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Abstract. Numerous applications in search, databases, machine learn-
ing, and computer vision, can benefit from efficient algorithms for near
neighbor search. This paper proposes a simple framework for fast near
neighbor search in high-dimensional binary data, which are common in
practice (e.g., text). We develop a very simple and effective strategy for
sub-linear time near neighbor search, by creating hash tables directly
using the bits generated by b-bit minwise hashing. The advantages of
our method are demonstrated through thorough comparisons with two
strong baselines: spectral hashing and sign (1-bit) random projections.

1 Introduction

As a fundamental problem, the task of near neighbor search is to identify a set of
data points which are “most similar” to a query data point. Efficient algorithms
for near neighbor search have numerous applications in the context of search,
databases, machine learning, recommending systems, computer vision, etc.

Consider a data matrix X ∈ R
n×D, i.e., n samples in D dimensions. In mod-

ern applications, both n and D can be large, e.g., billions or even larger [1].
Intuitively, near neighbor search may be accomplished by two simple strategies.
The first strategy is to pre-compute and store all pairwise similarities at O(n2)
space, which is only feasible for small number of samples (e.g., n < 105).

The second simple strategy is to scan all n data points and compute similar-
ities on the fly, which however also encounters difficulties: (i) The data matrix
X itself may be too large for the memory. (ii) Computing similarities on the fly
can be too time-consuming when the dimensionality D is high. (iii) The cost
of scanning all n data points is prohibitive and may not meet the demand in
user-facing applications (e.g., search). (iv) Parallelizing linear scans will not be
energy-efficient if a significant portion of the computations is not needed.

Our proposed (simple) solution is built on the recent work of b-bit minwise
hashing [2,3] and is specifically designed for binary high-dimensional data.

1.1 Binary, Ultra-High Dimensional Data

For example, consider a Web-scale term-doc matrix X ∈ R
n×D with each row

representing one Web page. Then roughly n = O(1010). Assuming 105 common
English words, then the dimensionality D = O(105) using the uni-gram model
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and D = O(1010) using the bi-gram model. Certain industry applications used
5-grams [4,5,6] (i.e., D = O(1025) is conceptually possible). Usually, when using
3- to 5-grams, most of the grams only occur at most once in each document. It
is thus common to utilize only binary data when using n-grams.

1.2 b-Bit Minwise Hashing

Minwise hashing [5] is a standard technique for efficiently computing set similar-
ities in the context of search. The method mainly focuses on binary (0/1) data,
which can be viewed as sets. Consider two sets S1, S2 ⊆ Ω = {0, 1, 2, ..., D− 1},
the method applies a random permutation π : Ω → Ω on S1 and S2 and utilizes

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2| = R (1)

to estimate R, the resemblance between S1 and S2. A prior common practice was
to store each hashed value, e.g., min(π(S1)), using 64 bits [6], which can lead to
prohibitive storage and computational costs in certain industrial applications [7].
b-bit minwise hashing [2] is a simple solution by storing only the lowest b bits of
each hashed value. For convenience, we define

zj = min(π(Sj)), z
(b)
j = the lowest b bits of zj .

Assuming D is large, [2] derived a new collision probability:

Pb(R) = Pr
(
z
(b)
1 = z

(b)
2

)
= C1,b + (1− C2,b)R (2)
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f1
D
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This result suggests an unbiased estimator of R from k permutations π1, ..., πk:

R̂b =
P̂b − C1,b

1− C2,b
, P̂b =

1

k

k∑
j=1

1{z(b)1,πj
= z

(b)
2,πj

} (3)

whose variance would be

Var
(
R̂b

)
=

1

k

[C1,b + (1− C2,b)R] [1− C1,b − (1−C2,b)R]

[1− C2,b]
2

(4)

The advantage of b-bit minwise hashing can be demonstrated through the

“variance-space” trade-off: Var
(
R̂b

)
× b. Basically, when the data are highly

similar, a small b (e.g., 1 or 2) may be good enough. However, when the data
are not very similar, b can not be too small.
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1.3 Our Proposal for Sub-linear Time Near Neighbor Search

Our proposed method is simple, by directly using the bits generated from b-bit
minwise hashing to build hash tables, which allow us to search near neighbors
in sub-linear time (i.e., no need to scan all data points).

Specifically, we hash the data points using k random permutations and store
each hash value using b bits (e.g., b ≤ 4). For each data point, we concatenate
the resultant B = b× k bits as a signature. The size of the space is 2B = 2b×k,
which is not too large for small b and k (e.g., bk = 16). This way, we create
a table of 2B buckets, numbered from 0 to 2B − 1; and each bucket stores the
pointers of the data points whose signatures match the bucket number. In the
testing phrase, we apply the same k permutations to a query data point to
generate a bk-bit signature and only search data points in the corresponding
bucket.

