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Abstract. Social networks play an important role for spreading information and
forming opinions. A variety of voter models have been defined that help analyze
how people make decisions based on their neighbors’ decisions. In these stud-
ies, common practice has been to use the latest decisions in opinion formation
process. However, people may decide their opinions by taking account not only
of their neighbors’ latest opinions, but also of their neighbors’ past opinions. To
incorporate this effect, we enhance the original voter model and define the tempo-
ral decay voter (TDV) model incorporating a temporary decay function with pa-
rameters, and propose an efficient method of learning these parameters from the
observed opinion diffusion data. We further propose an efficient method of select-
ing the most appropriate decay function from among the candidate functions each
with the optimized parameter values. We adopt three functions as the typical can-
didates: the exponential decay, the power-law decay, and no decay, and evaluate
the proposed method (parameter learning and model selection) through extensive
experiments. We, first, experimentally demonstrate, by using synthetic data, the
effectiveness of the proposed method, and then we analyze the real opinion dif-
fusion data from a Japanese word-of-mouth communication site for cosmetics
using three decay functions above, and show that most opinions conform to the
TDV model of the power-law decay function.

1 Introduction

Social networking services (SNSs) on the Internet, such as Facebook, Twitter and Digg,
have become so popular and use of these services is now a part of our daily activities.
Large networks formed by these services play an important role as a medium for spread-
ing diverse information including news, ideas, opinions, and rumors [18,17,8,6]. Users
of these services can share their interests or opinions to each other. The resulting social
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networks and the information propagated therein have great influence on and drastically
change our decision making processes and behaviors in daily life. Thus, many attempts
have been made to investigate the spread of influence in social networks [15,5,21].

One such typical and well studied problem in social network analysis is the influence
maximization problem, which is finding a limited number of influential nodes that are
effective for spreading information [10,11,16,3,4]. What is common to these studies
is that models used allow a node in the network to take only one of the two states,
i.e., either active or inactive, because the focus is on influence. However, we need a
model in which a node can take multiple states for such applications in which a user
can choose one from multiple choices. For example, a mobile phone user may change
his/her current carrier to the one which the majority of his/her neighbors are using.
To model this kind of opinion formation dynamics, a node in the network has to be
able to take one of many possible choices as its state. A voter model would be the one
which is most suitable for this purpose. It is one of the most basic stochastic process
models, where a node decision is influenced by its neighbors’ decisions [20,9,7,2,22].
We proposed two variants of voter model in our past work: the value-weighted voter
model that considers opinion values [12], and the value-weighted mixture voter model
that, in addition to the opinion values, considers the effect of anti-majoritarians, i.e.,
those people who do not agree with the majority and support the minority opinion [13].

In this paper we also address the problem of opinion formation on the social network,
but we especially focus on the fact that our decision may be influenced not only by
our neighbors’ and our own latest opinions, but also by the neighbors’ and our own
past opinions. For example, assume that you and your friends have long supported a
certain political party, but many of your friends have started changing their supporting
party to a different one very recently. Under this situation, you may still stick to your
opinion and keep supporting the party, or you may change your mind and follow your
neighbors’ opinions. This means that your current opinions are influenced not only
by the neighbors’ latest opinions but also by their past opinions including your own
opinions. It is, thus, important to consider all the past opinions in making the current
decision. Nonetheless, all the voter models including the two variants mentioned above
consider only the latest opinions of its neighbors including itself when updating the
opinion of a node.

