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Abstract. Penalized logistic regression (PLR) is a widely used super-
vised learning model. In this paper, we consider its applications in large-
scale data problems and resort to a stochastic primal-dual approach for
solving PLR. In particular, we employ a random sampling technique
in the primal step and a multiplicative weights method in the dual
step. This technique leads to an optimization method with sublinear
dependency on both the volume and dimensionality of training data. We
develop concrete algorithms for PLR with �2-norm and �1-norm penal-
ties, respectively. Experimental results over several large-scale and high-
dimensional datasets demonstrate both efficiency and accuracy of our
algorithms.

1 Introduction

The penalized logistic regression (PLR) model [9] plays an important role in
machine learning and data mining. The model serves for classification problems,
and enjoys a substantial body of supporting theories and algorithms. PLR is
competitive with the support vector machines (SVMs) [18], because it has both
high accuracy and interpretability (PLR can directly estimate a conditional class
probability).

Recently, large-scale applications have emerged from many modern massive
datasets. A key characteristic of these applications is that the size of their train-
ing data is very large and data dimensionality is very high. For example, in
medical diagnostic applications [17], both doctors and patients would like to
take the advantage of millions of records over hundreds of attributes. More evi-
dently, search engines on texts or multimedia data must handle data volume in
the billion scale and each data instance is characterized by a feature space of
thousands of dimensions [7]. Large data volume and high data dimensionality
pose computational challenges to machine learning problems.
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In this paper, we tackle these challenges via stochastic approximation
approaches. Stochastic approximation methods, such as stochastic gradient
descent [20] and stochastic dual averaging [19], obtain optimal generalization
guarantees with only a single pass or a small number of passes over the data.
Therefore, they can achieve a desired generalization with runtime linear to the
dataset size. We further speed up the runtime, and propose sublinear algorithms
for PLR via the use of stochastic approximation idea. Our algorithms work at
the same level of performance with traditional learning methods for PLR, but
require much shorter running time. Our methods access a single feature of train-
ing vectors instead of entire training vectors at each iteration. This sampling
approach brings much improved computational efficiency by eliminating a large
number of vector multiplication operations. By devising clever randomized al-
gorithms, we can also enjoy the benefits of taking less number of iterations and
hence accessing less number of features. Such reduction in accessing features can
substantially reduce running time as pointed out by [11].

Our algorithms can be easily applied to distributed storage systems [12] with
parallel updates on all instances. Compared with other traditional batch algo-
rithms, we do not require any global reduction [14] computation, which is a
speedup bottleneck. Thus, our algorithms can achieve significant speedup on
massive datasets.

The rest of the paper is organized as follows: Section 2 discusses some re-
lated work. In Section 3, we review some preliminaries and explain the setting
along with the model. In Section 4, we present the framework of our sublinear
algorithms for PLR. In Section 5, we depict detailed algorithms and analysis.
Section 6 describes the datasets and the baseline of our experiments and presents
the experimental results. Finally, we offer our concluding remarks in Section 7.

2 Related Work

There are many existing techniques that address logistic regression with �1-
penalty in the literature.

The Reduced Memory Multi-pass (RMMP) algorithm, proposed by Balakr-
ishnan and Madigan [2], is one of the most accurate and fastest convergent
algorithms. RMMP trains sparse linear classifiers on high-dimensional datasets
in a multi-pass manner. However, this algorithm has computational complexity
and memory requirements that make learning on large-scale datasets infeasible.
The central idea of the work is a straightforward quadratic approximation to
the likelihood function. When the dimensionality of the data gets large, the cost
of many vector-vector multiplication operations increases significantly. Also, the
quadratic approximation is added together for all instances in each iteration, and
such computation inevitably requires global reduction in a distributed storage
system.

The Hybrid Iterative Shrinkage (HIS) algorithm, proposed by Shi et al. [15], is
also computationally efficient without loss of classification accuracy. This algo-
rithm includes a fixed point continuation phase and an interior point phase. The
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first phase is based completely on memory efficient operations such as matrix-
vector multiplications, while the second phase is based on a truncated Newton’s
method. Thus, HIS is in the scope and constraints of traditional way of solv-
ing the optimization problem. As RMMP has relatively better scalability and
performance, we choose to use RMMP instead of HIS as our baseline for the
empirical comparison in this paper.