Of course, using only one hash table will likely miss many true near neighbors.
As a remedy, we generate (using independent random permutations) L hash
tables; and the query result is the union of the data points retrieved in L tables.

00  10

11  10
11  11

00  00
00  01

Index Data Points

11  01

8, 13, 251
 5, 14, 19, 29
(empty)

33, 174, 3153
 7, 24, 156

 61, 342

00  10

11  10
11  11

00  00
00  01

Index Data Points

11  01

8

17, 36, 129
2, 19, 83

7, 198

56, 989
,9, 156, 879

4, 34, 52, 796

Fig. 1. An example of hash tables, with b = 2, k = 2, and L = 2

In the example in Figure 1, we choose b = 2 bits and k = 2 permutations, i.e.,
one hash table has 24 buckets. Given n data points, we apply k = 2 permutations
and store b = 2 bits of each hashed value to generate n (4-bit) signatures.
Consider data point 8. After k = 2 permutations, the lowest b-bits of the hashed
values are 00 and 00. Therefore, its signature is 0000 in binary and hence we place
a pointer to data point 8 in bucket number 0 (as in the left panel of Figure 1).

In this example, we choose to build L = 2 tables. Thus we apply another
k = 2 permutations and place the n data points to the second table (as in
the right panel of Figure 1) according to their signatures. This time, the signa-
ture of data point 8 becomes 1111 in binary and hence we place it in the last
bucket.

Suppose in the testing phrase, the two (4-bit) signatures of a new data point
are 0000 and 1111, respectively. We then only search the near neighbors in
the set {8, 9, 13, 156, 251, 879}, which is much smaller than the set of n data
points.
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2 Other Methods for Efficient Near Neighbor Search

Developing efficient algorithms for finding near neighbors has been an active
research topic since the early days of modern computing. For example, K-D
trees [12] and variants often work reasonably well in very low-dimensional data.

Our technique can be viewed as an instance of Locality Sensitive Hashing
(LSH) [13,14,15], which represents a very general family of algorithms for near
neighbor search. The performance of any LSH scheme depends on the underlying
algorithm. Our idea of directly using the bits generated from b-bit miniwise
hashing to build hash tables is novel and requires own analysis.

The effectiveness of our proposed algorithm can be demonstrated through
thorough comparisons with strong baselines. In this paper, we focus on spectral
hashing (SH) [8] and the LSH based on sign random projections [9,10,11].

2.1 Centered and Noncentered Spectral Hashing (SH-C, SH-NC)

Spectral hashing (SH) [8] is a representative example of “learning-based hashing”
algorithms, which typically require a (very) expensive training step. It appears
that more recent learning-based hashing algorithms, e.g., [16,17] have not shown
a definite advantage over SH. Moreover, other learning-based search algorithms
are often much more complex than SH. Thus, to ensure our comparison study
is fair and repeatable, we focus on SH.

Given a data matrix X ∈ R
n×D, SH first computes the top eigenvectors of the

sample covariance matrix and maps the data according to the top eigenvectors.
The mapped data are then thresholded to be binary (0/1), which are the hash
code bits for near neighbor search. Clearly, for massive high-dimensional data,
SH is prohibitively memory-intensive and time-consuming. Also, storing these
eigenvectors (for testing new data) requires excessive disk space when D is large.

We made two modifications to the original SH implementation [8]. Here, we
quote from their Matlab code [8] to illustrate the major computational cost:

[pc, l] = eigs(cov(X), npca); X = X * pc;

Our first modification is to replace the eigen-decomposition by SVD, which
avoids materializing the covariance matrix (of size D × D). That is, we first
remove the mean from X (called “centering”) and then apply Matlab “svds”
(instead of “eigs”) on the centered X. This modification can substantially reduce
the memory consumption without altering the results.

The centering step (or directly using “eigs”), however, can be disastrous be-
cause after centering the data are no longer sparse. For example, with center-
ing, training merely 4000 data points in about 16 million dimensions (i.e., the
Webspam dataset) took 2 days in a workstation with 96GB memory, to obtain
192-bit hash codes. Storing those 192 eigenvectors consumed 24GB disk space
after compression (using the “-v7.3” save option in Matlab).