With this in mind we enhance the original voter model and define the temporal decay
voter (TDV) model that takes into account all the past opinions discounting the effect of
older opinions by using a temporal decay function. The work most closely related to our
approach would be the work by Koren [14] which is in the context of recommender sys-
tems, where several time drifting user preference models are proposed, some of which
adopt a temporal decay function that discounts the effect of older ratings to items. The
approach in Koren’s work is, unlike our approach, cannot utilize all the past ratings
given by a user for an identical item because the user-item matrix that they use does
not allow multiple ratings to be stored. In addition, due to the framework of collabora-
tive filtering, it requires the rating history involving multiple items, while our approach
can model the temporal dynamics of opinions for a single item. Thus, it does not make
sense to compare Koren’s approach with ours.
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Our major contribution is the following four: 1) the TDV model, 2) an algorithm
of learning the parameters of the temporal decay function from the observed opinion
spreading data, 3) a model selection method that determines the most appropriate de-
cay function for given data, and 4) new finding regarding the decay model from the
analysis of the real data. The model parameters are learned by an efficient iterative al-
gorithm which maximizes the likelihood function. Three representative decay functions
are employed, although the framework is not necessarily limited to them: the exponen-
tial decay, the power-law decay, and no decay. Which function, each with the optimized
parameter values, is most appropriate for given data is determined based on the log
likelihood ratio statistic. We evaluate the parameter learning and the model selection
methods through extensive experiments using synthetic data with two TDV models,
one with the exponential decay and the other with power-low decay. We then applied
the methods to the real opinion spreading data from a Japanese word-of-mouth commu-
nication site for cosmetics using aforementioned three decay functions, and show that
most opinions conform to the TDV model of the power-law decay function.

The paper is organized as follows. We define the TDV model in Section 2 and ex-
plain how the model parameters are learned and the most appropriate model is selected
in Section 3. The performance of parameter learning and model selection using the
synthetic data is reported in Section 4 and the finding from the analysis of real data is
reported in Section 5. We end this paper by summarizing the main result in Section 6.

2 Voter Model with Temporal Decay Dynamics

We define the TDV (Temporal Decay Voter) model. Let G = (V, E) be a directed network
with self-loops, where V and E (⊂ V × V) are the sets of all nodes and links in the
network, respectively. Here, (u, v) ∈ E denotes a (directed) link from node u to node
v. When there is a link (u, v), we assume that v can be influenced by its neighbor u in
opinion formation process. For a node v ∈ V , let B(v) denote the set of neighbors of v
in G, that is,

B(v) = {u ∈ V; (u, v) ∈ E}.
Note that v ∈ B(v). Given an integer K with K ≥ 2, we consider the spread of K
opinions (opinion 1, · · · , opinion K) on G, where each node holds exactly one of the K
opinions at any time t (≥ 0). We assume that each node of G initially holds one of the
K opinions with equal probability at time t = 0. We denote by

gt : V → {1, · · · ,K}
the opinion distribution at time t, where gt(v) stands for the opinion of node v at
time t. Note that g0 stands for the initial opinion distribution. For any v ∈ V and
k ∈ {1, 2, · · · ,K}, let Uk(t, v) be the set of v’s neighbors that hold opinion k as its latest
opinion (before time t), i.e.,

Uk(t, v) = {u ∈ B(v); ϕt(u) = k},
where ϕt(u) is the latest opinion of u (before time t).
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2.1 Voter Model

We first recall the definition of the voter model (see, e.g., [13]), which is one of the
standard models of opinion dynamics, where K is usually set to 2. The evolution process
of the voter model is defined as follows:

1. At time 0, each node v independently decides its update time t according to some
probability distribution such as an exponential distribution with parameter γv = 1.1

The successive update time is determined similarly at each update time t.
2. At an update time t, the node v adopts the opinion of a randomly chosen neighbor

u, i.e.,
gt(v) = ϕt(u).

3. The process is repeated from the initial time t = 0 until the next update-time passes
a given final-time T1.

We note that in the voter model each individual tends to adopt the majority opinion
among its neighbors.2 Here note that the definition of one’s neighbors include oneself
because of the existence of self loop. Thus, we can extend the original voter model with
2 opinions to a voter model with K opinions by replacing Step 2 with: At an update time
t, the node v selects one of the K opinions according to the probability distribution,

P(gt(v) = k) =
|Uk(t, v)|
|B(v)| , (k = 1, · · · ,K). (1)

2.2 Temporal Decay Voter Model

As mentioned earlier, people may decide their opinions by taking account not only of
their neighbors’ latest opinions, but also of their neighbors’ past opinions including
their own opinions. In order to model this kind of situation, for any t > 0 and v ∈ V , we
consider the set M(t, v) consisting of the time τ (< t) at which an individual (a node) v
manifested his/her opinion. For k = 1, · · · ,K, we also consider a subset of M(t, v),

