191 (1995)

    Article  Google Scholar 

  2. Bronstein, A.L., Hughston, L.P., Pistorius, M.R., Zervos, M.: Discretionary stopping of one-dimensional Ito diffusions with a staircase reward function. J. Appl. Probab. 43, 984–996 (2006)

    Article  MathSciNet  Google Scholar 

  3. Dayanik, S., Karatzas, I.: On the optimal stopping problem for one-dimensional diffusions. Stoch. Process. Appl. 107, 173–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, X., Shepp, L.A.: Some optimal stopping problems with nontrivial boundaries for pricing exotic options. J. Appl. Probab. 38(3), 647–658 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Harrison, J.M., Shepp, L.A.: On skew brownian motion. Ann. Probab. 9(2), 309–313 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Irle, A.: A forward algorithm for solving optimal stopping problems. J. Appl. Probab. 43, 102–ll3 (2006)

    Google Scholar 

  7. Irle, A.: On forward improvement iteration for stopping problems. In: Proceedings of the Second International Workshop in Sequential Methodologies, Troyes (2009)

    Google Scholar 

  8. Karatzas, I., Ocone, D.: A leavable bounded-velocity stochastic control problem. Stoch. Process. Appl. 99(1), 31–51 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karatzas, I., Wang, H.: A barrier option of American type. Appl. Math. Optim. 42(3), 259–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kolodka, A., Schoenmakers, J.: Iterative construction of the optimal Bermudan stopping time. Finance Stoch. 10, 27–49 (2006)

    Article  MathSciNet  Google Scholar 

  11. Minlos, R.A., Zhizhina, E.A.: Limit diffusion process for a non-homogeneous random walk on a one-dimentional lettice. Russ. Math. Surv. 52(2), 327–340 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oksendal, B., Reikvam, K.: Viscosity solutions of optimal stopping problems. Stoch. Stoch. Rep. 62(3–4), 285–301 (1998)

    MathSciNet  Google Scholar 

  13. Peskir, G., Shiryaev, A.N.: Optimal Stopping and Free-Boundary Problems. Birkhauser, Basel (2006)

    MATH  Google Scholar 

  14. Presman, E.L.: On Sonin’s algorithm for solution of the optimal stopping problem. In: Proceedings of the Fourth International Conference on Control Problems, 26–30 Jan 2009, pp. 300–309. Institute of Control Sciences, Moscow (2009)

    Google Scholar 

  15. Presman, E.L.: New approach to the solution of the optimal stopping problem in a discrete time. Stoch. Spec. Issue Dedic. Optim. Stop. Appl. 83, 467–475 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Presman, E.L.: Solution of Optimal Stopping Problem Based on a Modification of Payoff Function. Springer, Musela Festshrift (2011)

    Google Scholar 

  17. Presman, E.L., Sonin, I.M.: On optimal stopping of random sequences modulated by Markov chain. Theory Probab. Appl. 54(3), 534–542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Salminen, P.: Optimal stopping of one-dimensional diffusions. Math. Nachr. 124, 85–101 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shiryayev, A.N.: Statistical Sequential Analysis: Optimal Stopping Rules. Nauka, Moscow (1969) (in Russian). English translation of the 2nd edn., Shiryayev A.N.: Optimal Stopping Rules. Springer, New York (1978)

    Google Scholar 

  20. Sonin, I.M.: Two simple theorems in the problems of optimal stopping. In: Proceedings of the 8th INFORMS Applied Probability Conference, Atlanta, p. 27 (1995)

    Google Scholar 

  21. Sonin, I.M.: The elimination algorithm for the problem of optimal stopping. Math. Methods of Oper Res. 49, 111–123 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Sonin, I.M.: The state reduction and related algorithms and their applications to the study of Markov chains, graph theory and the optimal stopping problem. Adv. Math. 145, 159–188 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sonin, I.M.: Optimal stopping of Markov chains and recursive solution of Poisson and Bellman equations. In: Kabanov, Y., Liptser, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift, pp. 609–621. Springer, Berlin/Heidelberg (2006)

    Chapter  Google Scholar 

  24. Taylor, H.M.: Optimal stopping in a Markov process. Ann. Math. Stat. 3, 1333–1344 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank A.D. Slastnikov and I.M. Sonin for useful discussions.

This work was partly supported by RFBR grant 10-01-00767-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Presman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Presman, E. (2013). Solution of the Optimal Stopping Problem for One-Dimensional Diffusion Based on a Modification of the Payoff Function. In: Shiryaev, A., Varadhan, S., Presman, E. (eds) Prokhorov and Contemporary Probability Theory. Springer Proceedings in Mathematics & Statistics, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33549-5_22

Download citation

Publish with us

Policies and ethics