
Efficient Algorithms
for the max k-vertex cover Problem�

Federico Della Croce1 and Vangelis Th. Paschos2,3

1 D.A.I., Politecnico di Torino, Italy
federico.dellacroce@polito.it

2 PSL Research University, Université Paris-Dauphine, LAMSADE, CNRS,
UMR 7243, France

paschos@lamsade.dauphine.fr
3 Institut Universitaire de France

Abstract. We first devise moderately exponential exact algorithms for
max k-vertex cover, with time-complexity exponential in n but with
polynomial space-complexity by developing a branch and reduce method
based upon the measure-and-conquer technique. We then prove that,
there exists an exact algorithm for max k-vertex cover with com-
plexity bounded above by the maximum among ck and γτ , for some
γ < 2, where τ is the cardinality of a minimum vertex cover of G (note
that max k-vertex cover /∈ FPT with respect to parameter k unless
FPT = W[1]), using polynomial space. We finally study approxima-
tion of max k-vertex cover by moderately exponential algorithms.
The general goal of the issue of moderately exponential approxima-
tion is to catch-up on polynomial inapproximability, by providing al-
gorithms achieving, with worst-case running times importantly smaller
than those needed for exact computation, approximation ratios unachiev-
able in polynomial time.

1 Introduction

In the max k-vertex cover problem a graph G(V, E) with |V | = n vertices
1, . . . , n and |E| edges (i, j) is given together with an integer value k < n. The
goal is to find a subset K ⊂ V with cardinality k, that is |K| = k, such that
the total number of edges covered by K is maximized. In its decision version,
max k-vertex cover can be defined as follows: “given G, k and �, does G
contain k vertices that cover at least � edges?”. max k-vertex cover is NP-
hard (it contains the minimum vertex cover problem as particular case), but it is
polynomially approximable within approximation ratio 3/4, while it cannot be
solved by a polynomial time approximation schema unless P = NP. The inter-
ested reader can be referred to [19,30] for more information about approximation
issues for this problem.
� Research supported by the French Agency for Research under the program TODO,

ANR-09-EMER-010 and by a Lagrange fellowship of the Fondazione CRT, Torino,
Italy.

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 295–309, 2012.
c© IFIP International Federation for Information Processing 2012

296 F. Della Croce and V.T. Paschos

In the literature, we often find this problem under the name partial vertex
coverproblem. It ismainly studied fromaparameterized complexity point of view
(see [17] for information on fixed-parameter (in)tractability). A problem is fixed-
parameter tractablewith respect to a parameter t, if it canbe solved (to optimality)
with time-complexity O(f(t)p(n)) where f is a function that depends on the pa-
rameter t, and p is a polynomial on the size n of the instance. In what follows, when
dealing with fixed parameter tractability of max k-vertex cover, we shall use
notation max k-vertex cover(t) to denote that we speak about fixed parame-
ter tractability with respect to parameter t. Parameterized complexity issues for
max k-vertex cover are first studied in [3] where it is proved that partial ver-
tex cover is fixed-parameter tractable with respect to parameter �, next in [28]
where it is proved that it is W[1]-hard with respect to parameter k (another proof
of the same result can be found in [9]) and finally in [31] where the fixed-parameter
tractability results of [3] are further improved. Let us also quote the paper by [24],
where it is proved that in apex-minor-free graphs graphs, partial vertex cover
can be solved with complexity that is subexponential in k.

The seminal Courcelle’s Theorem [13] (see also [21,20] as well as [37] for a com-
prehensive study around this theorem) assures that decision problems defined
on graphs that are expressible in terms of monadic second-order logic formulæ
are fixed parameter tractable when the treewidth1 of the the input-graph G,
denoted by w, is used as parameter. Courcelle’s Theorem can be also extended
to a broad class of optimization problems [1]. As max k-vertex cover be-
longs to this class, it is fixed parameter tractable with respect to w. In most
of cases, “rough” application of this theorem, involves very large functions f(w)
(see definition of fixed-parameter tractability given above).

In [34], it is proved that given a nice tree decomposition, there exists a fixed-
parameter algorithm (based upon dynamic programming), with respect to param-
eter w that solves max k-vertex cover in time O(2wk(w2 +k) · |I|), where |I|
is the number of nodes of the nice tree decomposition and in exponential space.
In other words, max k-vertex cover(w) ∈ FPT, but the fixed-parameter
algorithm of [34] uses exponential space. Let us note that in any graph G, de-
noting by τ the size of a minimum vertex cover of G, it holds that w � τ . So,
max k-vertex cover(τ) ∈ FPT too, but through the use of exponential space
(recall that, as adopted above, max k-vertex cover(τ) denotes the max k-
vertex cover problem parameterized by the size τ of a minimum vertex cover.