Recently, Clarkson et al. [3] proposed a new method by taking advantage
of randomized algorithms. They presented sublinear-time approximation algo-
rithms for optimization problems arising in machine learning, such as linear
classifiers and minimum enclosing balls. The algorithm uses a combination of a
novel sampling techniques and a new multiplicative update algorithm. They also
proved lower bounds which show the running times to be nearly optimal on the
unit-cost RAM model.

Hazan et al. [11] exploited sublinear approximation approach to the linear
SVM with �2-penalty, from which we were inspired and borrowed some of the
ideas (We generally refer to them as the ETN framework in Section 4). Later on,
Cotter et al. [4] extended the work to kernelized SVM cases. In [10], Hazan et al.
applied the sublinear approximation approach for solving ridge (�2-regularized)
and lasso (�1-regularized) linear regression. Garber and Hazan [6] developed the
method in semidenfinite programming (SDP).

3 Penalized Logistic Regression Models

Logistic regression is a widely used method for solving classification problems.
In this paper, we are mainly concerned with the binary classification problem.
Suppose that we are given a set of training data X = {(xi, yi) : i = 1, . . . , n}
where xi ∈ R

d are input samples and yi ∈ {−1, 1} are the corresponding labels.
For simplicity, we let X = [x1,x2, . . . ,xn]

T and y = (y1, y2, . . . , yn)
T . In the

logistic regression model, the expected value of yi is given by

P (yi|xi) =
1

1 + exp(−yi(xT
i w+ b))

� gi(yi),

where w = (w1, . . . , wd)
T ∈ R

d is a regression vector and b ∈ R is an offset term.
The log likelihood function F (w, b;X ) on the training data is given as

F (w, b|X ) =
n∑

i=1

log gi(yi).

Under the penalized framework, one imposes a prior p(w) to w. This allows us
to address the maximum a posteriori (MAP) estimation for w as

max
w,b

{
log p(w, b|X ) ∝ F (w, b|X ) + log p(w)

}
. (1)

In this paper, we consider Gaussian and Laplace priors for w, which in turn
induce the �2 and �1 penalties for w, respectively.
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3.1 The �2-Penalty Logistic Regression

We assume that w follows a Gaussian distribution with mean 0 and covariance
matrix λId where Id is the d×d identity matrix, i.e. w ∼ N(0, λId). In this case,
since

log p(w) =
d

2
log

λ

2π
− λ

2
‖w‖22,

we can equivalently formulate the optimization problem in (1) as

max
w,b

{
F (w, b|X ) − λ

2
‖w‖22

}
. (2)

(2) shows us that the problem reduces to an optimization problem with an �2-
penalty.

3.2 The �1-Penalty Logistic Regression

In the second case, we impose a Laplace prior for w, whose density is given by

log p (w) = d log
γ

2
− γ‖w‖1.

With this prior, the optimization problem in (1) is equivalent to the following
problem with the �1-penalty.

max
w,b

{
F (w, b|X )− γ‖w‖1

}
. (3)

The advantage of �1-penalty over �2-penalty is its utility in sparsity modeling
[16] . Thus, �1-penalty logistic regression can serve for both classification and
feature selection simultaneously.

4 Methodology

In this section, we first develop an approach to sublinear learning for �2-penalty
logistic regression. We then extend the approach to �1-penalty case by adding
certain conditions to achieve sparseness. Our approach is inspired by the Elad-
Tomer-Nathan (ETN) framework in [11], a hybrid framework that deals with
both hard margin and soft margin. Roughly speaking, our approach consists
of three steps: deriving the hard margin and soft margin from the objective
function, computing the derivative, and applying the ETN framework.

