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1 Memorial Sloan-Kettering Cancer Center, New York, USA
2 FML, Max-Planck Society, Tübingen, Germany
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Abstract. We present an optimization framework for graph-regularized
multi-task SVMs based on the primal formulation of the problem. Previ-
ous approaches employ a so-called multi-task kernel (MTK) and thus are
inapplicable when the numbers of training examples n is large (typically
n < 20, 000, even for just a few tasks). In this paper, we present a primal
optimization criterion, allowing for general loss functions, and derive its
dual representation. Building on the work of Hsieh et al. [1,2], we derive
an algorithm for optimizing the large-margin objective and prove its con-
vergence. Our computational experiments show a speedup of up to three
orders of magnitude over LibSVM and SVMLight for several standard
benchmarks as well as challenging data sets from the application domain
of computational biology. Combining our optimization methodology with
the COFFIN large-scale learning framework [3], we are able to train a
multi-task SVM using over 1,000,000 training points stemming from 4
different tasks. An efficient C++ implementation of our algorithm is be-
ing made publicly available as a part of the SHOGUN machine learning
toolbox [4].

1 Introduction

The main aim of multi-task learning [5] is to leverage the information of multiple,
mutually related learning tasks to make more accurate predictions for the indi-
vidual tasks. For example in computational biology, multiple organisms share a
part of their evolutionary history and thus contain related information that can
be exploited to mutually increase the quality of predictions (see, e.g., [6,7]). Fur-
ther examples of successful application domains for multi-task learning include
natural language processing [8] (each speaker giving rise to a task) or computer
vision [9,10], where multiple visual object classes may share some of the relevant
features [11].

Recently, there has been much research revolving around regularization-based
multi-task learning machines, which, given training points X = {x1, . . . ,xn} ⊂
R
d, each associated with a task t(i) ∈ {1. . . . , T }, and labels Y = {y1, . . . , yn} ⊂
{−1, 1}, for each task t ∈ {1, . . . , T } learn a linear hypothesis x �→ 〈wt,x〉 by
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solving the following mathematical optimization problem:

min
w=(w1;...;wT )∈RnT

1

2
‖w‖2 + J(w) + C

n∑

i=1

l
(
yiw

�
t(i)xi

)
, (1)

where l : R→ R+,0 is a convex loss function and J(w1, ...,wM ) denotes an addi-
tional regularization term that promotes similarities of the hypotheses associated
to the tasks [5,12,13].

One of the most popular approaches to multi-task learning is by [14], who
have introduced a graph-based regularization framework; in this setting, each
task is represented by a node in a graph and the similarities between the tasks
are encoded via an adjacency matrix A, which can be used to promote couplings
between tasks in (1) by putting:

J(w1, ...,wM ) =
1

2

∑

i

∑

j

‖wi −wj‖2Ai,j . (2)

Evgeniou, Micchelli, and Pontil [14] show that the dual of this formulation boils
down to training a standard support vector machine [15,16] using a so-called
multi-task kernel

KMTL((x, s), (x̃, t)) = ST(s, t) · 〈x, x̃〉 , (3)

where ST(s, t) is a similarity measure induced by the adjacency matrix A.
In the past, this optimization of this formulation has been addressed by

decomposition-based SVM solvers such as SVMLight [17] or LibLinear [2,1] in
conjunction with the “kernel” defined in (3). However, this strategy is subject to
serious limitations, namely large memory requirements that come from storing
the kernel matrix. These limitations allow the efficient use of multi-task learning
only for a relative small number of training examples (typically n < 20, 000, even
for a small number of tasks). For larger sample sizes, strategies such as on-the-fly
computation of kernel products must be used, which, however, can substantially
increase the execution time.

Such large-scale learning problems are frequently encountered nowadays: for
example in sequence biology, millions of examples are available from the genomes
of multiple organisms and the biological interactions to be learned are typically
very complex, so that many training examples are needed to obtain a good fit
(the lack of sufficient training data is often the main bottleneck in computational
biology and multi-task learning). In this paper, we address these limitations by
proposing a new optimization framework and giving a high-performance imple-
mentation, which is capable of dealing with millions of training points at the
same time.
In a nutshell, the contributions of this paper can be summarized as follows:

• We present a unifying framework for graph-regularized multi-task learning
allowing for arbitrary loss functions and containing, e.g., the works of [12,14]
as a special case.
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• We give a general dual representation and use the so-obtained primal-dual
relations to derive an efficient, provable convergent optimization algorithm
for the corresponding large-margin formulation that is based on dual coor-
dinate descent.
• A variety of computational experiments on synthetic data and proven real-
world benchmark data sets as well as challenging learning problems from
computational genomics show that our algorithms outperform the state-of-
the-art by up to three orders of magnitude.
• By including the recent COFFIN framework [3] into our new methodology,
we are, for the first time, able to perform graph-based MTL training on very
large splice data set consisting of millions examples from 4 organisms.

