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Abstract. Multi-task learning has been widely studied in machine learn-
ing due to its capability to improve the performance of multiple related
learning problems. However, few researchers have applied it on the im-
portant metric learning problem. In this paper, we propose to couple
multiple related metric learning tasks with von Neumann divergence. On
one hand, the novel regularized approach extends previous methods from
the vector regularization to a general matrix regularization framework;
on the other hand and more importantly, by exploiting von Neumann
divergence as the regularizer, the new multi-task metric learning has the
capability to well preserve the data geometry. This leads to more ap-
propriate propagation of side-information among tasks and provides po-
tential for further improving the performance. We propose the concept
of geometry preserving probability (PG) and show that our framework
leads to a larger PG in theory. In addition, our formulation proves to
be jointly convex and the global optimal solution can be guaranteed.
A series of experiments across very different disciplines verify that our
proposed algorithm can consistently outperform the current methods.
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1 Introduction

Metric learning has been widely studied in machine learning due to its impor-
tance in many machine learning tasks [6,10]. The objective of metric learning
is to learn a proper metric function from data, usually a Mahalanobis distance
defined as dA(x,y) =

√
(x− y)�A(x − y), while satisfying certain extra con-

straints called side-information, e.g., similar (dissimilar) points should stay closer
(further). On the other hand, multi-task learning (MTL), which refers to the
joint training of multiple problems, has recently received considerable atten-
tion [4,8,11]. If the different problems are closely related, MTL could lead to
better performance by propagating information among tasks.

Despite their importance, there are few researches combining multi-task learn-
ing with metric learning. To our best knowledge, only recently [8], [12], and [11]
developed a multi-task metric learning framework separately. [8] proposed a novel
multi-task framework called mtLMNN which directly extends the famous metric
learning method Large Margin Nearest Neighbor (LMNN) [10]. Assuming the
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metric of each task to be a combination of a common and a task-specific metric,
mtLMNN proposed to learn the metrics jointly for all the tasks. Exploiting fur-
ther the Frobenius norm as the regularization term to encourage the similarity
among all tasks, mtLMNN indeed showed promising performance in several real
datasets. On the other hand, [12] first concatenated all columns of each Maha-
lanobis matrix At for each task t to form a vector Ãt = vec (At). Tasks are then
coupled with each other by tr

(
ÃΩ−1Ã�

)
where Ã = [vec (A1) , . . . , vec (AT )].

The author explained this method from a probabilistic viewpoint while failing
to validate it empirically. In another aspect, [11] assumed that the useful infor-
mation of all tasks share a common low-rank subspace. By jointly learning the
metrics in this common subspace, the performances of all tasks are improved.

All the above methods have some limitations. When describing the task re-
lationship, the former two methods exploited merely simple vector-based diver-
gence measures. More specifically, if we concatenated all columns of each matrix
as a vector, in [8], Frobenius norm between two matrices simply presents the Eu-
clidean distance, while, in [12], the divergence is given as the weighted Euclidean
distance. Vector-based divergence may not be powerful enough to measure the
relationship between matrices or distance metrics. It cannot preserve the data
geometry and will lead to inaccurate information propagation among tasks. For
[11], since the formulation is not convex, the global optimal solution is not guar-
anteed. Besides, the assumption is too strict in some cases.

For a better illustration of the above mentioned phenomenon, we show in
Fig. 1 three graphs associated with different distance metrics, determined by
a Mahalanobis matrix B, A1, and A2 respectively for each graph (from left to
right). To visualize the Mahalanobis metric in the Euclidean space, we transform
each point xi to x̂i = A1/2xi when plotting so that the Euclidean distance of any
pair of transformed points ‖x̂i− x̂j‖2 is exactly the Mahalanobis distance of the
original points dA(xi,xj). Geometrically observed, the metric A2 is obviously
more similar to B than to A1. However, when calculating the similarity using
the squared Frobenius norm of difference, surprisingly, A1 is more similar to B
than to A2! This shows that minimizing Frobenius norm cannot preserve the
geometry and hence it may not be appropriate for measuring the divergence of
metrics.

Distinct with the above methods, in this paper, we engage the Bregman matrix
divergence [3] and design a more general regularized framework for multi-task

Fig. 1. Illustration of Frobenius norm for metric measurement. Using Frobenius norm,
B is more similar to A1 than to A2, showing that Frobenius norm cannot preserve the
geometry.
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metric learning. On one hand, the general framework exploited a more general
matrix divergence. We show that it naturally incorporates mtLMNN (using the
Frobenius norm) as a special case. On the other hand and more importantly, by
exploiting a special Bregman divergence called von Neumann divergence [3] as
the regularizer, the new multi-task metric learning has the capability to well pre-
serve the geometry when transferring information from one metric to another.
We define the geometry preserving probability and provide theoretical analysis
showing that our new multi-task metric learning method leads to a larger geom-
etry preserving probability and has the capability to better preserve geometry.
This enables more appropriate information propagation among tasks and hence
provides potentials for further raising the performance. In addition to the geom-
etry preserving property, the new multi-task framework with the von Neumann
divergence remains convex, provided that any convex metric learning is used.
The novel regularized multi-task metric learning framework is then justified in
the probabilistic view point with a series of theoretical analysis. Extensive ex-
perimental results across very different disciplines also verify that our proposed
algorithm can consistently outperform the current methods.