4.1 From �2-Penalty to Soft Margin

We treat the objective function (2) as two parts: likelihood and penalty. With this
in mind, we introduce the notion of hard margin and soft margin to respectively
represent these two parts.
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In particular, we consider an alternative optimization problem under an ε-
suboptimal solution basis. That is,

max
w,b,ξi≥0

min
i∈{1,··· ,n}

fi (w, b) + ξi s.t. ‖w‖2 ≤ 1 and

n∑

i=1

ξi ≤ nν. (4)

In (4) fi(w, b) = log gi(yi) is the hard margin part, while ξi is the soft margin

part, and we have ν = −
∑n

i=1 fi(w,b)

n‖w‖2
.

The following lemma shows the equivalent relationship between (2) and (4).

Lemma 1. Let (wε, bε, ξε) be an ε-suboptimal solution to the optimization prob-
lem (4) with optimal value κ, and consider the rescaled solution w̃ = wε/κ, b̃ =
bε/κ, ξ̃ = ξε/κ. The the following two inequalities hold.

‖w̃‖2 ≤ 1

1− ε‖w‖2 ‖w‖2 and F
(
w̃, b̃

)
≤ 1

1− ε‖w‖2F (w, b) .

The proof of Lemma 1 is given in Appendix A. Lemma 1 shows that solving
(4) exactly yields Pareto optimal solutions of (2). Moreover, if we solve (4) via
approximation, we obtain a suboptimal solution. As for parameters ν and ξi, we
only need to consider 0 ≤ ν ≤ 1 and 0 ≤ ξi ≤ 2.

4.2 Derivative of Objective Function

For hard margin, we compute the derivative of fi(w, b) with respect to w. In
this case, we have

fi(w, b) = log gi(yi). (5)

The first partial derivative of (5) is as follows

coef � ∂fi (w, b)

∂w
= −∂ log[1 + exp(−yi(wTxi + b))]

∂w
(6)

=
xiyi exp(−yi(wTxi + b))

1 + exp(−yi (wTxi + b))
= yigi (−yi)xi.

In order to extend this result to �1-penalty logistic regression, we only need to
adjust the derivative of fi(w, b) with respect to w. In this case, we need to use
the sub-differential of ‖w‖1. First, we define a signum multi-function of t ∈ R as

S(t) � ∂|t| =

⎧
⎪⎨

⎪⎩

{+1} if t > 0

[−1, 1] if t = 0

{−1} if t < 0.

For x ∈ R
d, we define S (x) ∈ R

d with (S(x))i = S(xi) for i = 1, . . . , d. Then
the derivative of (3) is

coef = yigi (−yi)xi − γS (w) . (7)

Eqn. (7) is the simple and general form for coef .
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4.3 The ETN Framework

The Elad-Tomer-Nathan framework [11] is a hybrid method to handle hard
margin and soft margin separately and simultaneously. The ETN framework
enjoys the property of fast convergence for both hard margin and soft margin.

Each iteration of the method works in two steps. The first one is the stochastic
primal update:

(1) An instance i ∈ {1, . . . , n} is chosen according to a probability vector p;

(2) The primal variable w is updated according to the derivative of fi(w, b) and
the soft margin, via an online update with regret.

The second one is the stochastic dual update:

(1) A stochastic estimate of fi(w, b) plus the soft margin is obtained, which can
be computed in O(1) time per term;

(2) The probability vector p is updated based on the above computed terms by
using the Multiplicative Updates (MW) framework [1] for online optimization
over the simplex.

5 Algorithms and Analysis

We use the following notations in our algorithms and analysis.
clip (·) is a projection function defined as follows:

clip (a, b) � max (min (a, b) ,−b) a, b ∈ R.

sgn (·) is the sign function; namely,

sgn (x) =

⎧
⎪⎨

⎪⎩

+1 if x > 0

0 if x = 0

−1 if x < 0.

g (·) is the logistic function; namely,

g (x) =
1

1 + e−x

We let Λ be the Rn Euclidean space which meets the following conditions:

Λ = {ξ ∈ Rn | ∀i, 0 ≤ ξi ≤ 2, ‖ξ‖1 ≤ νn} .