2 A Novel View of Graph-Regularized Multi-Task
Learning

All methods developed in this paper are cast into the established framework of
graph-regularized multi-task learning (GB-MTL) outlined in the introduction.
Note that Eq (2) may be expressed as

Eq. (2) =
1

2

∑

i

∑

j

‖wi − wj‖2Ai,j =
∑

i

∑

j

wTi wjLi,j , (4)

where L = D−A denotes the graph Laplacian corresponding to a given similarity
matrix A and Di,j := δi,j

∑
k Ai,k. The matrix A is of crucial importance here as

it encodes the similarity of the tasks. Note that the number k of zero eigenvalues
of the graph Laplacian corresponds to the number of connected components. For
the scenario that we are interested in, this will be 1, always.

2.1 Primal Formulation

Using (4), we can thus re-write our base problem (1) as follows:

Generalized Primal MTL Problem. Let x1, . . . ,xn ∈ R
m be training data

points, each denoted by a task t(i) ∈ {1, . . . , T }, and let l : R → R be a convex
loss function. Then the primal MTL optimization problem is given by

min
w1,...,wT∈Rm

1

2

T∑

t=1

‖wt‖22 +
1

2

T∑

s=1

T∑

t=1

Lstw
�
s wt + C

n∑

i=1

l
(
yiw

�
t(i)xi

)
. (5)

A first problem we face is that, when applying the standard Lagrangian for-
malism and invoking the KKT conditions, there are couplings in between the
ws and wt. Unfortunately, this hinders expressing the wt solely in terms of the
coordinate-wise gradient of the dual objective, which is the core idea behind re-
cently proposed optimization strategies in SVM research that we wish to exploit
[1]. As a remedy, in this paper, we propose an alternative approach that is based
on the following two improvements:
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• First, we deploy a new dualization technique that based on the combination
of Lagrangian duality with Fenchel-Legendre conjugate functions, extending
the work of [18]. The so-obtained synergy allows us to derive the dual in a
cleaner way than it would have been using Lagrangian duality alone.
• Second, we use the “block vector view”, which—in combination with the
above improvement—allows us to formulate a representer theorem that can
be resolved for w.

As it turns out, the combination of the above two ingredients allows us to express
the weights wt in terms of the gradients of the dual objective in a very simple
way.

2.2 “Block-Vector/Matrix” View

We define w = (w�
1 , . . . ,w

�
T )

� and ψ : Rm �→ R
mT is the canonical injective

mapping that maps a data point xi ∈ R
m to a vector in R

mT that is zero
everywhere except at the task(i)-th block, i.e., ψ(xi) looks like as follows:

ψ(xi) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
xi
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← t(i)-th block (6)

For example, if xi belongs to the first task, i.e. t(i) = 1, then we have ψ(xi) =
(xi, 0, . . . , 0)

�, while, if xi belongs to the last task, i.e. t(i) = T , then ψ(xi) is
is of the form: ψ(xi) = (0, . . . , 0,xi)

� .

Similarly, for a matrix B ∈ R
T×T , we define

block(B) :=

⎛

⎜⎝
diag(b11) · · · diag(b1T )

...
...

diag(bT1) · · · diag(bTT )

⎞

⎟⎠ , (7)

where diag(bst) is a diagonal matrix in R
m×m with entries bst at the diagonal

and zeros everywhere else, i.e., the resulting matrix block(B) is an element of
R
mT×mT .