Very frequently, a serious problem about fixed-parameter tractability with
respect to w is that it takes too much time to compute the “nice tree decomposi-
tion” that also derives the value of w. More precisely, this takes time O∗(1.7549n)

1 A tree decomposition of a graph G(V, E) is a pair (X, T) where T is a tree on
vertex set V (T) the vertices of which we call nodes and X = ({Xi : i ∈ V (T)})
is a collection of subsets of V such that: (i) ∪i∈V (T)Xi = V , (ii) for each edge
(v, w) ∈ E, there exist an i ∈ V (T) such that {v, w} ∈ Xi, and (iii) for each v ∈ V ,
the set of nodes {i : v ∈ Xi} forms a subtree of T . The width of a tree decomposition
({Xi : i ∈ V (T)}, T) equals maxi∈V (T){|Xi| − 1}. The treewidth of a graph G is the
minimum width over all tree decompositions of G.

Efficient Algorithms for the max k-vertex cover Problem 297

(notation O∗(·) ignores polynomial factors) by making use of exponential space
and time O∗(2.6151n) by making use of polynomial space [25]. Note that the
problem of deciding if the treewidth of a graph is at most w is fixed-parameter
tractable and takes time O(2O(w3)n) [33].

Dealing with solution of max k-vertex cover by exact algorithms with run-
ning times (exponential) functions of n, let us note that a trivial optimal algo-
rithm for max k-vertex cover takes time O∗(

(
n
k

)
) = O∗(nk), and polynomial

space, producing all the subsets of V of size k. This turns to a worst-case O∗(2n)
time (since

(
n
k

)
� 2n with equality for k = n

2). An improvement of this bound is
presented in [9], where an exact algorithm with complexity O∗(nω�k/3�+O(1)) was
proposed based upon a generalization of the O∗(nωt) algorithm of [35] for finding
a 3t-clique in a graph, where ω = 2.376. This induces a complexity O∗(n0.792k),
but exponential space is needed. As far as we know, no exact algorithm with
running time O∗(γn), for some γ < 2, is known for max k-vertex cover.

In this paper, we first devise an exact branch and reduce algorithm based
upon the measure-and-conquer paradigm by [22] (Section 2) requiring running
time O∗(2

Δ−1
Δ+1 n), where Δ denotes the maximum degree of G, and polynomial

space. The algorithm is then tailored to graphs with maximum degree 3 in-
ducing a running time O∗(1.3339n) (Section 4). In Section 3, we devise a fixed
parameter algorithm, with respect to parameter τ where, as mentioned above, τ
is the cardinality of a minimum vertex cover of G that works in time O∗(2τ)
and needs only polynomial space. By elaborating a bit more this result we then
show that the time-complexity of this algorithm is indeed either O∗(γτ) for some
γ < 2 or O∗(ck), for some c > 2. In other words, this algorithm either works
in time better than 2τ or it is fixed parameter with respect to the size k of
the desired cover. Finally, we show that the technique used for proving that
max k-vertex cover(τ) ∈ FPT, can be used to prove inclusion in the same
class of many other well-known combinatorial problems. A corollary of the in-
clusion of max k-vertex cover(τ) in FPT, is that max k-vertex cover in
bipartite graphs can be solved in time O∗(2n/2) � O∗(1.414n). Finally, in Sec-
tion 5, we address the question of approximating max k-vertex cover within
ratios “prohibited” for polynomial time algorithms, by algorithms running with
moderately exponential complexity. The general goal of this issue is to cope
with polynomial inapproximability, by developing algorithms achieving, with
worst-case running times significantly lower than those needed for exact com-
putation, approximation ratios unachievable in polynomial time. This approach
has already been considered for several other paradigmatic problems such as
minimum set cover [7,15], min coloring [2,6], max independent set and
min vertex cover [5], min bandwidth [16,26], . . . Similar issues arise in the
field of FPT algorithms, where approximation notions have been introduced, for
instance, in [10,18]. In this framework, we particularly quote [32] where it is
proved that, although not in FPT, max k-vertex cover(k) is approximable
by an FPT (with respect to k) approximation schema, where function f(k)
(in the time-complexity of this schema) is quite large, i.e., around something
like O∗(k2k2

).

298 F. Della Croce and V.T. Paschos

2 An O∗(2
Δ−1
Δ+1

n)-Time Polynomial Space Algorithm in
General Graphs

In what follows, we denote by αj the total number of vertices adjacent to j
that have been discarded in the previous levels of the search tree. We denote
by dj the degree of vertex j and by N(j) the set of vertices adjacent to j,
that is the neighborhood of j. Notice that, whenever a branch on a vertex j
occurs, for each l ∈ N(j), if j is selected then dl is decreased by one unit as
edge (j, l) is already covered by j. Alternatively, j is discarded: correspondingly dl

is not modified and αl is increased by one unit. We propose in this section a
branch and reduce approach based on the measure-and-conquer paradigm (see
for instance [22]). Consider a classical binary branching scheme on some vertex j
where j is either selected or discarded. Contrarily to the classical branch-and-
reduce paradigm where for each level of the search tree we define as fixed those
vertices that have already been selected or discarded, while we define as free
the other vertices, when using measure-and-conquer, we do not count in the
measure the fixed vertices, namely the vertices that have been either selected or
discarded at an earlier stage of the search tree and we count with a weight wh

the free vertices h. The vertex j to be selected is the one with largest coefficient
cj = dj − αj . Let cmax denote such a coefficient, hence cmax � Δ. Then, each
free vertex h is assigned a weight wh = w[i] with i = ci = dh−αh and we impose
w[0] � w[1] � w[2] � w[3] � . . . � w[cmax] = 1 that is the weights of the vertices
are strictly increasing in their cj coefficients.