Mk(t, v) = {τ ∈ M(t, v); gτ(v) = k},
where Mk(t, v) is the set of node v’s opinion manifestation time instances before time t
in which v takes opinion k. Now, we can define a voter model which takes all the past
opinions into consideration. In this model, Eq. (1) is replaced with

P(gt(v) = k) =
1 +
∑

u∈B(v) |Mk(t, u)|
K +
∑

u∈B(v) |M(t, u)| , (k = 1, · · · ,K), (2)

where we employed a Bayesian prior known as the Laplace smoothing. Here we note
that the Laplace smoothing of Eq. (2) corresponds to the assumption that each node ini-
tially holds one of the K opinions with equal probability at time t = 0. Note also that the

1 This assumes that the average delay time is 1.
2 In reality there may be a case that one changes its opinion to a medium one (say 3) listening

to two opposite opininons (say 1 and 5). The voter model does not consider this possibility
unless at least one of the neighbors has already the medium opinion (3).
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Laplace smoothing corresponds to a special case of Dirichlet distributions that are very
often used as prior distributions in Bayesian statistics, and in fact the Dirichlet distribu-
tion is the conjugate prior of the categorical distribution and multinomial distribution.
We refer to this voter model as the base TDV model.

Thus far, we assumed that all the past opinions are equally weighted. However, it is
naturally conceivable that the quite old opinions have almost no influence. Older opin-
ions are less influential in general. In order to reflect this kind of effects into the model,
we consider introducing some decay functions. The simplest one is an exponential de-
cay function defined by

ρ(Δt; λ) = exp(−λΔt), (3)

where λ ≥ 0 is a parameter and Δt = t − τ stands for the time difference between
the opinion adoption time t and the opinion manifestation time τ. Another natural one
would be a power-law decay function defined by

ρ(Δt; λ) = (Δt)−λ = exp(−λ logΔt), (4)

where λ ≥ 0 is a parameter.
Now, we construct a more general decay function. For a given positive integer J, let

f1(Δt), · · · , fJ(Δt) be functions on (0,+∞) such that 1, f1(Δt), · · · , fJ(Δt) are linearly
independent, that is, if λ0, λ1, · · · , λJ are real numbers and satisfy

λ0 +

J∑

j=1

λ j f j(Δt) = 0, (∀Δt ∈ (0,+∞)),

then λ0 = λ1 = · · · = λJ = 0. We then consider a J-dimensional feature vector,

FJ(Δt) = ( f1(Δt), · · · , fJ(Δt))T ,

where aT denote the transpose of column vector a. For a J-dimensional real column
vector with non-negative elements,

λJ = (λ1, · · · , λJ)T ,

which is a parameter vector, we define a decay function ρ(Δt; λJ) by

ρ(Δt; λJ) = exp
(
−λJ

T FJ(Δt)
)
, (5)

where the matrix operations are used. Representative candidates of feature vector FJ(Δt)
include

F1(Δt) = Δt, F1(Δt) = logΔt, F1(Δt) = (Δt)2

for J = 1,

F2(Δt) = (Δt, logΔt)T , F2(Δt) =
(
Δt, (Δt)2

)T
, F2(Δt) =

(
logΔt, (Δt)2

)T

for J = 2,

F3(Δt) =
(
Δt, logΔt, (Δt)2

)T
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for J = 3, etc. Note that ρ(Δt; λJ) becomes the exponential decay function if J = 1 and
FJ(Δt) = Δt, and the power-law decay function if J = 1 and FJ(Δt) = logΔt.

Using our general decay function ρ(Δt; λJ) (see Eq. (5)), we define the TDV (Tem-
poral Decay Voter) model in the following way. In this model, Eq. (1) is replaced with

P(gt(v) = k) =
1 +
∑

u∈B(v)
∑
τ∈Mk(t,u) ρ(t − τ; λJ)

K +
∑

u∈B(v)
∑
τ∈M(t,u) ρ(t − τ; λJ)

, (k = 1, · · · ,K). (6)

Here note that Eq. (6) is reduced to Eq. (2) when λJ is the J-dimensional zero-vector
0J , that is, the TDV model of λJ = 0J coincides with the base TDV model.