5.1 The Sublinear Algorithm for �2-Penalty Logistic Regression

We give the sublinear algorithm for �2-penalty logistic regression in Algorithm 1.
In the pseudo-code of Algorithm 1, line 5 to line 11 is the primal part, where
coef is the estimator of the derivatives and ξ is the soft margin. Line 12 to line
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Algorithm 1. SLLR-L2

1: Input: ε > 0, 0 ≤ ν ≤ 1, X ∈ R
n×d, Y ∈ R

n

2: Let T ← 10002ε−2 log n, η ←√
log (n) /T

3: u0 ← 0d,w1 ← 0d,q1 ← 1n, b1 ← 0
4: for t = 1 to T do
5: pt ← qt/‖qt‖1
6: Choose it ← i with probability p(i)

7: Let coef = yitg
(−yit

(
wt

Txit + bt
))

8: Let ut ← ut−1 +
coef√

2T
xit

9: ξt ← argmaxξ∈Λ

(
pt

T ξ
)

10: bt ← sgn
(
pt

Ty
)

11: wt ← ut/max {1, ‖ut‖2}
12: Choose jt ← j with probability wt (j)

2/‖wt‖22
13: for i = 1 to n do

14: σ ← xi (jt) ‖wt‖22/wt (jt) + ξt (i) + yibt
15: σ̂ ← clip (σ, 1/η)
16: qt+1 (i)← qt (i)

(
1− ησ̂ + η2σ̂2

)

17: end for
18: end for
19: Output: w̄ = 1

T

∑
t wt, b̄ =

1
T

∑
t bt

17 is the dual part, where σ serves as an estimator of fi (w, b) plus the soft
margin. σ also serves as the derivative of p(i). Although the computation of line
15 and 16 makes σ̂ a biased approximation, it is critical to the stability of the
algorithm. The resulting bias is negligible in our approach. This can be shown in
the experimental results in [11]. Because of the similarity between our SLLR-L2
and SVM-SIMBA presented in [11], we can naturally invoke the statement here.

Note that the update of ξt in line 9 can be accomplished by using a simple
greedy algorithm in O(n) time. We can always set ξt (i) = 2 corresponding to
the first [ νn2 ] number of largest entries p (i) of pt with respect to i. Then the

residue νn−2[ νn2 ] is assigned to ξt (̂i), where î is exactly the index of the [ νn2 ]+1
largest one in pt. Finally, we put ξt (i) = 0 elsewhere.

5.2 The Sublinear Algorithm for �1-Penalty Logistic Regression

In Algorithm 2, we give the sublinear approximation procedure for �1-penalty
logistic regression. Here, we let uprevt be ut−1 in the previous iteration. We
achieve sparseness by adding pseudo-code from Line 11 to Line 16.

To make use of (7), we introduce some techniques to ensure the numerical
convergence and stability. Considering the update computation in the primal
step, we should make the following three rules.

(1) When ut(j) = 0, we do not apply −γS(w) and simply make the value 0 by
default.
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Algorithm 2. SLLR-L1

1: Input: ε > 0, γ > 0, X ∈ R
n×d, Y ∈ R

n

2: Let T ← 10002ε−2 log n, η ←√
log (n) /T

3: u0 ← 0d,wavg0 ← 0d,q1 ← 1n, b1 ← 0
4: for t = 1 to T do
5: pt ← qt/‖qt‖1
6: uprevt ← ut−1

7: Choose it ← i with probability p(i)
8: Let coef = yitg

(−yit
(
wavgt−1

Txit + bt
))

9: Let ut ← ut−1 +
coef√

2T
xit

10: bt ← sgn
(
pt

Ty
)

11: for j = 1 to d do
12: if uprevt (j) > 0 and ut (j) > 0
13: ut (j) = max (ut (j) − γ, 0)
14: if uprevt (j) < 0 and ut (j) < 0
15: ut (j) = min (ut (j) + γ, 0)
16: end for
17: wt ← ut/max {1, ‖ut‖2}
18: wavgt ← t−1

t
wavgt−1 +

1
t
wt

19: Choose jt ← j with probability wt (j)
2/‖wt‖22

20: for i = 1 to n do

21: σ ← xi (jt) ‖wt‖22/wt (jt) + yibt
22: σ̂ ← clip (σ, 1/η)
23: qt+1 (i)← qt (i)

(
1− ησ̂ + η2σ̂2

)

24: end for
25: end for
26: Output: wavgt, b̄ =

1
T

∑
t bt

(2) In order to apply −γS(w) for sparseness, we set ut(j) = 0, if it changes
between positive values and negative values after applying the derivative.
This is showed in Line 13 and Line 15.