We so get recurrences on the time T (p) required to solve instances of size p,
where the size of an instance is the sum of the weights of its vertices. Since
initially p = n, the overall running time is expressed as a function of n. This is
valid since when p = 0, there are only vertices with weight w[0] in the graph and,
in this case, the problem is immediately solved by selecting the k − γ vertices
with largest αj (if γ < k vertices have been selected so far). Correspondingly
free vertices j with no adjacent free vertices receive weight w[0] = 0.

We claim that max k-vertex cover can be solved with running time
O∗(2

Δ−1
Δ+1 n) by the following algorithm called MAXKVC:

Select j such that cj is maximum and branch according to the following
exhaustive cases:
1. if cj � 3, then branch on j and either select or discard j;
2. else, cj � 2 and MAXKVC is polynomially solvable.

Theorem 1. Algorithm MAXKVC solves max k-vertex cover with running
time O∗(2

Δ−1
Δ+1 n) using polynomial space.

Proof. To prove the above statement, we first show that the branch in step 1 can
be solved with complexity O∗(2

Δ−1
Δ+1 n) and then we show that step 2 is polyno-

mially solvable. Consider step 1. We always branch on the vertex j with largest
cj = cmax � Δ where cj � 3 and either we select or discard j. If we select j,
vertex j is fixed and cmax vertices (the neighbors of j) decrease their degree (and

Efficient Algorithms for the max k-vertex cover Problem 299

correspondingly their coefficient) by one unit. Similarly, if we discard j, vertex j
is fixed and cmax vertices (the neighbors of j) decrease their coefficient as their
degree remains unchanged but their α parameter is increased by one unit. Hence,
the recurrence becomes:

T (p) � 2T

⎛

⎝p − w[cmax] −
∑

h∈N(j)

(
w[ch] − w[ch−1]

)
⎞

⎠

By constraining the weights to satisfy the inequality:

w[j] − w[j−1] � w[j−1] − w[j−2] ∀j = 2, . . . , cmax

the previous recurrence becomes in the worst-case:

T (p) � 2T
(
p − w[cmax] − cmax

(
w[cmax] − w[cmax−1]

))

As cmax � Δ, where the equality occurs when αj = 0, the above recurrence
becomes, in the worst-case, T (p) � 2T

(
p − w[Δ] − Δ

(
w[Δ] − w[Δ−1]

))
.

Summarizing, to handle graphs with maximum degree Δ, we need to guarantee
that the recurrences T (p) � 2T (p − w[i] − i(w[i] − w[i−1])), ∀i ∈ 3, . . . , Δ (as
cj � 3), and the constraints:

w[i] − w[i−1] � w[i−1] − w[i−2] ∀i = 2, . . . , Δ

0 = w[0] � w[1] � w[2] � w[3] � . . . � w[Δ−1] � w[Δ] = 1

are satisfied simultaneously. This corresponds to a non linear optimization prob-
lem of the form:

min α

α(w[i]+i(w[i]−w[i−1])) � 2 ∀i = 3, . . . , Δ (1)
w[i] − w[i−1] � w[i−1] − w[i−2] ∀i = 2, . . . , Δ (2)
0 = w[0] � w[1] � w[2] � w[3] � . . . � w[Δ−1] � w[Δ] = 1 (3)

We so get performances 1.4142n, for Δ = 3, 1.5157n, for Δ = 4, 1.5866n, for
Δ = 5, 1.6405n, for Δ = 6, 1.6817n, for Δ = 7, or 1.7143n, for Δ = 8.

Interestingly enough, for all these values of Δ, the complexity corresponds to
O∗(2

Δ−1
Δ+1 n). Indeed, this is not accidental. By setting:

w[i] =
(i − 1)(Δ + 1)
(i + 1)(Δ − 1)

∀i = 2, . . . , Δ (4)

w[1] =
1
2
w[2] (5)

w[0] = 0 (6)

we can see that constraints (2) and (3) are satisfied. To see that inequalities (2)
are satisfied, notice that:

w[3] − w[2] = w[2] − w[1] =
1
3
w[3]

w[2] − w[1] = w[1] − w[0] = w[1]

300 F. Della Croce and V.T. Paschos

For the general recursion with i � 4, we have to show that w[i] − w[i−1] �
w[i−1] − w[i−2], i.e., that w[i] − 2w[i−1] + w[i−2] � 0. This corresponds to:

(
i − 1
i + 1

− 2
i − 2

i
+

i − 3
i − 1

) (
Δ + 1
Δ − 1

)
� 0

=⇒ i − 1
i + 1

− 2
i − 2

i
+

i − 3
i − 1

� 0

⇐⇒ i(i − 1)2 − 2(i − 2)
(
i2 − 1

)
+ i(i − 3)i + 1 � 0

⇐⇒ i3 − 2i2 + i − 2i3 + 4i2 + 2i − 4 + i3 − 2i2 − 3i = −4 � 0, ∀i

Also, to see that inequalities (3) are satisfied, notice that equations (4) imply:

w[Δ] = 1
w[i] > 0 ∀i = 2, . . . , Δ

w[i] > w[i−1] ∀i = 3, . . . , Δ

while equations (5) and (6) imply w[2] > w[1] > w[0] = 0.
Finally, notice that such values of w[j]s satisfy constraints (1) that now cor-

respond to Δ − 2 copies of the inequality α
Δ+1
Δ−1 � 2 where the minimum value

of α is obviously given by 2
Δ−1
Δ+1 n. Consequently, the overall complexity of step 1

is O∗(2
Δ−1
Δ+1 n).

We consider now step 2. For cj = cmax � 2, max k-vertex cover can be
seen as a maximum weighted k-vertex cover problem in an undirected graph G
where each vertex j has a weight αj and a degree dj = cj and the maximum
vertex degree is 2. But this problem has been shown to be solvable in O(n) time
by dynamic programming in [36]. �

3 max k-vertex cover and Fixed-Parameter
Tractability

Denote by (a − b − c), a branch of the search tree where vertices a and c are
selected and vertex b is discarded. Consider the vertex j with maximum degree Δ
and neighbors l1, . . . , lΔ. As j has maximum degree, we may assume that if there
exists an optimal solution of the problem where all neighbors of j are discarded,
then there exists at least one optimal solution where j is selected. Hence, a
branching scheme (called basic branching scheme) on j of type:

[
l1,

(
l1 − l2

)
, . . . ,

(
l1 − l2 − . . . − lΔ−1 − lΔ

)
,
(
l1 − l2 − . . . − lΔ − j

)]

can be applied. Hence, the following easy but interesting result holds.

Proposition 1. The max k-vertex cover problem can be solved to optimality
in O∗(Δk).

Efficient Algorithms for the max k-vertex cover Problem 301

Proof. Consider vertex j with maximum degree Δ and neighbors l1, . . . , lΔ where
the basic branching scheme of type [l1, (l1 − l2), (l1 − l2 − l3), . . . , (l1 − l2 − . . .−
lΔ−1 − lΔ), (l1 − l2 − . . . − lΔ − j)] can be applied. Then, the last two branches
can be substituted by the branch (l1 − l2 − . . . − lΔ−1 − j) as, if all neighbors
of j but one are not selected, any solution including the last neighbor lΔ but not
including j is not better than the solution that selects j.

Now, one can see that the basic branching scheme generates Δ nodes. On the
other hand, we know that in each branch of the basic branching scheme at least
one vertex is selected. As, at most k nodes can be selected, the overall complexity
cannot be superior to O∗(Δk). �

Corollary 1. max k-vertex cover(k) in bounded degree graphs is in FPT.

Note that Corollary 1 can also be proved without reference to Proposition 1.
Indeed, in any graph of maximum degree Δ, denoting by � the value of an
optimal solution for max k-vertex cover, � � kΔ. Then, taking ito account
that max k-vertex cover(�) ∈ FPT, immediately derives Corollary 1.

Now, let V ′ ⊂ V be a minimum vertex cover of G and let τ be the size
of V ′ that is τ = |V ′|. Correspondingly, let I = V \ V ′ be a maximum indepen-
dent set of G and set α = |I|. Notice that V ′ can be computed, for instance,
in O∗(1.2738τ) time by means of the fixed-parameter algorithm of [12], and us-
ing polynomial space. Let us note that we can assume k � τ . Otherwise, the
optimal value � for max k-vertex cover would be equal to |E| and one could
compute a minimum vertex cover V ′ in G and then one could arbitrarily add
k − τ vertices without changing the value of the optimal solution.

Theorem 2. The following two assertions hold for max k-vertex cover:

1. there exists an O∗(2τ)-time algorithm that uses polynomial space;
2. there exists an algorithm running in time O∗(max{γτ , ck}), for two constants

γ < 2 and c > 4, and needing polynomial space.