3 Learning Method

We consider the problem of identifying the TDV model on network G from an observed
dataDT0 in time-span [0, T0], whereDT0 consists of a sequence of (k, t, v) such that node
v changed its opinion to opinion k at time t for 0 ≤ t ≤ T0. The identified model can be
used to predict how much of the share each opinion will have at a future time T1 (> T0),
and to identify both high decay tendency data sets and low decay tendency data sets.

3.1 Parameter Estimation

We describe a method for estimating decay parameter values of the TDV model from
a given observed opinion spreading data DT0 . Based on the evolution process of our
model (see Eq. (6)), we can obtain the likelihood function,

L(DT0 ; λJ) = log

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∏

(k,t,v)∈DT0

P(gt(v) = k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where λJ stands for the J-dimensional vector of decay parameter values, as explained in
the previous subsection. Thus our estimation problem is formulated as a maximization
problem of the objective function L(DT0 ; λJ) with respect to λJ .

We derive an iterative algorithm for obtaining the maximum likelihood estimators.
From the definitions of P(gt(v) = k) (see Eq. (6)) and ρ(Δt; λJ) (see Eq. (5)), we can
express Eq. (7) as follows:

L(DT0 ; λJ) =
∑

(k,t,v)∈DT0

log

⎛
⎜⎜⎜⎜⎜⎜⎝1 +

∑

u∈B(v)

∑

τ∈Mk(t,u)

exp
(
−λJ

T FJ(t − τ)
)
⎞
⎟⎟⎟⎟⎟⎟⎠

−
∑

(k,t,v)∈DT0

log

⎛
⎜⎜⎜⎜⎜⎜⎝K +

∑

u∈B(v)

∑

τ∈M(t,u)

exp
(
−λJ

T FJ(t − τ)
)
⎞
⎟⎟⎟⎟⎟⎟⎠ . (8)

Now, let λJ be the current estimate of λJ . We foucus on the first term of the right-hand
side of Eq. (8), and define qk,t,v(τ; λJ) by

qk,t,v(τ; λJ) =
exp
(
−λJ

T FJ(t − τ)
)

1 +
∑

u∈B(v)
∑
τ′∈Mk(t,u) exp

(
−λJ

T FJ(t − τ′)
)
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for any k ∈ {1, · · · ,K}, t ∈ (0, T ], v ∈ V , and τ ∈ ⋃u∈B(v) Mk(t, u). Note that for any
(k, t, v) ∈ DT0 ,

qk,t,v(τ; λJ) > 0,

⎛
⎜⎜⎜⎜⎜⎜⎝∀τ ∈

⋃

u∈B(v)

Mk(t, u)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (9)

∑

u∈B(v)

∑

τ∈Mk(t,u)

qk,t,u(τ; λJ) +
1

1 +
∑

u∈B(v)
∑
τ′∈Mk(t,u) exp

(
−λJ

T FJ(t − τ′)
) = 1. (10)

We can transform our objective function as follows:

L (DT0 ; λJ
)
= Q

(
λJ; λJ

)
−H
(
λJ ; λJ

)
, (11)

where Q
(
λJ; λJ

)
is defined by

Q
(
λJ ; λJ

)
= −

∑

(k,t,v)∈DT0

∑

u∈B(v)

∑

τ∈Mk(t,u)

qk,t,v

(
τ; λJ

)
λJ

T FJ(t − τ)

−
∑

(k,t,v)∈DT0

log

⎛
⎜⎜⎜⎜⎜⎜⎝K +

∑

u∈B(v)

∑

τ∈M(t,u)

exp
(
−λJ

T FJ(t − τ)
)
⎞
⎟⎟⎟⎟⎟⎟⎠ , (12)

andH
(
λJ; λJ

)
is defined by

H
(
λJ; λJ

)
=

∑

(k,t,v)∈DT0

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑

u∈B(v)