The rest of this paper is organized as follows. In Section 2, we will present the
novel multi-task metric learning framework with Bregman matrix divergence.
In Section 3, we present theoretical analysis to show our method can indeed
preserve the geometry. In Section 4, we evaluate our method across five real
data sets. Finally, we give concluding remarks in Section 5.

2 Novel Regularized Multi-task Metric Learning

In this section, we first present the problem definition and describe the objective
of multi-task metric learning formally. Then the concept of geometry preserv-
ing probability is proposed to give a mathematical measure of the capability
to preserve the relative distance between two metrics. After that, we introduce
the main work that exploits von Neumann divergence to regularize the relation-
ship among multiple tasks. Finally, we present a practical algorithm to solve the
involved optimization problem.

2.1 Problem Definition

A metric defined on set X is a function d : X × X → R+
.
= [0,+∞) satisfying

certain conditions [2]. Denoting the set containing all metrics by FX and given
any pair of metrics dA(·, ·), dB(·, ·) ∈ FX, a divergence function D : FX × FX →
R+ is defined to measure the dissimilarity of dA and dB. Since the Mahalanobis
metric dA(·, ·) is ultimately determined by the Mahalanobis matrix A, we denote
D(dA, dB) � D(A,B) for short.

Assume that there are T related metric learning tasks. For each task-t, its
training data set St contains Nt m-dimensional data points xtk ∈ Rm and
a triplet set Tt = {(i, j, k)|d(xi,xj) ≤ d(xi,xk)}. These triplets provide side-
information like relative constraints such that xi is more similar to xj than
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to xk under the new metric.1 The objective of multi-task metric learning is to
learn T proper Mahalanobis matrices At, t = 1, 2, . . . T jointly and simultane-
ously. This is significantly different from single-task metric learning where the
Mahalanobis matrix is learned independently and isolatedly.

The advantages of learning multiple metrics jointly can be illustrated in Fig. 2
where the famous single task metric learning method LMNN [10] is adopted. As-
sume different colors indicate the labels of samples and the points with (without)
a black border represent training (testing) samples. LMNN attempts to learn a
new metric to encourage the neighborhood around every point to stay “pure”.
For each point, some points with the same label are selected as targets (�)
and any point with different label is expected to stand further than each tar-
get with a large margin (the dashed perimeter). Points with different label and
lying within the margin are called imposers (�). The objective of LMNN is to
pull the target nearer and push all imposers outside the margin. Fig. 2(b)/2(f)
show the learned metric of task-1/2 where the red/green imposers are pushed
away. Unfortunately, when the training samples of green/red class are too few
to represent the distribution, some testing samples invade the perimeter in the
learned metric of task-1/2. However, as shown in Fig. 2(a) and 2(e), the samples
in both tasks have a similar distribution to each other and we expect to improve
the performance of both two tasks with help of each other. Appropriate joint
metric learning of task-1 and task-2 can lead to an ideal metric for each task.
For example, in Fig. 2(c)/2(g), the metric of task-1/2 can be well learned based
on our novel geometry preserving framework by pushing away green/red classes
with the help of task-2/1 samples. On the other hand, inappropriate multi-task
metric learning may not lead to good performance. See Fig. 2(d)/2(h) for ex-
ample, where the side-information is propagated by squared Frobenius norm of
difference of Mahalanobis matrices as mtLMNN did.

2.2 Geometry Preserving between Metrics

In Section 2.1, we have illustrated that jointly learning multiple related metrics
could benefit from the geometry preserved from other metrics. In the follow-
ing, we will propose the mathematical description of the concept of geometry
preserving.

Since the purpose of metric learning is to refine the distances among different
points based on the side-information, when we mention propagating information
among tasks by jointly learning multiple metric learning tasks, the information
propagated is nothing but the side-information embedded in the metric. On the
other hand, in most situations, the side-information specifies the relative dis-
tances between different pairs of points rather than their exact distances. For
example, one popular kind of side-information is to make similar pairs nearer
than dissimilar pairs. Thus, it is more important to propagate the relative dis-
tance of points from one task to another. Specifically, assume that we have two

1 Other settings, e.g., the constraints given by similar and dissimilar pairs could be
also used.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. An illustration of multi-task metric learning. (a/e) The original data of task
1/2. (b/f) The data of task 1/2 after single task metric learning. (c/g) The data of task
1/2 after joint metric learning using von Neumann divergence as regularizer. (d/h) The
data of task 1/2 after joint metric learning using squared Frobenius norm of difference as
regularizer. Joint learning of multiple tasks (given by our proposed geometry preserving
framework) can lead to ideal metrics for both task-1 in (c) & task-2 in (g).

metric learning tasks to learn Mahalanobis matrices A and B respectively. Given
dB(x1,x2) < dB(x3,x4), if we are going to propagate this side-information em-
bedded in dB to dA, it is desirable of dA to make the similar judgement on the
relative distance of these two pairs of points, i.e. dA(x1,x2) < dA(x3,x4). In
contrast, the exact absolute values of these distances are less important.