Proof. For proving item 1, fix some minimum vertex cover V ′ of G and consider
some solution K for max k-vertex cover, i.e., some set of k vertices of G. Any
such set is distributed over V ′ and its associated independent set I = V \ V ′.
Fix now an optimal solution K∗ of max k-vertex cover and denote by S′ the
subset of V ′ that belongs to K∗ (S′ can be eventually the empty set) and by I ′

the part of K∗ belonging to I. In other words, the following hold:

K∗ = S′ ∪ I ′

S′ ⊆ V ′

I ′ ⊆ I = V \ V ′

Given S′ (assume |S′| = k′), it can be completed into K∗ in polynomial time.
Indeed, for each vertex i belonging to I we need simply to compute (in linear
time) the total number ei of edges (i, j) for all j ∈ V ′\S′. Then, I ′ is obtained by
selecting the k−k′ vertices of I with largest ei value. So, the following algorithm
can be used for max k-vertex cover:

302 F. Della Croce and V.T. Paschos

1. compute a minimum vertex cover V ′ (using the algorithm of [11]);
2. for every subset S′ ⊆ V ′ of cardinality at most k, take the k − |S′| vertices

of V \ V ′ with the largest degrees to V ′ \ S′; denote by I ′ this latter set;
3. return the best among the sets S′ ∪ I ′ so-computed (i.e., the set that covers

the maximum of edges).

Step 1 takes time O∗(1.2738τ), while step 2 has total running time O∗(
∑k

i=1

(
τ
i

)
)

that is at most O∗(2τ).
Note that, from item 1 of Theorem 2, it can be immediately derived that max

k-vertex cover can be solved to optimality in O∗(2
Δ−1

Δ n) time. Indeed if a
graph G has maximum degree Δ, then for the maximum independent set we
have α � n

Δ . Also, we can assume that G is not a clique on Δ + 1 vertices (note
that max k-vertex cover is polynomial in cliques). In this case, G can be
colored with Δ colors [8]. In such a coloring the cardinality of the largest color is
greater than n

Δ and, a fortiori, so is the cardinality of a maximum independent
set (since each color is an independent set). Consequently, τ � Δ−1

Δ n.
In what follows, we improve the analysis of item 1 and prove item 2 that

claims, informally, the instances of max k-vertex cover that are not fixed-
parameter tractable (with respect to k) are those solved with running time better
than O∗(2τ).

For this observe that the running time of the algorithm in the proof of item 1
is O∗(

∑k
i=1

(
τ
i

)
). As mentioned above, k can be assumed to be smaller than,

or equal to, τ . Consider some positive constant λ < 1/2. We distinguish the
following two cases: τ > k � λτ and k < λτ .

If τ > k � λτ , then τ � k/λ. As λ < 1/2, k/λ > 2k and, since i � k, we get
using Stirling’s formula:

k∑

i=1

(
τ

i

)
�

k∑

i=1

(
k/λ

i

)
� k

(
k/λ

k

)
∼ k

k
λ

k
λ

kk
(

k
λ − k

)(k
λ−k)

= k

⎛

⎝
1
λ

1
λ

(
1
λ − 1

)(1
λ−1)

⎞

⎠

k

= O∗ (
ck

)
(7)

for some constant c that depends on λ and it is fixed if λ is so.
If k < λτ , then, by the hypothesis on λ, 2k < τ and, since i � k, expres-

sion
∑k

i=1

(
τ
i

)
is bounded above by k

(
τ
k

)
. In all, using also Stirling’s formula the

following holds:
k∑

i=1

(
τ

i

)
� k

(
τ

k

)
� k

(
τ

λτ

)
∼ k

ττ

(λτ)(λτ)[(1 − λ)τ](1−λ)τ

= k

(
1

λλ(1 − λ)(1−λ)

)τ
λ<1/2

< O∗ (2τ) (8)

In other words, if k < λτ , then max k-vertex cover can be solved in time
at most O∗(γτ), for some γ that depends on λ and is always smaller than 2 for
λ < 1/2.

Efficient Algorithms for the max k-vertex cover Problem 303

Table 1. The values of c and γ for some values of λ

λ 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40 0.45 0.49
1

λ
1
λ

(1
λ
−1)(

1
λ

−1)
270.47 53.00 25.81 16.74 12.21 9.48 7.66 6.36 5.38 4.61 4.11

1
λλ(1−λ)1−λ 1.06 1.22 1.38 1.53 1.65 1.75 1.84 1.91 1.96 1.99 1.9996

Expressions (7) and (8) derive the claim and conclude the proof. In Table 1
the values of c and γ are given for some values of λ. �

Let us note that the technique of item 1 of Theorem 2, that consists of deter-
mining a decomposition of the input graph into a minimum vertex cover and a
maximum independent set and then of taking a subset S′ of a minimum vertex
cover V ′ of the input-graph and of completing it into an optimal solution can
be applied to several other well-known combinatorial NP-hard problems. We
sketch here some examples:

– in min 3-dominating set (dominating set in graphs of maximum degree 3),
the set S′ is completed in the following way:
• take all the vertices in I\ΓI(S′) (in order to dominate vertices in V ′\S′);
• if there remain vertices of V ′ \ S′ not dominated yet solve a min set

cover problem considering ΓI(S′) as the set-system of the latter prob-
lem and assuming that a vertex v ∈ ΓI(S′), seen as set, contains its
neighbors in V ′ \ S′ as elements; since ΓI(S′) is the neighborhood of S′,
the degrees of its vertices to V ′ \ S′ are bounded by 2, that induces a
polynomial min set cover problem ([27]);

– in min independent dominating set, S′ is completed by the set I\ΓI(S′),
where ΓI(S′) is the set of neighbors of S′ that belong to I;

– in existing dominating clique, min dominating clique (if any), max
dominating clique (if any) and max clique, S′ can eventually be com-
pleted by a single vertex of ΓI(S′).