We can thus very elegantly write our primal problem (5) in terms of the block
notation as follows:

Generalized Primal MTL Problem (Block View).

min
w

1

2
w�block(I + L)w + C

∑

i

l
(
yiw

�ψ(xi)
)
, (8)

where I is the identity matrix in R
T×T .
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Table 1. Loss functions and regularizers used in this paper and corresponding conju-
gate functions

loss l(t) / regularizer g(w) dual loss l∗(t) / conjugate regularizer g∗(w)

hinge loss max(0, 1− t) t if −1 ≤ t ≤ 0 and ∞ else

�p-norm
1
2
‖w‖2p 1

2
‖w‖2p∗ where p∗ = p

p−1

quadratic form 1
2
w�Bw 1

2
w�B−1w

2.3 Dualization

Now, the above (block-view-) form of the MTL primal allows to derive the
Fenchel dual as follows:

Eq. (8) = min
w,t

[
1

2
w�block(I + L)w + C

∑

i

l (ti)]

s.t. ti = yiw
�ψ(xi)

Lagrange
= max

α
min
w,t

[
1

2
w�block(I + L)w

+ C
∑

i

l (ti) +
∑

i

αi
(
ti − yiw�ψ(xi)

)
]

= max
α

[−C
∑

i

max
ti

(
−αiti

C
− l (ti)

)

−max
w

(
∑

i

αiyiw
�ψ(xi)− 1

2
w�block(I + L)w

)
] .

(9)

We now make use of the notion of the Fenchel conjugate of a function f , that is
f∗(x) := supy x

�y − f(y) to derive a general dual form. Note that the Fenchel
conjugates of many functions are known from the literature (see Table 1 for
conjugates relevant for this paper; cf. [18] for further reading). For example, the

conjugate of the function f(x) = 1
2 ‖x‖2B := 1

2x
�Bx is f∗(x) = 1

2 ‖x‖2B−1 =
1
2x

�B−1x and the conjugate of the hinge loss l(t) = max(0, 1− t) is l∗(t) = t if
−1 ≤ t ≤ 0 and ∞ else.

We are now ready to proceed with the derivation:

Eq.(8) = max
α

[−max
w

(
∑

i

αiyiw
�ψ(xi)− 1

2
‖w‖2block(I+L)

)

︸ ︷︷ ︸
= 1

2‖∑i αiyiψ(xi)‖2
(block(I+L))−1

− C
∑

i

max
ti

(
−αiti

C
− l (ti)

)

︸ ︷︷ ︸
=l∗(−αi

C )

]

= max
α

[−C
∑

i

l∗
(
− αi
C

)
− 1

2

∥∥∥∥∥
∑

i

αiyiψ(xi)

∥∥∥∥∥

2

block((I+L)−1)

]
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where we used the definition of the Fenchel conjugate and the fact that, clearly,
for any matrix B it holds

(block(B))−1 = block(B−1) .

We thus obtain the following MTL dual optimization problem:

General Dual MTL Problem. The dual MTL problem is given by:

max
α

−C
∑

i

l∗
(
− αi
C

)
− 1

2

∥∥∥∥∥
∑

i

αiyiψ(xi)

∥∥∥∥∥

2

block(M)

(10)

where
M := (I + L)−1 (11)

2.4 Special Case: Large-Margin Learning

We can now employ specific loss functions in the primal (5) and obtain a corre-
sponding dual representations right away by plugging the Fenchel conjugate into
(10). For example, for the hinge loss, from Table 1 we obtain the conjugate of
l(t) = max(0, 1− t) is l∗(t) = t, if −1 ≤ t ≤ 0 and ∞ else. Clearly, the minimum
in (12) will never be attained for the objective being ∞ (take, e.g., w = 0 in (5)
to obtain a finite upper bound on the optimal objective) so that the left-hand
term

∑
i l

∗(− αi

C

)
translates into the hard constraints

∀i : 0 ≤ αi ≤ C .
Moreover, by (7), we have

1

2

∥∥∥∥∥
∑

i

αiyiψ(xi)

∥∥∥∥∥

2

block(M)

=
1

2

T∑

s,t=1

mstw
�
s wt,

where M = (mst)1≤s,t≤T , so that we obtain the following dual problem for the
hinge loss:

Dual MTL-SVM Problem. Denote by M := (I+L)−1. Then the dual MTL-
SVM problem is given by:

max
0≤α≤C

1�α− 1

2

∥∥∥∥∥
∑

i

αiyiψ(xi)

∥∥∥∥∥

2

block(M)

(12)

2.5 A Representer Theorem

By the KKT condition Stationarity, it follows from (9) that

∇w

(
∑

i

αiyiw
�ψ(xi)− 1

2
w�block(I + L)w

)
= 0 ,
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which, by (11), translates to

w =
∑

i

αiyiw
�Mψ(xi) (13)

and (recalling the definitions (6) and (7)) can be equivalently written as

wt =

n∑

i=1

mt,t(i)αiyixi. (14)

3 Optimization Algorithms

In order to solve the optimization problem (12), we define:

∀t = 1, . . . , T : vt =
∑

i∈It
αiyixi , (15)

where It ⊂ {1, . . . , n} denotes the indices of the data points of task t. We thus
associate each task t with a “virtual weight vector” v that can be expressed solely
terms of the support vectors corresponding to the respective task. Importantly,
all the information we need to compute w is contained in v := (v�

1 , . . . ,v
�
T )

�,
since by (14) holds

∀1, . . . , T : wt =
T∑

s=1

ms,tvs. (16)

If there is just a single task, as for standard SVM, i.e., T = 1 and M = I
(because L = 0), then the above definition is simply

w = v =
n∑

i=1

αiyixi ,

which is precisely the representation exploited by [1].

3.1 Derivation of the Optimization Algorithm

The basic idea of our dual coordinate descent strategy is to optimize one example
weight αi per iteration, project it onto its feasible set and then update the
corresponding parameter vector vt accordingly. In particular, we can perform
dual coordinate descent as follows: for each i ∈ {1, . . . , T } we solve
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argmax
d:0≤αi+d≤C

d+ 1�α

− 1

2

T∑

s,t=1

mst

(
vs + dyixi�t(i)=s

)� (
vt + dyixi�t(i)=t

)

= argmax
d:0≤αi+d≤C

d− 1

2

(
mt(i),t(i)

∥∥vt(i) + dyixi
∥∥2

+ 2
∑

s:s�=t(i)
ms,t(i)v

�
s

(
vt(i) + dyixi

))

= argmax
d:0≤αi+d≤C

d−
(
mt(i),t(i)

(
dyiv

�
t(i)xi +

1

2
d2x�

i xi
)

+
∑

s:s�=t(i)
ms,t(i)yiv

�
s xid

)

= argmax
d:0≤αi+d≤C

d− 1

2
d2x�

i xi −
T∑

s=1

ms,t(i)yiv
�
s xid

We thus observe that for the gradient it holds

∂f(α+ dei)

∂d
= 1− dx�

i xi −
T∑

s=1

ms,t(i)yiv
�
s xi = 0

which is equivalent to

d =
1−∑T

s=1ms,t(i)yiv
�
s xi

x�
i xi

. (17)

Therefore, taking the needed projections onto the constraints into account, we
have the following update rule in each coordinate descent step:

αi = max

(
0,min

(
C,αi + d

))
. (18)

Note that, if there is only a single task, then L = 0 and thus M = I, where I is
the identity matrix, and we hence obtain the usual LibLinear standard update
(denoting w = v = v1):

d =
1− yiw�xi

x�
i xi

.

The resulting training algorithm is shown in Algorithm (1).

3.2 Convergence Analysis

To prove convergence of our algorithms, we phrase the following useful result
about convergence of the (block-) coordinate descent method:
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Algorithm 1. (Multi-task LibLinear training algorithm). Generaliza-
tion of the LibLinear training algorithm to multiple tasks.

1: input: x1, . . . ,xn ∈ R
m, t(1), . . . , t(n) ∈ {1, . . . , T}, y1, . . . , yn ∈ {−1, 1}

2: for all i ∈ {1, . . . , n} initialize αi = 0
3: for all t ∈ {1, . . . , T} put vt =

∑
i∈It

αiyixi

4: while optimality conditions are not satisfied do
5: for all i ∈ {1, . . . , n}
6: compute d according to (17)
7: store α̂i := αi

8: put αi := max(0,min(C, α̂i + d))
9: update vt(i) := vt(i) + (αi − α̂i)yixi

10: end for
11: end while
12: for all t ∈ {1, . . . , T} compute wt from v1, . . . ,vT according to (16)
13: output: w1, . . . ,wT

Proposition 1 (Bertsekas, 1999, Prop. 2.7.1). Let X =
⊗M

m=1 Xm be the
Cartesian product of closed convex sets Xm ⊂ R

dm, be f : X → R a contin-
uously differentiable function. Define the nonlinear block Gauss-Seidel method
recursively by letting x0 ∈ X be any feasible point, and be

xk+1
m = argmin

ξ∈Xm

f
(
xk+1
1 , · · · ,xk+1

m−1, ξ,x
k
m+1, · · · ,xkM

)
, (19)

for all m = 1, . . . ,M . Suppose that for each m and x ∈ X , the minimum

min
ξ∈Xm

f (x1, · · · ,xm−1, ξ,xm+1, · · · ,xM ) (20)

is uniquely attained. Then every limit point of the sequence {xk}k∈N is a sta-
tionary point.