∑

τ∈Mk(t,u)

qk,t,v

(
τ; λJ

)
log qk,t,v (τ; λJ)

+
1

1 +
∑

u∈B(v)
∑
τ′∈Mk(t,u) exp

(

−λJ
T

FJ(t − τ′)
)

× log

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1 +
∑

u∈B(v)
∑
τ′∈Mk(t,u) exp

(
−λJ

T FJ(t − τ′)
)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
.(13)

By Eqs. (9), (10), (13), and the property of the KL-divergence, it turns out thatH
(
λJ ; λJ

)

is maximized at λJ = λJ. Hence, we can increase the value of L (DT0 ; λJ
)

by maximiz-
ing Q

(
λJ; λJ

)
with respect to λJ (see Eq. (11)).

We derive an update formula for maximizing Q(λJ ; λJ). We foucus on the second
term of the right-hand side of Eq. (12) (see also the second term of the right-hand side
of Eq. (8)), and define rt,v(τ; λJ) by

rt,v(τ; λJ) =
exp
(
−λJ

T FJ(t − τ)
)

K +
∑

u∈B(v)
∑
τ′∈M(t,u) exp

(
−λJ

T FJ(t − τ′)
) (14)

for any t ∈ (0, T ], v ∈ V , and τ ∈ ⋃u∈B(v) M(t, u). Note that for any (k, t, v) ∈ DT0 ,

rt,v(τ; λJ) > 0,

⎛
⎜⎜⎜⎜⎜⎜⎝∀τ ∈

⋃

u∈B(v)

M(t, u)

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

∑

u∈B(v)

∑

τ∈M(t,u)

rt,u(τ; λJ) < 1. (15)
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From Eqs. (12) and (14), we can easily see that the gradient vector of Q
(
λJ; λJ

)
with

respect to λJ is given by

∂Q
(
λJ ; λJ

)

∂λJ
= −

∑

(t,v,k)∈DT0

∑

u∈B(v)

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

τ∈Mk(t,u)

qt,v,k

(
τ; λJ

)
FJ(t − τ)

−
∑

τ∈M(t,u)

rt,v(τ; λJ)FJ(t − τ)
⎞
⎟⎟⎟⎟⎟⎟⎠ . (16)

Moreover, from Eqs. (14) and (16), we can obtain the Hessian matrix of Q
(
λJ ; λJ

)
as

follows:

∂2Q
(
λJ ; λJ

)

∂λJ∂λJ
T
= −

∑

(k,t,v)∈DT0

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) FJ(t − τ) FJ(t − τ)T

−
⎛
⎜⎜⎜⎜⎜⎜⎝

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) FJ(t − τ)
⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) FJ(t − τ)
⎞
⎟⎟⎟⎟⎟⎟⎠

T
⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
. (17)

By Eq. (17), for any J-dimensional real column vector xJ , we have

xJ
T
∂2Q
(
λJ; λJ

)

∂λJ∂λJ
T

xJ

= −
∑

(k,t,v)∈DT0

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ)
(
xJ

T FJ(t − τ)
)2

−
⎛
⎜⎜⎜⎜⎜⎜⎝

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) xJ
T FJ(t − τ)

⎞
⎟⎟⎟⎟⎟⎟⎠

2
⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= −
∑

(k,t,v)∈DT0

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ)

⎛
⎜⎜⎜⎜⎜⎜⎝ xJ

T FJ(t − τ)

−
∑

u∈B(v)

∑

τ′∈M(t,u)

rt,v(τ′; λJ) xJ
T FJ(t − τ′)

⎞
⎟⎟⎟⎟⎟⎟⎠

2

+

⎛
⎜⎜⎜⎜⎜⎜⎝1 −

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

u∈B(v)

∑

τ∈M(t,u)

rt,v(τ; λJ) xJ
T FJ(t − τ)

⎞
⎟⎟⎟⎟⎟⎟⎠

2
⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
.