Theorem 3. min independent dominating set, existing dominating cli-
que, min dominating clique, max dominating clique, max clique and
min 3-dominating set can be solved in time O∗(2τ) using polynomial space.

4 Tailoring Measure-and-Conquer to Graphs with
Maximum Degree 3

Let us note that, as it is proved in [23], for any ε > 0, there exists an integer nε

such that the pathwidth of every (sub)cubic graph of order n > nε is at most
(1/6 + ε)n. Based upon the fact that there exists for max k-vertex cover(w)
an O∗(2w)-time exponential space algorithm [34], and taking into account that in
(sub)cubic graphs w � (1/6+ε)n, the following corollary is immediately derived.

304 F. Della Croce and V.T. Paschos

Corollary 2. max k-vertex cover in graphs with maximum degree 3 can be
solved in time O∗(2n/6) = O∗(1.123n) using exponential space.

In this section we tailor the measure-and-conquer approach developed in Sec-
tion 2 to graphs with Δ = 3, in order to get an improved running-time algorithm
for this case needing polynomial space. The following remark holds.

Remark 1. The graph can be cubic just once. When branching on a vertex j
of maximum degree 3, we can always assume that it is adjacent to at least one
vertex h that has already been selected or discarded. That is, either dh � 2,
or αh � 1, that is ch � 2. Indeed, the situation where the graph is 3-regular
occurs at most once (even in case of disconnection). Thus, we make only one
“bad” branching (where every free vertex of maximum degree 3 is adjacent only
to free vertices of degree 3). Such a branching may increase the global running
time only by a constant factor.

Lemma 1. Any vertex i with di � 1 and αi = 0 can be discarded w.l.o.g.

Proof. If di = αi = 0, then i can be obviously discarded. If di = 1 and αi = 0,
then i is adjacent to another free vertex h. But then, if h is selected, i becomes
of degree 0 and can be discarded. Alternatively, h is discarded, but then any
solution with i but not h is dominated by that including h instead of i. �

Lemma 2. Any vertex i with αi � 2 and di = 3 can be selected w.l.o.g.

Proof. If αi = 3, then i can be obviously selected. If di = 3 and αi = 2, then i
is adjacent to another free vertex h. But then, if h is discarded, we have αi = 3
and i can be selected. Alternatively, h is selected, but then any solution with h
but not i is dominated by that including i instead of h. �

To solve max k-vertex cover on graphs with Δ = 3, consider the following
algorithm, called MAXKVC-3.

Select j such that cj is maximum and branch according to the following
exhaustive cases:
1. if cj = 3, assume, w.l.o.g., that j is adjacent to i, l, m free vertices

with ci � 2 (see in [14]) and ci � cl � cm, and branch on j according
to the following exhaustive subcases:
(a) ci = cl = cm = 1
(b) ci = cl = 1, cm = 2
(c) ci = cl = 1, cm = 3
(d) ci = 1, cl = cm = 2 with l, m adjacent
(e) ci = 1, cl = cm = 2 with l, m non adjacent
(f) ci = 1, cl = 2, cm = 3
(g) ci = cl = 2, cm = 3 with i, l adjacent
(h) ci = cl = 2, cm = 3 with i, l non adjacent
(i) ci = 2, cl = cm = 3

2. else cj � 2 and MAXKVC-3 is polynomially solvable.

Efficient Algorithms for the max k-vertex cover Problem 305

The following Theorem 4 holds in graphs with maximum degree 3 (due to space
constraints, the proof is omitted; it can be found in [14]).

Theorem 4. Algorithm MAXKVC-3 solves max k-vertex cover on graphs with
maximum degree 3 with running time O∗(1.3339n) and using polynomial space.

5 Approximating max k-vertex cover by Moderately
Exponential Algorithms

We now show how one can get approximation ratios non-achievable in polynomial
time using moderately exponential algorithms with worst-case running times
better than those required for an exact computation (see [4,5] for more about
this issue). Denote by opt(G) the cardinality of an optimal solution for max k-
vertex cover in G and by m(G), the cardinality of an approximate solution.
Our goal is to study the approximation ratio m(G)/ opt(G).

In what follows, we denote, as previously, by K∗ the optimal solution for
max k-vertex cover. Given a set K of vertices, we denote by C(K), the set of
edges covered by K (in other words, the value of a solution K for max k-vertex
cover is |C(K)|; also, according to our previous notation, opt(G) = |C(K∗)|).
We first prove the following easy lemma that will be used later.

Lemma 3. For any λ ∈ [0, 1], the subset H∗ of λk vertices of K∗ covering the
largest amount of edges covered by K∗, covers at least λ opt(G) edges.