Based on the idea, we propose the concept of geometry preserving probability
to measure the probability of that the relative distance of arbitrary two pairs of
points can be preserved or be consistent for the two metrics.

Definition 1 (Geometry Preserving Probability). Suppose x1,y1 ∈ X and
x2,y2 ∈ X are two pairs of random points following certain distribution defined
by probability density f(x1,y1,x2,y2). If two metrics dA and dB defined on
X are used to compare the distances between each pair of points d(x1,y1) and
d(x2,y2), the probability that dA and dB make the same judgement about their
relative distance is called geometry preserving probability of dA and dB with
f . It is denoted by PGf (dA, dB) with mathematical description shown in (1).

PGf (dA, dB) =P [dA(x1,y1) > dA(x2,y2) ∧ dB(x1,y1) > dB(x2,y2)] +

P [dA(x1,y1) < dA(x2,y2) ∧ dB(x1,y1) < dB(x2,y2)]
(1)

where (x1,y1,x2,y2) ∼ f and ∧ represents the logical “and” operator.

By this definition, the larger PGf (dA, dB) is, the better the geometry is preserved
from dB to dA. In the following parts, we will propose our multi-task metric
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learning framework and then present the theoretical analysis, which shows that
our method is more liable to make PGf (dA, dB) larger and thus can better
preserve geometry. In contrast, mtLMNN focus more on propagating the absolute
distances and could not leads to a large PG as ours.

2.3 Main Framework

We describe our novel multi-task metric learning framework as follows. Assume a
common metric dc is defined and the metric of each (the t-th) task dt is enforced
to be similar to dc by a regularizer D(dt, dc). Information contained in each
metric can be propagated to others through the common metric. In case of the
Mahalanobis metric, the regularizer can be also written as D(At, B), where the
matrices At and B correspond to the t-th task and the common one respectively.
The novel framework can be formulated as

min
{At},B

∑

t

(L(At,St) + γD(At, B)) + γ0D(A0, B) s.t. At ∈ C(St), At 	 0, (2)

where L is the loss function of the training samples of the t-th task St depending
on the metric learning method, D is the divergence function to enforce the metric
of the t-th task At similar to a common metric B, and C(St) is the set of feasible
At of the t-th task, which can be defined via side-information or the triplet set
Tt. The term D(A0, B) restricts B not far from a predefined metric A0 as prior.

In this paper, we propose a framework to use the Bregman matrix diver-
gence [3] as the regularizer D(A,B) in (2), which is defined as

Dφ(A,B) = φ(A) − φ(B)− tr
(
(∇φ(B))�(A−B)

)
,

where φ : SPD(m) → R is a strictly convex, differentiable function.
It is easy to show that this framework includes mtLMNN as a special case

by using φ(A) = ‖A‖2F and replacing At 	 0 with At 	 B 	 0. However, this
method has two main drawbacks: (1) The constraints At 	 B are unnecessarily
strong for At to be a Mahalanobis matrix, which implies distance of any task
has to be larger than the distance defined by the common part. (2) It is not
appropriate to use Frobenius norm as the regularizer, since it cannot preserve
the data geometry.

To overcome these drawbacks, we use the von Neumann divergence as the
regularizer and obtain our multi-task metric learning method, where the von
Neumann divergence is defined as DvN(A,B) = tr (A logA−A logB −A+B),
where logA is the matrix logarithm2 of A.

Using our method to learn a metric A that is assumed to be similar to B, it
is more liable to obtain a solution with better geometry property preserved. We
will detail the theoretical analysis in Section 3.

2 If A = V ΛV � is the eigendecomposition of A, the matrix logarithm is V logΛV �

where logΛ is the diagonal matrix containing the logarithm of eigenvalues.
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An example. Now we revisit the example proposed in Fig. 2 where single-task
metric learning fails to learn a good metric for any task. Fig. 2(c) and 2(d) show
the data of task-1 in the metric learned using von Neumann divergence and
Frobenius norm as regularizer respectively. Obviously, when Frobenius norm is
used, although red points are pushed away, some testing points of green class
invade into the margin again and the geometry has not been preserved. In con-
trast, when von Neumann divergence is used, both testing samples of red and
green class are pushed outside the perimeter, which means the nice geometry
property from task-2 is appropriately preserved after transferred to task-1. For
task-2 shown in Fig. 2(g) and 2(h), von Neumann divergence also performs better
than Frobenius norm.