Thus, by Eq. (15), we obtain

xJ
T
∂2Q
(
λJ ; λJ

)

∂λJ∂λJ
T

xJ ≤ 0,
(
∀xJ ∈ RJ

)
,
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that is, the Hessian matrix is negative semi-definite. Hence, by solving the equation

∂Q
(
λJ ; λJ

)

∂λJ
= 0J

(see Eq. (16)), we can find the value of λJ that maximizes Q
(
λJ; λJ

)
. We employed a

standard Newton Method in our experiments.

3.2 Model Selection

One of the important purposes of introducing the TDV model is to analyze how people
are affected by their neighbors’ past opinions for a specific opinion formation process.
In what follows, for a given set of candidate decay functions (i.e., feature vectors), we
consider selecting one being the most appropriate to the observed data DT0 of |DT0 | =
N, where N represents the number of opinion manifestations by individuals.

As mentioned in Section 2, the base TDV model is a special TDV model equipped
with the decay function that equally weights all the past opinions. Thus, we first ex-
amine whether or not the TDV model equipped with a candidate decay function can
be more appropriate to the observed data DT0 than the base TDV model.3 To this end,
we employ the likelihood ratio test. For a given feature vector FJ(Δt), let λ̂J(FJ) be the
maximal likelihood estimator of the TDV model equipped with the decay function of
FJ(Δt). Since the base TDV model is the TDV model of λJ = 0J, the log-likelihood
ratio statistic of the TDV model with FJ(Δt) against the base TDV model is given by

YN(FJ) = L
(
DT0 ; λ̂J(FJ)

)
− L (DT0 ; 0J

)
. (18)

It is well known that 2YN(FJ) asymptotically approaches to the χ2 distribution with
J degrees of freedom as N increases. We set a significance level α (0 < α < 1), say
α = 0.005, and evaluate whether or not the TDV model with FJ(Δt) fits significantly
better than the base TDV model by comparing 2YN(FJ) to χJ,α. Here, χJ,α denotes the
upper α point of the χ2 distribution of J degrees of freedom, that is, it is the positive
number z such that

1
Γ(J/2)2J/2

∫ z

0
yJ/2−1 exp

(

− y
2

)

dy = 1 − α,

where Γ(s) is the gamma function. We consider the set FV of the candidate feature
vectors (i.e., decay functions) selected by this likelihood ratio test at significance level
α. Next, we find the feature vector F∗J∗ (Δt) ∈ FV such that it maximizes the log-
likelihood ratio statistic YN(FJ), (FJ(Δt) ∈ FV), (see Eq. (18)), and propose selecting
the TDV model equipped with the decay function of F∗J∗ (Δt). If the set FV is empty,
we select the base TDV model forDT0 .

3 The base TDV model is not the only baseline model with which the proposed method is to be
compared. The simplest one would be the random opininon model in which each user chooses
its opinionn randomly independent of its neighbors.
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Fig. 1. Results of model selection validity for the exponential TDV model

Here we recall that typical decay functions in natural and social sciences include
the exponential decay function (see Eq. (3)) and the power-law decay functions (see
Eq. (4)). We refer to the TDV models of the exponential and the power-law decay func-
tions as the exponential TDV model and the power-law TDV model, respectively. In our
experiments, we in particular focus on investigating which of the base, the exponen-
tial, and the power-law TDV models best fits to the observed dataDT0 . Thus, the TDV
model to be considered has J = 1 and parameter λ.

4 Evaluation by Synthetic Data

Using synthetic data, we examined the effectiveness of the proposed method for pa-
rameter estimation and model selection. We assumed complete networks for simplicity.
According to the TDV model, we artificially generated an opinion diffusion sequence
DT0 consisting of 3-tuple (k, t, v) of opinion k, time t and node v such that |DT0 | = N,
and applied the proposed method to the observed dataDT0 , where the significance level
α = 0.005 was used for model selection. As mentioned in the previous section, we as-
sumed two cases where the true decay follows the exponential distribution (see Eq. (3))
and the power-law distribution (see Eq. (3)), respectively. Let Ye

N and Y p
N denote the

log-likelihood ratio statistics of the exponential and the power-law TDV models against
the base TDV model, respectively (see Eq. (18)). We varied the value of parameter
λ in the following range: λ = 0.01, 0.03, 0.05 for the exponential TDV model, and
λ = 0.4, 0.5, 0.6 for the power-law TDV model, on the basis of the analysis performed
for the real world @cosme dataset (see, Section 5). We conducted 100 trials varying the
observed dataDT0 of |DT0 | = N, and evaluated the proposed method.