Proof. Indeed, if the λk “best” vertices of K∗ cover less than λ opt(G) edges,
then any disjoint union of k/λ subsets of K∗, each of cardinality λk covers less
than opt(G) edges, a contradiction. �

Now, run the following algorithm, called APPROX in what follows:

1. fix some λ ∈ [0, 1] and optimally solve max λk-vertex cover in G (as
previously, let H∗ be the optimal solution built and C(H∗) be the edge-set
covered by H∗);

2. remove H∗ and C(H∗) from G and approximately solve max (1 − λ)k-
vertex cover in the surviving graph (by some approximation algorithm);
let K ′ be the obtained solution;

3. output K = H∗ ∪ K ′.

It is easy to see that if T (p, k) is the running time of an optimal algorithm
for max k-vertex cover, where p is some parameter of the input-graph G
(for instance, n, or τ), then the complexity of APPROX is T (p, λk). Furthermore,
APPROX requires polynomial space.

Theorem 5. If T (p, k) is the running time of an optimal algorithm for max k-
vertex cover, then, for any ε > 0, max k-vertex cover can be approximated
within ratio 1 − ε with worst-case running time T (p, (1 + 2

√
1 − 3ε)k/3) and

polynomial space.

306 F. Della Croce and V.T. Paschos

Proof. Denote by K∗ an optimal solution of max k-vertex cover in G, by G2

the induced subgraph G[V \H∗] of G, by opt(1−λ)(G2), the value of an optimal
for max (1 − λ)k-vertex cover in G2. Suppose that E′ edges are common
between C(H∗) and C(K∗). This means that C(K∗) \ E′ edges of C(K∗) are
in G2 and are exclusively covered by the vertex-set L∗ = K∗ \ H∗ that belongs
to G2. Set �∗ = |L∗| and note that �∗ � k and �∗ � (1 − λ)k.

According to Lemma 3, the (1 − λ)k “best” vertices of L∗ cover more than
(1 − λ)|C(K∗) \ E′| = (1 − λ)(opt(G) − |E′|) edges in G2 and these vertices
constitute a feasible solution for max (1 − λ)k-vertex cover in G2. Hence:

opt(1−λ) (G2) � (1 − λ) (opt(G) − |E′|) (9)

Taking into account (9), the fact that K ′ in step 2 of APPROX has been computed
by, say, a ρ-approximation algorithm and the fact that |E′| � |C(H∗)|, we get:

m(G) = C (H∗) + C (K ′) � C (H∗) + ρ(1 − λ)opt(1−λ) (G2)

� C (H∗) + ρ(1 − λ) (opt(G) − |E′|)C (H∗)
+ ρ(1 − λ) (opt(G) − C (H∗))

� (1 − ρ(1 − λ))C (H∗) + ρ(1 − λ) opt(G) (10)

Using once more Lemma 3, |C(H∗)| � λ opt(G), and combining it with (10), we
get:

m(G)
opt(G)

� ρ(1 − λ) + λ(1 − ρ(1 − λ)) (11)

Setting ρ = 3
4 in (11), in order to achieve an approximation ratio m(G)/ opt(G) =

1 − ε, for some ε > 0, we have to choose an λ satisfying λ = (1 + 2
√

1 − 3ε)/3,
that completes the proof of the theorem. �

Corollary 3. max k-vertex cover can be approximated within ratio 1−ε and
with running time:

min
{

O∗
(
n(1+2

√
1−3ε)(ωk)/9

)
, O∗

(
τ(

1 + 2
√

1 − 3ε
)
k/3

)}

and polynomial space.

For Corollary 3, just observe that the running-times claimed for the first two
entries are those needed to optimally solve max λk-vertex cover (the former
due to [9] and the latter due to item 1 of Theorem 2). Note that the second
term in the min expression in the corollary is an FPT approximation schema
(with respect to parameter τ). Observe also that for the cases where the time
needed for solving max k-vertex cover is given by the ck expression of item 1
of Theorem 2, this represents an improvement with respect to the FPT approx-
imation schema of [32]. Note finally that the result of Theorem 5 is indeed a
kind of reduction between moderately exponential (or parameterized) approx-
imation and exact (or parameterized) computation for max k-vertex cover

Efficient Algorithms for the max k-vertex cover Problem 307

in the sense that exact solution on some subinstance of the problem derives an
approximation for the whole instance.

Finally, let us close this section and the paper by some remarks on what kind
of results can be expected in the area of (sub)exponential approximation. All the
algorithms given in this section have exponential running time when we seek for
a constant approximation ratio (unachievable in polynomial time). On the other
hand, for several problems that are hard to approximate in polynomial time (like
max independent set, min coloring, . . .), subexponential time can be easily
reached for ratios depending on the input-size (thus tending to ∞, for minimiza-
tion problems, or to 0, for maximization problems). An interesting question is to
determine, for these problems, if it is possible to devise a constant approxima-
tion algorithm working in subexponential time. An easy argument shows that
this is not always the case. For instance, the existence of subexponential approx-
imation algorithms (within ratio better than 4/3) is quite improbable for min
coloring since it would imply that 3-coloring can be solved in subexponen-
tial time, contradicting so the “exponential time hypothesis” [29]. We conjecture
that this is true for any constant ratio for min coloring. Anyway, the possibil-
ity of devising subexponential approximation algorithms for NP-hard problems,
achieving ratios forbidden in polynomial time or of showing impossibility of such
algorithms is an interesting open question that deserves further investigation.