In order to make reliable comparisons with SH, we implemented both centered
version (SH-C) and noncentered version (SH-NC). Since we focus on binary data
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in this study, it is not clear if centering is at all necessary. In fact, our experiments
will show that SH-NC often perform similarly as SH-C.

Even with the above two modifications, SH-NC is still very expensive. For
example, it took over one day for training 35,000 data points of the Web-
spam dataset to produce 256-bit hash code. The prohibitive cost for storing the
eigenvectors remains the same as SH-C (about 32GB for 256 bits).

Once the hash code has been generated, searching for near neighbors amounts
to finding data points whose hash codes are closest (in hamming distance) to the
hash code of the query point [8]. Strictly speaking, there is no proof that one can
build hash tables using the bits of SH in the sense of LSH. Therefore, to ensure
that our comparisons are fair and repeatable, we only experimentally compare
the code quality of SH with b-bit minwise hashing, in Section 3.

2.2 Sign Random Projections (SRP)

The method of random projections utilizes a random matrix P ∈ R
D×k whose

entries are i.i.d. normal, i.e., Pij ∼ N(0, 1). Consider two sets S1, S2. One first
generates two projected vectors v1, v2 ∈ R

k: v1j =
∑

i∈S1
Pij , v2j =

∑
i∈S2

Pij ,

and then estimates the size of intersection a = |S1 ∩ S1| by 1
k

∑k
j=1 v1jv2j .

It turns out that this method is not accurate as shown in [3]. Interestingly,
using only the signs of the projected data can be much more accurate (in terms
of variance per bit). Basically, the method of sign random projections estimates
the similarity using the following collision probability:

Pr (sign(v1,j) = sign(v2,j)) = 1− θ

π
, j = 1, 2, ..., k, (5)

where θ = cos−1
(

a√
f1f2

)
is the angle. This formula was presented in [9] and

popularized by [10]. The variance was analyzed and compared in [11].
We will first compare SRP with b-bit minwise hashing in terms of hash code

quality. We will then build hash tables to compare the performance in sub-linear
time near neighbor search. See Appendix A for the variance-space comparisons.

3 Comparing Hash Code Quality

We tested three algorithms (b-bit, SH, SRP) on two binary datasets: Webspam
and EM30k. The Webspam dataset was used in [3], which also demonstrated that
using the binary-quantized version did not result in loss of classification accuracy.
For our experiments, we sampled n = 70, 000 examples from the original dataset.
The dimensionality is D = 16, 609, 143.

The EM30k dataset was used in [18] to demonstrate the effectiveness of image
feature expansions. We sampled n = 30, 000 examples from the original dataset.
The dimensionality is D = 34, 950, 038.
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3.1 The Evaluation Procedure

We evaluate the algorithms in terms of the precision-recall curves. Basically,
for each data point, we sort all other data points in the dataset in descending
(estimated) similarities using the hash code of length B. We walk down the list
(up to 1000 data points) to retrieve the “top T ” data points, which are most
similar (in terms of the original similarities) to that query point. We choose
T = 5, T = 10, T = 20, and T = 50. The precision and recall are defined as:

Precision =
# True Positive

#Retrieved
, Recall =

# True Positive

T
(6)

We vary # retrieved data points from 1 to 1000 spaced at 1, to obtain continuous
precision-recall curves. The final results are averaged over all the test data points.

3.2 Experimental Results on Webspam (4000)

We first experimented with 4000 data points from the Webspam dataset, which
is small enough so that we could train the centered version of spectral hashing
(i.e., SH-C). On a workstation with 96 GB memory, SH-C took about 2 days
and used about 90GB memory at the peak, to produce 192-bit hash code.
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Fig. 2. Precision-recall curves (the higher the better) for all four methods (SRP, b-bit,
SH-C, and SH-NC) on a small subset (4000 data points) of the Webspam dataset. The
task is to retrieve the top T near neighbors (for T = 5, 10, 20, 50). B is the bit length.

Figure 2 presents the results of b-bit hashing, SH-C, SH-NC, and SRP in terms
of the precision-recall curves (the higher the better), for B = 192, 128, and 32



480 A. Shrivastava and P. Li

bits. Basically, for b-bit hashing, we choose b = 1, 2, 4 and k so that b× k = B.
For example, if B = 192 and b = 2, then k = 96. As analyzed in [2], for a pair of
data points which are very similar, then using smaller b will outperform using
larger b in terms of the variance-space tradeoff. Thus, it is not surprising if b = 1
or 2 shows better performance than b = 4 for this dataset.
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Fig. 3. Precision-recall curves for SRP and b-bit hashing on 4000 data points of the
Webspam dataset using 1024-bit and 512-bit codes, for which we could not run SH

Figure 3 compares b-bit hashing with SRP with much longer hash code (1024
bits and 512 bits). These two figures demonstrate that:

– SH-C and SH-NC perform very similarly in this case, while SH-NC is sub-
stantially less expensive (several hours as opposed to 2 days).