Optimization. Since von Neumann divergence is jointly convex with two ar-
guments [9], our multi-task metric learning method is jointly convex with its
arguments if L is convex with At. This means that any convex metric learning
method can be extended to our multi-task framework without losing its con-
vexity. Therefore, it guarantees a global optimal solution and we solve it by
alternating minimization method. Due to the convex, differentiable, and non-
negative properties of von Neumann divergence, it is not difficult to verify the
convergence of our algorithm.

Fix B and Optimize At. Suppose that L is convex with At, then the op-
timization is divided to T individual convex subproblems, each of which is a
single-task metric learning problem with a regularizer. In this paper, we apply
our multi-task framework to LMNN [10] metric learning approach which proved
effective in many applications.

The subproblem for the t-th task can be solved by gradient descent method
with ∂L̃t

∂At
= ∂L

∂At
+γ ∂DvN

∂At
= ∂L

∂At
+γ(logAt− logB). The first part is the gradient

of a single-task metric learning problem, while the second part enforces At to be
similar to a common matrix B.

Fix At and Optimize B. If all At are fixed, the variable to be optimized is B.
With [1], the optimal solution of B is called the Bregman representative in case
of matrix variables. It is straightforward to prove that Proposition 1 of [1] can
be extended to the case of matrix and the minimizer is the weighted average of
{At} and A0 as B = (γ

∑
t At + γ0A0)/(γT + γ0).

3 Theoretical Analysis

In this section, we analyze our multi-task metric learning method theoretically,
showing how the von Neumann divergence encourages a larger geometry preserv-
ing probability and thus preserves geometry better. To this end, we firstly define
an operator ρ called scale extractor to transform a metric to a vector called scale
vector, which characterizes the important scale property of the metric. Since the
scale vector is much more convenient to deal with than the metric which is a
function, it provides a tool to bridge the von Neumann divergence and geometry
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preserving probability. We establish such a relationship in three steps: (1) The
geometry preserving probability monotonically decreases with a function of scale
vectors R(A,B). (2) For any orthonormal basis W and two Mahalanobis metrics
dA, dB, the KL-divergence of ρW (A) and ρW (B) is bounded by the von Neumann
divergence of A and B. (3) Minimizing DKL(ρW (A), ρW (B)) has the effect to
minimize R(A,B) and thus encourages larger geometry preserving probability
PGf (A,B). These steps are discussed in detail in the following subsections.

3.1 Basic Definitions

Our motivation comes from the following fact. Given any pair of points ∀x,y ∈ X,
if two metrics dA and dB are similar, then the distances they give dA(x,y) and
dB(x,y) are expected to be similar. It provides a way to measure the similarity
between two metrics by comparing the distances they give for a certain pairs
of points instead. Motivated by this, we can use a vector to characterize the
properties of a metric and transform some problems from the intricate functional
space FX to a much simpler vector space. Based on this idea, we propose the
following definitions.

Definition 2 (Scale). Given any metric d : X × X → R+ and a unit vector
w ∈ X where ‖w‖ = 1, the squared distance d2(w,0) is defined as the scale of
d on w.

Since Mahalanobis metric determines a series of scales on different directions,
the essential objective of metric learning is to redefine these scales with side-
information so that a certain constraints are satisfied. Due to the translation-
invariant property of Mahalanobis metric, we always translate x to the original
and briefly denote dA(x,y)

.
= dA(z) where z = x− y and thus the scale of d on

z is briefly denoted as d2(z).

Definition 3 (Scale Extractor). Define the operator ρW : FX → Rn which
transforms a metric d to a vector consisting of the scales of d on a group of
vectors Wm×n = [w1 w2 . . . wn] as scale extractor:

ρW (d) =
[
ρw1(d) ρw2(d) . . . ρwn(d)

]�
=

[
d2(w1) d

2(w2) . . . d
2(wn)

]�

The vector ρW (d) is called the scale vector of d on W .

Given any W , the more similar dA and dB are, the more similar ρW (dA)
and ρW (dB) should be. Since ρW (dA) and ρW (dB) are just real vectors, the
divergence between them is much easier to estimate and has an explicit sense
as metric definition for the same points. Therefore, it can be used to define
D(dA, dB) with proper W .

When estimating the divergence of two metrics dA, dB ∈ FX, a natural choice
of W is an orthonormal basis of X because they represent the scales of dA on
different directions. Then, by enforcing ρW (dA) and ρW (dB) to be similar, we
can make the scales of dA and dB on different directions similar. As we have
indicated, in metric learning problems, we hope them to be similar in the sense



656 P. Yang, K. Huang, and C.-L. Liu

of the same relative distances. In next subsections, we will show that if we
choose KL-divergence of ρW (dA) and ρW (dB) as the regularizer, it has the effect
to encourage a larger geometry preserving probability for dA and dB.