(3) To avoid a 0 vector when γ is large, we need to determine the derivative by
a trend, not a single point. Thus, we consider two consecutive update steps
of ut(j). Line 12 and Line 14 ensure that if ut(j) and ut−1(j) are either both
positive values or both negative ones, we apply the derivative, otherwise we
do not change ut(j). This is a logical approximation, and enables the small
variance of values changing between positive values and negative ones.

For �1-penalty logistic regression, the derivative is much more sensitive with re-
spect to wt, as it is sparse in the computation. So in line 8, when we compute
coef , we change wt to wavgt−1 in order to make our algorithm more computa-
tionally stable.

5.3 Running Time Analysis

We now formally describe the MW algorithm and give theorems for running
times of our algorithms.
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Definition 1. (MW algorithm) [3]. Consider a sequence of vectors v1, ...,vT ∈
R

d and a parameter η > 0. The Multiplicative Weights (MW) algorithm is de-
fined as follows: let w1 ← 1n, and for t ≥ 1,

pt ← wt/‖wt‖1, and wt+1(i)← wt(i)
(
1− ηvt(i) + η2vt(i)

2
)
.

The following lemma establishes a regret bound for the MW algorithm.

Lemma 2. (The Variance MW Lemma) [3]. The MW algorithm satisfies

T∑

t=1

pT
t vt ≤ min

i∈{1,...,n}

T∑

t=1

max{vt(i),−1

η
}+ logn

η
+ η

T∑

t=1

pT
t v

2
t

The following theorems give the running times of Algorithm 1 and Algorithm 2,
respectively.

Theorem 1. The SLLR-L2 algorithm returns an ε-approximate solution to the
optimization problem of (4) with probability at least 1/2. Its running time is
Õ
(
ε−2 (n+ d)

)
.

We give the proof of Theorem 1 in Appendix B. Because the SLLR-L1 is essen-
tially an extension of SLLR-L2, the running time is the same, and we omit the
proof of Theorem 2 in this paper due to length constraint.

Theorem 2. The SLLR-L1 algorithm returns an ε-approximate solution to the
optimization problem of (3) with probability at least 1/2. Its running time is
Õ
(
ε−2 (n+ d)

)

6 Experiments

In this section, we conduct an empirical analysis of our algorithms. Particularly,
we illustrate test errors in terms of feature accesses and convergence in terms
of MAP. As illustrated in Section 1, feature accesses are the main cost in com-
putation. They are good indicators of running time and best demonstrate the
efficiency of the proposed algorithms. For SLLR-L2, we choose SVM-SIMBA
algorithm [11] as a comparison baseline. For SLLR-L1, we choose the state-of-
the-art RMMP [2] algorithm, a popular method for solving logistic regression
with �1-penalty.

We choose three open datasets to run all four test programs: The News-
Group dataset (after proper preprocessing) has 893 features and 1985 instances.
We split it into a training set of 1390 instances and a test set of 595 instances.
The second test dataset is the Gisette [8] dataset, which has 5000 features and
7000 instances. We split it into a training set of 6000 instances and a test set of
1000 instances. The third and final test dataset is the ECUE Spam [5] dataset,
which has 197650 features and 10978 instances (after proper preprocessing). We
split it into a training set of 9000 instances and a test set of 1978 instances. We
randomly repeat such split 20 times and our analysis is based on the average
performance of 20 repetitions.
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6.1 Analysis of Performance

In all three experiments, we tuned parameters ν and γ of each algorithm based
on the cross-validation method [13]. Note that our algorithms assume random
access to features (as opposed to instances), thus it is not meaningful to compare
the test error as a function of the number of iterations of each algorithm. Instead,
according to our computational model, we compare the test error as a function
of the number of feature accesses of each algorithm. The results, averaged over
20 repetitions, are presented in Figure 1, 2 and 3.