– SRP is better than SH and is noticeably worse than b-bit hashing for all b.

We need to clarify how we obtained the gold-standard list for each method. For
b-bit hashing, we used the original resemblances. For SRP, we used the original
cosines. For SH, following [8] we used the original Euclidian distances.

3.3 Experimental Results on Webspam (35000)

Based on 35000 (which are more reliable than 4000) data points of the Webspam
dataset, Figure 4 again illustrates that SRP is better than SH-NC and is worse
than b-bit hashing. Note that we can not train SH-C on 35000 data points. We
limited the SH bit length to 256 because 256 eigenvectors already occupied 32GB
disk space after compression. On the other hand, we can use much longer code
lengths for the two inexpensive methods, SRP and b-bit hashing. As shown in
Figure 5, for 512 bits and 1024 bits, b-bit hashing still outperformed SRP.

3.4 EM30k (15000)

For this dataset, as the dimensionality is so high, it is difficult to train SH
at a meaningful scale. Therefore, we only compare SRP with b-bit hashing in
Figure 6, which clearly demonstrates the advantage of b-bit minwise hashing.
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Fig. 4. Precision-recall curves for three methods (SRP, b-bit, and SH-NC) on 35000
data points of the Webspam dataset. Again, b-bit outperformed SH and SRP.
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Fig. 5. Precision-recall curves for SRP and b-bit minwise hashing on 35000 data points
of the Webspam dataset, for longer code lengths (1024 bits and 512 bits)

4 Sub-linear Time Near Neighbor Search

We have presented our simple strategy in Section 1.3 and Figure 1. Basically,
we apply k permutations to generate one hash table. For each permutation,
we store each hashed data using only b bits and concatenate k b-bit strings to
form a signature. The data point (in fact, only its pointer) is placed in a table
of 2B buckets (B = b × k). We generate L such hash tables using independent
permutations. In the testing phrase, given a query data point, we apply the same
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Fig. 6. Precision-recall curves for SRP and b-bit minwise hashing on 15000 data points
of the EM30k dataset

random permutations to generate signatures and only search for data points
(called the candidate set) in the corresponding buckets.

In the next step, there are many possible ways of selecting near neighbors from
the candidate set. For example, suppose we know the exact nearest neighbor has
a resemblance R0 and our goal is to retrieve T points whose resemblances to the
query point are ≥ cR0 (c < 1). Then we just need to keep scanning the data
points in the candidate set until we encounter T such data points, assuming that
we are able to compute the exact similarities. In reality, however, we often do
not know the desired threshold R0, nor do we have a clear choice of c. Also, we
usually can not afford to compute the exact similarities.

To make our comparisons easy and fair, we simply re-rank all the retrieved
data points and compute the precision-recall curves by walking down the list of
data points (up to 1000) sorted by descending order of similarities. For simplicity,
to re-rank the data points in the candidate set, we use the estimated similarities
from k × L permutations and b bits per hashed value.

4.1 Theoretical Analysis

Collision Probability. Eq. (2) presents the basic collision probability Pb(R).
After the hash tables have been constructed with parameters b, k, L, we can
easily write down the overall collision probability (a commonly used measure):

Pb,k,L(R) = 1−
(
1− P k

b (R)
)L

(7)

which is the probability at which a data point with similarity R will match the
signature of the query data point at least in one of the L hash tables.
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For simplicity, in this section we will always assume that the data are sparse,
i.e., r1 → 0, r2 → 0 in (2) which leads to convenient simplification of (2):

Pb(R) =
1

2b
+

(
1− 1

2b

)
R. (8)

Required Number of Tables L. Suppose we require Pb,k,L(R) > 1 − δ, then
the number of hash tables (denoted by L) should be

L ≥ log 1/δ

log
(

1
1−Pk

b
(R)

) (9)

which can be satisfied by a combination of b and k. The optimal choice depends
on the threshold level R, which is often unfortunately unknown in practice.
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Fig. 7. Required number of tables (L) as in (9), without the log 1/δ term. The numbers
in the plots should multiply by log 1/δ, which is about 3 when δ = 0.05.