3.2 Enlarging PGf (dA, dB) by Minimizing R(A,B)

In this subsection, we show that the geometry preserving probability monoton-
ically decreases with a function of scale factor vectors of two metrics, which
couples the complicated defined probability with a simpler property of metric.
As we have shown in Section 2.2, the geometry preserving property is mathe-
matically measured by the geometry preserving probability PG, whose original
definition is intractable, though. In following, we propose the relationship be-
tween PG and the scale vectors which correlates PGf (dA, dB) with the property
of dA and dB.

For convenience of calculating PG, we first define the geometry preserving
indicator. In the following discussion, we always denote zi = xi − yi as the
difference of two points.

Definition 4 (Geometry Preserving Indicator). The Geometry Preserv-
ing Indicator ΨA,B(x1 − y1,x2 − y2) = ΨA,B(z1, z2) is a function that takes two
metrics dA, dB as parameters and two differences of two pairs of points as vari-
ables. We use dA and dB to calculate the distances of the two pairs of points and
then compare which pair is relatively further. Then Ψ = 1 if the two metrics give
the same judgement and Ψ = 0 otherwise. Mathematically, it is

ΨA,B(z1, z2) =1 [(dA(z1) > dA(z2)) ∧ (dB(z1) > dB(z2))] +

1 [(dA(z1) < dA(z2)) ∧ (dB(z1) < dB(z2))]

where 1[E ] is the indicator function which equals to 1 if the logical expression E
holds and 0 otherwise.

Noting that any f(x1,y1,x2,y2) uniquely determines a probability density
f̃(x1 − y1,x2 − y2) = f̃(z1, z2) for the differences, the geometry preserving
probability PGf (dA, dB) can be calculated as an integral on the whole space

PGf (dA, dB) =

∫∫

Rm×Rm

ΨA,B(z1, z2)f̃(z1, z2)dz
(1)
1 . . . dz

(m)
1 dz

(1)
2 . . .dz

(m)
2

(3)
Then we propose the theorem to couple geometry preserving probability with
scales.

Theorem 1 (Geometry Preserving Theorem). Suppose that there are two
pairs of random points x1,y1 ∈ Rm and x2,y2 ∈ Rm following probability den-
sity f(x1,y1,x2,y2). Given any dB ∈ FRm , the geometry preserving probability
PGf (dA, dB) is determined by dA ∈ FRm and monotonically decreases with

R(A,B) =

∫∫

Sm−1×Sm−1

Rw1,w2(A,B)dΩ(w1)dΩ(w2) (4)
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where

Rw1,w2(A,B) =

∣
∣
∣∣
∣

√
ρw2(A)

ρw2(B)
−

√
ρw1(A)

ρw1(B)

∣
∣
∣∣
∣
·
(√

ρw1(A)

ρw2(B)
+

√
ρw2(A)

ρw1(B)

)−1

, (5)

dΩ(wi) is the solid angle element corresponding to the direction of wi which
contains all the angular factors3 [5], and S

m−1 = {x ∈ Rm | ‖x‖ = 1} is the
(m − 1)-dimensional unit sphere in Rm. The integration is calculated on S

m−1

for both w1 and w2.

We interpret the theorem slightly before proof. The integration (3) is taken on
all the solid angle values and independent of the radius, which implies that the
values of Rw1,w2(A,B) corresponding to each pair of directions of w1 and w2

are integrated to get R(A,B). Thus, if we make Rw1,w2(A,B) smaller for each
pair of directions, we can get a smaller R(A,B) and a larger PGf (dA, dB) as we
expected. What is better, this relation is independent of the distribution f . To
prove the theorem, we first present a lemma.

Lemma 2. Suppose there are two pairs of random points x1,y1 ∈ Rm and
x2,y2 ∈ Rm. For each pair, the difference zi = xi − yi lies in a 1-dimensional
subspace Xi which means there exists a unit vector wi ∈ Xi and a random real
number ri so that zi = riwi. Then for any Mahalanobis metrics dB ∈ FRm , the
geometry preserving probability PGf (dA, dB) is determined by dA ∈ FRm and
monotonically decreases with Rw1,w2(A,B) defined in (5).

Proof. Due to the translation-invariant property of dA and dB, for ∀i = 1, 2, we
have d2A(xi,yi) = r2iw

�
i Awi = r2i ρwi(A), thus the squared distance d2A equals

to the weighted scale on wi with weight r2i . Similarly, d2B(xi,yi) = r2i ρwi(B). It
is straightforward to show that

dA(x1,y1) > dA(x2,y2) ⇔ |r1/r2| >
√
ρw2(A)/ρw1(A) (6)

which also holds for B. Denote r = [r1 r2]
� and substitute (6) into ΨA,B, then

PG can be reformulated as a function of r

PGf (dA, dB) =

∫∫

R+×R+

ΨA,B(r1w1, r2w2)f̃(r1, r2)dr1dr2 =

∫

SI∪SII

f̃(r)dr

(7)
where f̃(r) is the probability density of r determined by f(x1,y1,x2,y2), and