As can be seen from the figures, the performance of our SLLR-L2 algorithm
is competitive with that of SIMBA on all the three datasets. With respect to �2-
penalty, our experiments show that our SLLR-L2 algorithm can achieve a similar
performance with SIMBA. With respect to �1-penalty, our SLLR-L1 algorithm
can achieve a same level of performance as RMMP. Our SLLR-L1 algorithm has
a fast convergence rate, which enables us to achieve an acceptable test error
with much fewer feature accesses in comparison with RMMP (basically a batch
algorithm).
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(c) SLLR-L2 (d) SVM-SIMBA

Fig. 1. The test error, as a function of the number of feature accesses, on the News-
Group dataset. For both SLLR-L1 and SLLR-L2, we set ε = 0.5.
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(c) SLLR-L2 (d) SVM-SIMBA

Fig. 2. The test error, as a function of the number of feature accesses, on the Gisette
dataset. For both SLLR-L1 and SLLR-L2, we set ε = 0.5.
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Fig. 3. The test error, as a function of the number of feature accesses, on the ECUE
Spam dataset. For both SLLR-L1 and SLLR-L2, we set ε = 0.5.
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6.2 Analysis of Convergence

Figures 4 shows the convergence of our algorithms. With respect to �2-penalty,
we do not consider SVM-SIMBA, as its optimization objective function is not
comparable with that of SLLR-L2. As the variance of MAP in different exper-
iments is so small and does not contain much information, they are not shown
in the figure for simplicity. The convergence of SLLR-L2 algorithm is very fast.
There is a rapid growing of MAP, and it happens in a very early stage. With
respect to �1-penalty, the optimum value achieved by our SLLR-L1 and RMMP,
a state-of-art algorithm with a remarkable accuracy on MAP, is very close. Our
SLLR-L1, though not strictly better than RMMP on accuracy, has a very small
gap away from the optimum solution and it is acceptable considering the test
error results shown previously. Moreover, our SLLR-L1 has the advantage of
achieving its local optimum value much earlier than RMMP. This is because our
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(a)SLLR-L1 and RMMP for �1-penalty (b)SLLR-L2 for �2-penalty

Fig. 4. The MAP, averaged over 20 random repetitions, as a function of the num-
ber of feature accesses, on the NewsGroup(first row), Gisette(second row), ECUE
Spam(third row) datasets. For both SLLR-L1 and SLLR-L2, we set ε = 0.5.
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approach loosely takes anywhere from 100 to 1000 times fewer feature accesses
than RMMP.

7 Conclusion

In this paper, we have presented two efficient algorithms to solve PLR through
the use of a stochastic approximation approach. In particular, we have devised
two sublinear algorithms for the logistic regression models with �2-penalty and
�1-penalty, respectively. Experimental results have illustrated that our algo-
rithms work well on massive datasets and have significant computational perfor-
mance over other existing methods for PLR. Our algorithms can also be easily
applied to distributed storage systems with parallel update on all instances.

Appendix

A. Proof of Lemma 1

The method we use here is similar to that in [11].

Proof. We first consider the solution which is given by w∗ = w/‖w‖2, b∗ =
b/‖w‖2, ξ∗ = ξ/‖w‖2. So we have

∑n
i=1 ξ

∗
i = F (w, b) /‖w‖2 = nν. Then the

optimal value is given by:

κ∗ = min
i∈{1,··· ,n}

fi(w, b) + ξi
‖w‖2 =

1

‖w‖2 .

By the assumption on the suboptimality of wε, bε, ξε, we have κ ≥ κ∗ − ε =
1

‖w‖2
− ε, from which we can conclude that:

‖w̃‖2 =
‖w‖2
κ
≤ ‖w‖2

1/‖w‖2 − ε
≤ 1

1− ε‖w‖2 ‖w‖2.

From the form of the objective function, we also have:

F
(
w̃, b̃

)
≤

n∑

i=1

ξ̃i ≤ nν

κ
≤ F (w, b)

‖w‖2 · 1

1/‖w‖2 − ε
=

F (w, b)

1− ε‖w‖2 .