The proof can be found in [19], p. 268-269. We can conclude the following corol-
lary, which establishes convergence of the proposed MTL training algorithm.

Theorem 1. Let l be the hinge loss. Then every limit point of Algorithm 1 is a
globally optimal point of (12).

Proof. First, note that the objective function in (12) is continuously differen-
tiable and convex. Second, we can without loss of generality replace the con-
straints 0 ≤ αi by 0 ≤ αi ≤ α∗

i for all i, where α∗ denotes the optimal solution
of (12). Thus, in order to show that the constraints form a closed set, it suffices
to show that α∗

i <∞ for all i. To this end, we note that setting w = 0, which is a
feasible point in the primal (5), lets us conclude that the optimal primal objective
is less than or equal to o := C

∑n
i=1 l(0) = C

∑n
i=1 max(0, 1 − 0) = Cn < ∞.

Hence, denoting by w∗ the primal-optimal point, we obtain 1
2 ‖w∗‖ ≤ o and

thus, by (14), it holds 1
2 ‖
∑
i α

∗
i yiψ(xi)‖2block(M) ≤ o, so that we can conclude

that the dual objective in (12) in smaller than or equal to 2o < ∞. From the
latter, we can conclude α∗i ≤ 2o <∞ for all i, which was sufficient to show.
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4 Computational Experiments

In this section, we evaluate the runtime of our proposed dual coordinate de-
scent (DCD) algorithm (described in Algorithm Table 1), which we have im-
plemented1 (along with a LibLinear-style shrinking strategy) in C++ as a part
of the SHOGUN machine learning toolbox [4]. We compare our solver with the
state-of-the-art, that is, SVMLight (as integrated into the SHOGUN toolbox)
using the multi-task kernel (MTK) as defined in (3).2

We experiment on the following five data sets, whose data statistics are sum-
marized in Table 2:

• Gauss2D. A controlled, synthetic data set consisting of a balanced sample
from two isotropic Gaussian distributions.
• Breast Cancer. A classic benchmark data set consisting of a genetic signa-
ture of 60 genes used to predict the response to chemotherapy.
• MNIST-MTL. A multi-task data set derived from the well-known MNIST
data3 by considering the three separate tasks “1vs. 0”, “7 vs. 9”, and
“2 vs. 8”.
• Landmine. A classic multi-task data set, where the different tasks corre-
spond to detecting land mines under various conditions [20].
• Splicing. This is the most challenging data set: a huge-scale, multiple-
genomes, biological data set, where the goal is to detect splice sites in various
organisms, each organism corresponding to a task. The features are derived
from raw DNA strings by means of a weighted-degree string kernel [21].

The above data sets are taken from various application domains including com-
puter vision, biomedicine, and computational genomics, and cover many different
settings such as small and large dimensionality, various numbers of examples and
tasks. Our corpus includes controlled synthetic data as well as established real-
world benchmark data and challenging multiple-genomes splice data. The first
four data sets contain real valued data, for which we used linear kernels and
corresponding standard scalar products.

To compare our implementation with SVMLight using the multi-task kernel
(MTK), we measure the function difference

Δ :=
∣∣∣obj∗ − ôbj

∣∣∣ ,

where obj∗ the true optimal objective and ôbj the actual objective achieved by
the solver (for DCD and MTK these are primal and dual objectives, respec-
tively). The true objective obj∗ is computed up to a duality gap of < 10−10. All
experiments are performed on a 4GB AMD64 machine using a single core.

1 For implementation details, see: http://bioweb.me/mtl-dcd-solver
2 We expect very similar run times by using LIBSVM instead of SVMLight. The
runtime measurement was easier to implement in SVMLight than in LIBSVM, which
is why we chose the former in our experiments. The SVMLight timing code is specific
to our experiments and is therefore located in the ecml2012 git branch of SHOGUN,
which is available at: http://bioweb.me/mtl-dcd

3 http://yann.lecun.com/exdb/mnist/

http://bioweb.me/mtl-dcd-solver
http://bioweb.me/mtl-dcd
http://yann.lecun.com/exdb/mnist/
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Table 2. Statistics of the data sets used in this paper

dim #examples #tasks

Gauss2D 2 1 · 105 2
Breast Cancer 44 474 3
MNIST-MTL 784 9.0 · 103 3
Land Mine 9 1.5 · 104 29
Splicing 6 · 106 6.4 · 106 4