First, we investigated the model selection validity FN/100, where FN is the number
of trials in which the true model was successfully selected by the proposed method.
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Fig. 2. Results of Parameter estimation error for the exponential TDV model

Namely, if the exponential TDV model is the true model, then FN is defined by the
number of trials such that

2Ye
N > max

(
χ1,α, 2Y p

N

)
,

and if the power-law TDV model is the true model, then FN is defined by the number
of trials such that

2Y p
N > max

(
χ1,α, 2Ye

N

)
.

Second, we examined the parameter estimation error EN for the trials in which the true
model was selected by the proposed method. Here, EN is defined by

EN =
|λ̂(N) − λ∗|
λ∗

,

where λ∗ is the true value of parameter λ, and λ̂(N) is the value estimated by the pro-
posed method from the observed data DT0 of |DT0 | = N. Figures 1 and 2 show the
results for the exponential TDV model, and Figures 3 and 4 show the results for the
power-law TDV model. Here, Figures 1 and 3 display model selection validity FN/100
as a function of sample size N. Figures 2 and 4 display parameter estimation error EN

as a function of sample size N. As expected, FN increases and EN decreases as N in-
creases. Moreover, as λ becomes larger, FN increases and EN decreases. Note that a
large λ means quickly forgetting past activities, and a small λ means slowly forgetting
them. Thus, we can consider that a TDV model of smaller λ requires more samples
to correctly learn the model. From Figures 1, 2, 3 and 4, we observe that the proposed
method can work almost perfectly when N is greater than 500, and λ is greater than 0.01
for the exponential TDV model and greater than 0.4 for the power-law TDV model.
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Fig. 3. Results of model selection validity for the power-law TDV model

5 Findings in Opinion Formation on Social Media

5.1 Dataset

We collected real data from “@cosme” 4, which is a Japanese word-of-mouth commu-
nication website for cosmetics. In @cosme, a user can post a review and give a score of
each brand (one from 1 to 7). When one user registers another user as his/her favorite
user, a “fan-link” is created between them. We traced up to ten steps in the fan-links
from a randomly chosen user in December 2009, and collected a set of (b, k, t, v)’s,
where (b, k, t, v) means that user v scored brand b k points at time t. The number of
brands was 7,139, the number of users was 45,024, and the number of reviews posted
was 331,084. For each brand b, we regarded the point k scored by a user v as the
opinion k of v, and constructed the opinion diffusion sequence DT0 (b) consisting of
3-tuple (k, t, v). In particular, we focused on these brands in which the number of sam-
ples N = |DT0 (b)| was greater than 500. Then, the number of brands was 120. We refer
to this dataset as the @cosme dataset.

5.2 Results

We applied the proposed method to the @cosme dataset. Again, we adopted the tem-
poral decay voter models with the exponential and the power-law distributions, and
used the significance level α = 0.005 for model selection. There were 9 brands such
that 2Ye

N > χ1,α, and 93 brands such that 2Y p
N > χ1,α. Here, in the same way as

the previous section, Ye
N and Y p

N denote the log-likelihood ratio statistics of the ex-
ponential and the power-law TDV models against the base TDV model, respectively.

4 http://www.cosme.net/
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Fig. 4. Results of Parameter estimation error for the power-law TDV model

Further, there were 92 brands such that 2Y p
N > max

(
χ1,α, 2Ye

N

)
, one brand such that

2Ye
N > max

(
χ1,α, 2Y p

N

)
, and 27 brands such that max

(
2Y p

N , 2Ye
N

)
≤ χ1,α. Namely, ac-

cording to the proposed method, 92 brands were the power-law TDV model, 27 brands
were the base TDV model, and only one brand was the exponential TDV model. These
results show that most brands conform to the power-law TDV model. This also agrees
with the work [1,19] that many human actions are related to power-laws.