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

2. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

3. Bläser, M.: Computing small partial coverings. Inform. Process. Lett. 85(6), 327–
331 (2003)

4. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation by “low-
complexity” exponential algorithms. Cahier du LAMSADE 271, LAMSADE, Uni-
versité Paris-Dauphine (December 2007),
http://www.lamsade.dauphine.fr/cahiers/PDF/cahierLamsade271.pdf

5. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient Approximation of Combina-
torial Problems by Moderately Exponential Algorithms. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 507–518.
Springer, Heidelberg (2009)

6. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation of min color-
ing by moderately exponential algorithms. Inform. Process. Lett. 109(16), 950–954
(2009)

7. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation of min set
cover by moderately exponential algorithms. Theoret. Comput. Sci. 410(21-23),
2184–2195 (2009)

8. Brooks, R.L.: On coloring the nodes of a network. Math. Proc. Cambridge Philos.
Soc. 37, 194–197 (1941)

9. Cai, L.: Parameter complexity of cardinality constrained optimization problems.
The Computer Journal 51, 102–121 (2008)

http://www.lamsade.dauphine.fr/cahiers/PDF/cahierLamsade271.pdf

308 F. Della Croce and V.T. Paschos

10. Cai, L., Huang, X.: Fixed-Parameter Approximation: Conceptual Framework and
Approximability Results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)

11. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improve-
ments. J. Algorithms 41, 280–301 (2001)

12. Chen, J., Kanj, I., Xia, G.: Improved upper bounds for vertex cover. Theoret.
Comput. Sci. 411(40-42), 3736–3756 (2010)

13. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

14. Croce, F.D., Paschos, V.T.: On the max k-vertex cover problem. Cahier du LAM-
SADE 307, LAMSADE, Université Paris-Dauphine (2011)

15. Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted
set cover. Inform. Process. Lett. 109(16), 957–961 (2009)

16. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoret. Comput.
Sci. 411(40–42), 3701–3713 (2010)

17. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

18. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized Approximation Prob-
lems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 121–129. Springer, Heidelberg (2006)

19. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

20. Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results and
Directions in Parameter Ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)

21. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
Layout Problems Parameterized by Vertex Cover. In: Hong, S.-H., Nagamochi,
H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer,
Heidelberg (2008)

22. Fomin, F., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. Assoc. Comput. Mach. 56(5), 1–32 (2009)

23. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inform.
Process. Lett. 97(5), 191–196 (2006)

24. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. Inform. Process. Lett. 111(16), 814–818 (2011)

25. Fomin, F.V., Villanger, Y.: Treewidth Computation and Extremal Combinatorics.
In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 210–221. Springer,
Heidelberg (2008)

26. Fürer, M., Gaspers, S., Kasiviswanathan, S.P.: An Exponential Time 2-
Approximation Algorithm for Bandwidth. In: Chen, J., Fomin, F.V. (eds.) IWPEC
2009. LNCS, vol. 5917, pp. 173–184. Springer, Heidelberg (2009)

27. Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman, San
Francisco (1979)

28. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized Complexity of Generalized
Vertex Cover Problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

29. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. System Sci. 63(4), 512–530 (2001)

30. Jäger, G., Srivastav, A.: Improved approximation algorithms for maximum graph
partitioning problems. J. Comb. Optim. 10(2), 133–167 (2005)

Efficient Algorithms for the max k-vertex cover Problem 309

31. Kneis, J., Langer, A., Rossmanith, P.: Improved Upper Bounds for Partial Vertex
Cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)

32. Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51(1), 60–78 (2008)

33. Marx, D.: Fixed parameter algorithms. Open lectures for PhD students in computer
science (January 2010)

34. Moser, H.: Exact algorithms for generalizations of vertex cover. Master’s the-
sis, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena
(2005)

35. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment.
Math. Univ. Carolinae, 415–419 (1985)

36. Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for
weighted vertex cover. J. Algorithms 47(2), 63–77 (2003)

37. Praveen, M.: Logic, Courcelle’s theorem and application. IMPECS School on Pa-
rameterized and Exact Computation (December 2010)

	Efficient Algorithmsfor the max k-vertex cover Problem
	Introduction
	An O*(2-1+1n)-Time Polynomial Space Algorithm in General Graphs
	max k-vertex cover and Fixed-Parameter Tractability
	Tailoring Measure-and-Conquer to Graphs with Maximum Degree 3
	Approximating max k-vertex cover by Moderately Exponential Algorithms
	References