(a) Gauss2D (b) Breast cancer

(c) MNIST-MTL (d) Land Mine

Fig. 1. Results of the runtime experiment in terms of the function difference as a
function of the execution time

The results are shown in Figure 1, where the function difference of the four
real-valued data sets is shown as a function of the execution time. First of all, we
observe that in all four cases the two solvers suffer from an initialization phase,
in which the function value improves only slowly. For Gauss2D the convergence
properties of the two methods (e.g., steepness of the decrease in function differ-
ence) are very similar, but our proposed DCD solver being up to three magni-
tudes faster. Furthermore, we observe that, for two out the four data sets, the
MTK baseline fails to decrease the function difference beyond a threshold rang-
ing from 10−2 to 10−4, while the proposed DCD algorithm nicely converges to
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(a) Gauss2D

0 100 200 300 400 500
number of training examples

10
-3

10
-2

10
-1

10
0

10
1

10
2

tr
a
in

in
g
 t

im
e
 (

s
)

proposed DCD

baseline MTK

(b) Breast cancer

(c) MNIST-MTL (d) Land Mine

Fig. 2. Results of the second runtime experiment: required time to train a multi-task
SVM to a relative precision of 10−4 for various sample sizes n

a precision of 10−7 to 10−10 (cf. Figure 1 (b) – (d)). Finally, we can observe that
if we stop both algorithms at some arbitrary time point, our method tends to
output a solution that is more precise than the MTK baseline by usually several
orders of magnitudes (up to ten orders for, e.g., Gauss2D, and Breast Cancer).

In a second experiment, we measure the training time a solver needs to reach
a given precision (we chose 10−4) as a function of the training set size. The
results of this experiment are shown in Figure 2. We observe that for 3 out of
4 data sets, the proposed DCD methods requires less computation time than
the MTK solver. For the synthetic data set the difference is the most drastic,
being of the order of up to 2.5 magnitudes. Our method is outperformed by the
MTK algorithm on the landmine data set (see Subfigure 2(d)), which indicates
that our strategy is in disadvantage if the number of tasks is large relative the
number of training examples, due to the update rule given by Equation 17. We
expect the curves to cross if there are more training examples per task.

Finally, we study a very large splice data set, where the goal is to detect
splice sites in various organisms, each organism corresponding to one task. For
the MTK solver, the features are derived from raw DNA strings by means of a
weighted-degree string kernel [21] of degree 8; for the DCD solver, we combine
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Fig. 3. Results of the large-scale splice site detection experiment

the proposed algorithmic methodology with the COFFIN framework [3] (efficient
feature hashing for high-dimensional but sparse feature spaces) as implemented
in SHOGUN [4].

The results of this experiment are shown in Figure 3. We observe that the
proposed DCD solver is capable of dealing with millions of training points, while
the MTK baseline is limited to rather moderate training set sizes of up to hun-
dreds of thousands training points. This experiment demonstrates that we are
now able to train on very large genomic sequences in reasonable time, finally
allowing for truly large-scale multi-task learning.

5 Conclusion

We have introduced a dual coordinate descent method for graph-regularized
multi-task learning. Unlike previous approaches, our optimization methodology
is based on the primal formulation of the problem. Viewing the latter in terms
of block vectors and subsequently deploying Fenchel-Legendre conjugate func-
tions, we derived a general dual criterion allowing us to plug in arbitrary convex
loss functions. We presented an efficient optimization algorithm based on dual
coordinate descent and prove its convergence. Empirically, we show that our
method outperforms existing optimization approaches by up to three orders of
magnitude.

By including the recently developed COFFIN framework [3]—which devises
feature hashing techniques for extremely high-dimensional feature spaces—into
our methodology, we are able, to train a multi-task support vector machine on
a splice data set consisting of over 1, 000, 000 training examples and 4 tasks. An
efficient C++ implementation of our algorithm is being made publicly available
as a part of the SHOGUN machine learning toolbox [4].
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Our new implementation opens the door to various new applications of multi-
task learning in sequence biology and beyond, as it now becomes feasible to
combine very large data sets frommultiple organisms [22]. Our methodology may
also serve as technological blueprint for developing further large-scale learning
techniques in general: the block vector view gives insights into structured learning
problems beyond the ones studied in the present paper and, combined with our
novel dualization technique, we are able to also extend our optimization approach
to various other structured learning machines such as, e.g., structured output
prediction as proposed by [7] and block �p-norm regularized risk minimizers
(e.g., [23]).
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