SI =
{
r | |r1/r2| > max

{√
ρw2(A)/ρw1(A),

√
ρw2(B)/ρw1(B)

}}
,

SII =
{
r | |r1/r2| < min

{√
ρw2(A)/ρw1(A),

√
ρw2(B)/ρw1(B)

}}
,

The integral field is illustrated as the green part in Fig. 3. Since the probability
density f̃(r) is non-negative anywhere and the border corresponding to dB is
3 For example, for m = 2, dΩ(wi) = dθ which is independent of wi; for m = 3,
dΩ(wi) = sin θdθdϕ where w

(1)
i = cos θ, w

(2)
i = sin θ cosϕ,w

(3)
i = sin θ sinϕ.
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fixed, PG monotonically decreases with |ω|, where ω is the angle between the
two borders determined by ρW (A) and ρW (B). Then, we have

|ω| =
∣
∣
∣arctan

√
ρw2(A)/ρw1(A)− arctan

√
ρw2(B)/ρw1(B)

∣
∣
∣

=arctan

∣
∣∣
∣
∣

√
ρw2(A)/ρw1(A)−

√
ρw2(B)/ρw1(B)

1 +
√
ρw2(A)ρw2(B)/

√
ρw1(A)ρw1(B)

∣
∣∣
∣
∣
= arctanRw1,w2(A,B)

where Rw1,w2(A,B) is the ratio shown in (5). Since arctan is a monotony increas-
ing function and PGf (dA, dB) monotonically decreases with |ω|, the conclusion
that PGf (dA, dB) monotonically decreases with Rw1,w2(A,B) is proved. 
�
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(a) KL-divergence (b) Euclidean distance

Fig. 4. Gradient field of Dϕ(ρW (A), ρW (B)).

Proof (Theorem 1). Denote zi = riwi where wi is a unit vector and ri is the
length of zi, then the volume element is dz(1)i . . . dz

(m)
i = rm−1

i dri dΩ(wi), where
dΩ(wi) is the solid angle corresponding to the direction wi.

∫∫

Sm−1×Sm−1

∫∫

R+×R+

ΨA,B(r1w1, r2w2)f̃(r1w1, r2w2)r
m−1
1 rm−1

2 dr1dr2dΩ(w1)dΩ(w2)

(8)
Note that for any fixed w1,w2, the inner integration is just (7) discussed in
case of Lemma 2 if f̃(r1w1, r2w2)r

m−1
1 rm−1

2 is regarded as the unnormalized
probability density function4 of (r1, r2). Thus, replacing the inner integration
of (8) with (5) and using Lemma 2, we get the conclusion that the geometry
preserving probability PGf (dA, dB) monotonically decreases with (4). 
�

Remarks. Note that if dA and dB are learned simultaneously, PG is not guar-
anteed to strictly monotonically decrease with (4) because R(A,B) also depends
on f . However, if we have little information about f , a smaller (4) also leads to
a larger PG in most cases.
4 By the proof of Lemma 2, the conclusion also holds if f is unnormalized.
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3.3 Bounding the KL-divergence with von Neumann Divergence

In this subsection, we show that by minimizing the von Neumann divergence of
two Mahalanobis matrices, the KL-divergence [3] of scales on any pair of direc-
tions is minimized. This result is shown in Theorem 4 where the KL-divergence
is defined as DKL(x,y) =

∑
i xi(log xi − log yi)− xi + yi.

The main result Theorem 4 is supported by Lemma 3, a result very similar
to that in quantum information [7]. We have to omit the detailed proof due to
the limit of space and present only the results. We found that it can be proved
in the similar way as [7].

Lemma 3. For any trace preserving map [7] Φ, given by Φ(A) =
∑n

i=1 ViAV
�
i

and
∑n

i=1 V
�
i Vi = Im, we have that DKL (Φ(A), Φ(B)) ≤ DvN(A,B).

Theorem 4. Suppose dA, dB ∈ FRm are two Mahalanobis metrics defined on
R

m, then for any orthonormal basis W = [w1 . . . wm] in R
m, the KL-divergence

of their scale vectors ρW (A) and ρW (B) is bounded by the von Neumann
divergence of their Mahalanobis matrices A and B: DKL(ρW (A), ρW (B)) ≤
DvN(A,B).

Proof. For any orthonormal basis W = [w1 . . . wm], we have

DKL (ρW (A), ρW (B)) =
∑

i

DKL(w
�
i Awi,w

�
i Bwi)

=
∑

i,j

(w�
i wj)

2DKL(w
�
i Awi,w

�
j Bwj)

=DvN(
∑

i

WiAW
�
i ,

∑

i

WiBW�
i ) ≤ Dφ(A,B)

where Wi = wiw
�
i . The third equality is the decomposition of Bregman matrix

divergence [3] and the last inequality results from Lemma 3. 
�

Using Theorem 4, it is easy to show that minimizing DvN(A,B) has the ef-
fect to minimize DKL(ρw(A), ρw(B)) on any direction w. Interestingly, when
D(A,B) = ‖A − B‖2F is used, a similar result can be attained using simple
matrix calculation. We propose it in Theorem 5 and omit the proof.