B. Proof of Theorem 1

The method we use here is similar to that in [11].
We first introduce some basic lemmas to simplify the proof.

Lemma 3. For
√
log(n)/T ≤ η ≤ 1/6 with probability at least 1 − O(1/n), it

holds that

max
i∈{1,··· ,n}

T∑

t=1

vt(i)−
T∑

t=1

[
xT
i wt + ξt(i)

] ≤ 4ηT,

∣∣∣∣∣

T∑

t=1

pT
t vt −

T∑

t=1

pT
t (Xwt + ξt)

∣∣∣∣∣ ≤ 4ηT.
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Lemma 4. For
√
log(n)/T ≤ η ≤ 1/4 with probability at least 1 − O(1/n), it

holds that
∣∣∣∣∣

T∑

t=1

xT
itwt −

T∑

t=1

pT
t Xwt

∣∣∣∣∣ ≤ 12ηT and

∣∣∣∣∣

T∑

t=1

xT
itw

∗ −
T∑

t=1

pT
t Xw∗

∣∣∣∣∣ ≤ 12ηT.

Lemma 5. With probability at least 3/4, it holds that

T∑

t=1

pT
t v

2
t ≤ 48T

We omit the proofs because they can be immediately obtained from [11] with
some minor modifications.

Proof. Firstly, we prove the running time. Algorithm 1 makes T = O(ε−2 logn)
iterations. Each iteration consists of two steps: the primal update and the dual
update. The primal update contains a �1-sampling process for the choice of it
(O(n) time), and the update of wt (O(d) time). The update of ξt can be done
using a simple greedy algorithm which takes O(n) time. The primal update
contains a �2-sampling process for the choice of jt (O(d) time), and an update
of p (O(n) time). Altogether, each iteration takes O(n+ d) time and the overall
running time is therefore Õ

(
ε−2 (n+ d)

)
.

Next, we analyze the output quality of Algorithm 1. Let γ∗ be the value of
the optimal solution of (4). Then, by the definition we have

T∑

t=1

pT
t (Xw∗ + ξ∗) ≥ Tγ∗. (8)

In the primal part of the algorithm we have

T∑

t=1

xT
itwt ≥

T∑

t=1

xT
itw

∗ − 2
√
2T.

Thus, from Lemma 4 we obtain that with probability 1−O(1/n),

T∑

t=1

pT
t Xwt ≥

T∑

t=1

pT
t Xw∗ − 2

√
2T − 24ηT.

On the other hand,
T∑

t=1

pT
t ξt ≥

T∑

t=1

pT
t ξ

∗
t ,

since ξt is the maximizer of pT
t ξ, and recalling (8), we get the following lower

bound:
T∑

t=1

pT
t (Xwt + ξt) ≥ Tγ∗ − 2

√
2T − 24ηT. (9)
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In the dual part of the algorithm, applying Lemma 2 on the clipped vector vt,
we have that

T∑

t=1

pT
t vt ≤ min

T∑

t=1

vt +
logn

η
+ η

T∑

t=1

pT
t v

2
t ,

and together with Lemma 3, we get that with probability 1−O(1/n),

T∑

t=1

pT
t (Xwt + ξt) ≤ min

T∑

t=1

(Xwt + ξt) +
logn

η
+ η

T∑

t=1

pT
t v

2
t + 8ηT.

Hence, from Lemma 5, we obtain the following upper bound, with probability
more than 3

4 −O(1/n) ≥ 1
2

T∑

t=1

pT
t (Xwt + ξt) ≤ min

T∑

t=1

(Xwt + ξt) +
logn

η
+ 56ηT. (10)

Finally, combining bounds (9), (10) and dividing by T we have that with prob-
ability more than 1

2 ,

min
1

T

T∑

t=1

pT
t (Xwt + ξt) ≥ γ∗ − 2

√
2√
T
− logn

ηT
− 80η,

and using our choices for T and η, we conclude that with probability at least 1
2 ,

it holds that
min (Xwt + ξt) ≥ γ∗ − ε.

This implies that the vectors (w̄, ξ̄) form an ε-approximate solution.
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