Figures 5 and 6 show the results for the @cosme dataset from the point of view of
the power-law TDV model. Figure 5 plots the log-likelihood ratio statistic Y p

N for each
brand as a function of sample size N, where the thick solid line indicates the value
of χi,α. In addition to the brands plotted, there is a brand such that Y p

N = Ye
N = 0.

It was brand “YOJIYA”, which is a traditional Kyoto brand, and is known as a brand
releasing new products less frequently. Thus, we speculate that it conforms to the base
TDV model. Figure 6 plots the pair

(
Y p

N , λ̂(N)
)

for the brands in which the power-law

TDV model was selected by the proposed method, where λ̂(N) is the value of parameter
λ estimated by the proposed method from the observed data DT0 (b) of |DT0(b)| = N.
From Figure 6, we observe that Y p

N and λ̂(N) are positively correlated. This agrees
with the fact that the power-law TDV model with λ = 0 corresponds to the base TDV
model. In Figures 5 and 6, the big solid red circle indicates the brand “LUSH-JAPAN”,
which had the largest values of Y p

N , λ̂(N) and N, respectively. We also find the big
solid green triangle in Figure 5 as a brand that had a large value of Y p

N and a relatively
small value of N. This was the brand “SHISEIDO ELIXIR SUPERIEUR”, which had
the seventh largest value of Y p

N , N = 584, and λ̂(N) = 0.58. Note that these brands
“LUSH-JAPAN” and “SHISEIDO ELIXIR SUPERIEUR” are known as brands that
were recently established and release new products frequently. Thus, we speculate that
they conform to the power-law TDV model with large λ.
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N and number of samples N for the @cosme dataset
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Fig. 6. Log-likelihood ratio statistic Y p
N and estimated parameter value λ̂(N) for the @cosme

dataset

6 Conclusion

We addressed the problem of how people make their own decisions based on their
neighbors’ opinions. The model best suited to discuss this problem is the voter model
and several variants of this model have been proposed and used extensively. However,
all of these models assume that people use their neighbors’ latest opinions. People
change opinions over time and some opinions are more persistent and some others
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are less persistent. These depend on many factors but the existing models do not take
this effect into consideration. In this paper, we, in particular, addressed the problem of
how people’s opinions are affected by their own and other peoples’ opinion histories. It
would be reasonable to assume that older opinions are less influential and recent ones
are more influential. Based on this assumption, we devised a new voter model, called the
temporal decay voter (TDV) model which uses all the past opinions in decision making
in which decay is assumed to be a linear combination of representative decay functions
each with different decay factors. The representative functions include the linear decay,
the exponential decay, the power-law decay and many more. Each of them specifies only
the form and the parameters remain unspecified. We formulated this as a machine learn-
ing problem and solved the following two problems: 1) Given the observed sequence
of people’s opinion manifestation and an assumed decay function, learn the parameter
values of the function such that the corresponding TDV model best explains the obser-
vation, and 2) Given a set of decay functions each with the optimal parameter values,
choose the best model and refute others. We solved the former problem by maximiz-
ing the likelihood and derived an efficient parameter updating algorithm, and the latter
problem by choosing the decay model that maximizes the log likelihood ratio statistic.
We first tested the proposed algorithms by synthetic datasets assuming that there are
two decay models: the exponential decay and the power-law decay. We confirmed that
the learning algorithm correctly identifies the parameter values and the model selection
algorithm correctly identifies which model the data came from. We then applied the
method to the real opinion diffusion data taken from a Japanese word-of-mouth com-
munication site for cosmetics. We used the two decay functions above and added no
decay function as a baseline. The result of the analysis revealed that opinions of most
of the brands conform to the TDV model of the power-law decay function. We found
this interesting because this is consistent with the observation that many human ac-
tions are related to the power-law. Some brands showed behaviors characteristic to the
brands, e.g., the older brand that releases new product less frequently naturally follows
no decay TDV and the newer brand that releases new product more frequently natu-
rally follows the power-law decay TDV with large decay constant, which are all well
interpretable.
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