Theorem 5. Suppose dA, dB ∈ FRm are two Mahalanobis metrics defined on
R

m, then for any orthonormal basis W = [w1 . . . wm] in R
m, the squared Eu-

clidean distance of their scales ρW (A) and ρW (B) is bounded by the squared
Frobenius norm of the difference of their Mahalanobis matrices A and B:
‖ρW (A)− ρW (B)‖2 ≤ ‖A−B‖2F .

In the language of Bregman divergence, the results of Theorem 4 and Theorem 5
can be uniformly formulated as Dϕ(ρW (A), ρW (B)) ≤ Dφ(A,B), where Dϕ and
Dφ are Bregman divergence and Bregman matrix divergence with the same seed
function (φ = ϕ ◦ λ). However, this result cannot be straightforwardly extended
to other Bregman divergences.
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3.4 Minimizing Rw1,w2(A,B) by Minimizing DKL(ρW (A), ρW (B))

As we have proved that minimizing DvN(A,B) is to minimize
DKL(ρW (A), ρW (B)) for any W , in this subsection, we then show that it
furthermore encourages a smaller R(A,B) in (4) and thus a larger PG(A,B)
by Theorem 1.

Supposing there is a metric learning problem5 minA L(A,S) whose optimal
solution is Ã, we have ∇AL |Ã= 0. If there exists a related task with optimal
solution B and we would like to propagate the information embedded in B to A,
the optimization formula becomes minA L(A,S)+γDvN(A,B) where a new loss
function is added to L and the optimal solution should move to another point
with a smaller loss. Obviously, it always moves towards the negative gradient
direction where the loss is smaller.

Here we study how ρW (A) is effected by the regularizer for any given W .
As we have shown, when DvN(A,B) is added to loss function, it aims to min-
imize DKL(ρW (A), ρW (B)) and thus ρW (A) is more liable to move towards
−∇DKL(ρW (A), ρW (B)). The gradient of DKL with respect to ρW (A) is

∇DKL = [log(ρw1(A)/ρw1(B)) . . . log(ρwn(A)/ρwn(B))]
�
.

By its formulation, the gradient on each direction wi is proportional to the loga-
rithm of the ratio of scales on wi. This means that the regularizer always enforces
the component ρwi(A) with larger ρwi(A)/ρwi(B) decreases more quickly, which
encourages the ratios of scales ρwi(A)/ρwi(B) on different wi equal.

Noting that the numerator of Rw1,w2(A,B) in (5) is the absolute value of dif-
ference of the ratios of scales on two directions, encouraging ρw1(A)/ρw1(B) =
ρw2(A)/ρw2(B) to be equal is to minimize Rw1,w2(A,B). Thus the main con-
clusion of this subsection can be proposed as

Proposition 1. For any n unit vectors W = [w1 . . . wn] ∈ Rm×n, the
regularizer minρW (A) DKL(ρW (A), ρW (B)) encourages the solution to make
Rwi,wj (A,B) smaller for ∀i, j.

In contrast, if D(A,B) = ‖A − B‖2F is used, the equivalent regularizer is
‖ρW (A) − ρW (B)‖2. It encourages the differences of scales (ρwi(At)− ρwi(B))
on different wi equal, which is not beneficial to minimizing Rwi,wj (A,B).

This phenomenon is illustrated with the contour and gradient field in Fig. 4
where the red line represents the points with the same ratio of scales. The con-
centric circles are contours of Dϕ(ρW (A), ρW (B)) and the radial lines are field
lines of its negative gradient where the tangent direction at any point of the line
indicates −∇ρW (A)Dϕ(ρW (A), ρW (B)). Minimizing Dϕ(ρW (A), ρW (B)) with re-
spect to ρW (A) will make the solution move along the gradient field lines because
it directs to the steepest descendent direction. From this figure, we see that the
field lines in Fig. 4(a) are more liable to go towards the red line, which makes
the solution of ρw1(A)/ρw1(B) more similar to ρw2(A)/ρw2(B).

5 The constraints can be reformulated into loss function using Lagrangian multiplier.
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3.5 Summary

As a short summary of previous theoretical analysis, we have Proposition 2 for
our multi-task metric learning framework.

Proposition 2 (Geometry Preserving with von Neumann divergence).
When the von Neumann divergence is minimized, the KL-divergence of the scales
on different directions is minimized. This makes a smaller Rw1,w2(A,B) for
any pair of directions and thus a smaller R(A,B), further leading to a larger
PGf (dA, dB) by Theorem 1. In short, von Neumann divergence DvN(A,B) en-
courages a larger PGf (A,B) and can thus better propagate the side-information
about relative distance.

4 Experiments

In this section, we conduct a series of experiments to validate the advantages of
our proposed approach. In our experiments, we choose LMNN [10] as the metric
learning algorithm for all methods which determines the loss function L in (2).
For brevity, we call our proposed multi-task metric learning with von Neumann
divergence as mt-von, while the method proposed in [8] is written in short as
mt-Frob (also called mtLMNN). We compare them with three baseline methods:
the Euclidean metric, the single-task metric learning (in short stLMNN ) and the
uniform task metric learning (in short utLMNN ). stLMNN means that a metric
is learned for each task independently, while utLMNN puts the samples of all
tasks together and train a uniform metric for all tasks.

We learn a specific metric using different methods. According to the distances
calculated based on the learned metric, we use 1-Nearest Neighbor as the final
classifier to predict the label of a new test sample. If all tasks share a common
label space, which is referred as the label-compatible scenario [8], we also evaluate
with the pooled training sets [8] at the classification phase. This special classifi-
cation setting is called mtpool-von or mtpool-Frob, depending on the regularizer.
We also report the performance of nearest neighbor using the Euclidean distance
(in short Euclidean) as the baseline. We tune the hyper-parameters involved in
LMNN by cross validation.

We evaluate the above mentioned methods on five real data sets obtained from
very different disciplines. (1). Handwritten Letter Classification dataset6
consists of 8 binary handwritten letter classification problems. Each classification
problem is regarded as one task. Some randomly selected samples are used to
train a metric while the remaining for test. (2). USPS digit dataset7 consists of
7,291 16× 16 grayscale images of digits 0 ∼ 9. For each digit, we can get a two-
class classification task in which the samples of this digit represent the positive
patterns and the others negative patterns. (3). Isolet dataset8 was collected from
150 speakers uttering all characters in the English alphabet twice. The task is
6 http://multitask.cs.berkeley.edu/
7 http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
8 Available from UCI Machine Learning Repository.

http://multitask.cs.berkeley.edu/
http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
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Fig. 5. Experiment results on five datasets

to classify the letter to be uttered. The speakers are grouped into 5 smaller
sets of similar speakers and this makes the problem naturally be suitable for
multi-task learning. Each subset is treated as a task and they are trained jointly.
(4). Insurance Company (CoIL) Benchmark dataset9 contains information on
customers of an insurance company. The data consist of 86 variables. We select
out the 68 ∼ 73-th variables as categorical features and predict their values with
other features. (5). Multi-speaker Vowel Classification dataset10 consists
of 11 vowels uttered by 15 speakers of British English. We used the data of
1-8 (9-15) speakers as the training (testing) set. In both of them, speakers are
divided into two subgroups according to their gender. It is reasonable because
men pronounce in a different style with women. For this dataset, we treat each
subgroup as a task.

For the first 4 datasets, we randomly choose a certain number of samples as
the training set and leave the remaining samples as the test set. For the Multi-
speaker Vowel dataset, we randomly select a number of samples from the 1-8
speakers as the training samples, and consider all the samples from the 9-15
speakers as the test set. In each experiment, we vary the number of training
samples in each class from 4 to 20 and repeat the evaluations 10 times. The
average error rates over all the tasks and the 10 times evaluations are reported
in Fig. 5 as the final results. Note that, similar to [8], the five datasets are
categorized into label-compatible and label-incompatible according to whether all
9 http://kdd.ics.uci.edu/databases/tic/tic.html

10 Available from UCI Machine Learning Repository.

http://kdd.ics.uci.edu/databases/tic/tic.html
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tasks share a common label space. For label-compatible datasets, we compare all
approaches mentioned above; for label-incompatible datasets, since tasks have
different label spaces and

⋃
Sτ is meaningless, the utLMNN, mtpool-von, and

mtpool-Frob are not evaluated.
Observed from the experimental results, our proposed multi-task metric learn-

ing method performs the best across all the data sets whatever the num-
ber of training samples are used. This clearly demonstrates the superiority of
our proposed multi-task framework. In particular, the geometry preserving mt-
von method demonstrated significantly better performance against mt-Frob or
mtLMNN consistently in all the cases. This clearly validates that the perfor-
mance can be improved by preserving relative distances. For the label-compatible
datasets, we see that in most cases, the performance is better if only the training
samples in the task are used as the prototype of k-NN classifier. This once again
demonstrates the advantages of our proposed method.

5 Conclusion

In this paper, we propose a novel multi-task metric learning framework using
von Neumann divergence. On one hand, the novel regularized approach extends
previous methods from the vector regularization to a general matrix regular-
ization framework; on the other hand and more importantly, by exploiting von
Neumann divergence as the regularizer, the new multi-task metric learning has
the capability to well preserve the data geometry. This leads to more appropriate
propagation of side-information among tasks and proves very important for fur-
ther improving the performance. We propose the concept of geometry preserving
probability (PG) and justify our framework with a series of theoretical analysis.
Furthermore, our formulation is jointly convex and the global optimal solution
can be guaranteed. A series of experiments verify that our proposed algorithm
can significantly outperform the current methods.
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