Number of Retrieved Points before Re-ranking. The expected number of
total retrieved points (before re-ranking) is an integral, which involves the data
distribution. For simplicity, by assuming a uniform distribution, the fraction of
the data points retrieved before the re-ranking step would be (See Appendix B):

∫ 1

0

Pb,k,L(tR)dt = 1−
L∑

i=0

(
L

i

)
(−1)i

1

2bki
1

(2b − 1)R

(
(2b − 1)R + 1

)ki+1 − 1

ki+ 1
(10)

Figure 8 plots (10) to illustrate that the value is small for a range of parameters.

Threshold Analysis. To better view the threshold, one commonly used strat-
egy is to examine the point R0 where the 2nd derivative is zero (i.e., the inflection

point of Pb,k,L(R)):
∂2Pb,k,L

∂R2

∣∣∣
R0

= 0, which turns out to be:

R0 =

(
k−1
Lk−1

)1/k

− 1
2b

1− 1
2b

(11)

Figure 9 plots (11). For example, suppose we fix L = 100 and B = b× k = 16. If
we use b = 4, then R0 ≈ 0.52. If we use b = 2, then R0 ≈ 0.4. In other words, a
larger b is preferred if we expect that the near neighbors have low similarities.
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Fig. 8. Numerical values for (10), the fraction of retrieved points
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4.2 Experimental Results on the Webspam Dataset

We use 35,000 data points to build hash tables and another 35,000 data points for
testing. We build hash tables from both b-bit minwise hashing and sign random
projections, to conduct shoulder-by-shoulder comparisons.

Figure 10 plots the fractions of retrieved data points before re-ranking.
b-bit hashing with b = 1 or 2 retrieves similar numbers of data points. This
means, if we also see that the b-bit hashing (with b = 1 or 2) has bet-
ter precision-recall curves than SRP, we know that b-bit hashing is definitely
better.
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Fig. 10. Fractions of retrieved data points (before re-ranking) on the Webspam dataset

Figures 11 and 12 plot the precision-recall curves for L = 100 and 50 tables,
respectively, demonstrating the advantage of b-bit minwise hashing over SRP.
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Fig. 11. Precision-recall curves for SRP and b-bit minwise hashing on the Webspam
dataset using L = 100 tables, for top T = 5, 10, 20, and T = 50 near neighbors
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Fig. 12. Precision-Recall curves for SRP and b-bit minwise hashing on the Webspam
dataset, using L = 50 tables

4.3 Experimental Results on EM30k Dataset

For this dataset, we choose 5000 data points (out of 30000) as the query points
and use the rest 25000 points for building hash tables.

Figure 13 plots the # retrieved data points before the re-ranking step. We
can see that b-bit hashing with b = 2 retrieves similar numbers of data points.
Again, this means, if we also see that the b-bit hashing (with b = 1 or 2) has
better precision-recall curves than SRP, then b-bit hashing is certainly better.
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Fig. 13. Fractions of retrieved data points (before re-ranking) on the EM30k dataset
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Fig. 14. Precision-Recall curves for SRP and b-bit minwise hashing on the EM30k
dataset, using L = 100 tables

Figure 14 presents the precision-recall curves for L = 100 tables, again demon-
strating the advantage of b-bit hashing over SRP.

5 Conclusion

This paper reports the first study of directly using the bits generated by b-bit
minwise hashing to construct hash tables, for achieving sub-linear time near
neighbor search in high-dimensional binary data. Our proposed scheme is ex-
tremely simple and exhibits superb performance compared to two strong base-
lines: spectral hashing (SH) and sign random projections (SRP).
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From the collision probability (5) of sign random projections (SRP), we can

estimate the angle θ = cos−1
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)
, with variance
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(
θ̂
)
=

π2

k
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1− θ

π

)(
θ

π
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We can then estimate the intersection a = |S1 ∩ S2| by

âS = cos θ̂
√
f1f2, V ar (âS) =

θ(π − θ)

k
f1f2 sin

2(θ)

and the resemblance by R̂S = âS

f1+f2−âS

V ar
(
R̂S

)
=

θ(π − θ)

k
f1f2 sin

2(θ)

(
f1 + f2

(f1 + f2 − a)2

)2

+O

(
1

k2

)
.

We already know the variance of the b-bit minwise hashing estimator (4), denoted

by V ar
(
R̂b

)
. To compare it with V ar

(
R̂S

)
, we define

Wb =
V ar

(
R̂S

)

V ar
(
R̂b

)
× b

=
θ(π − θ)f1f2 sin

2(θ)
(

f1+f2
(f1+f2−a)2

)2

[C1,b+(1−C2,b)R][1−C1,b−(1−C2,b)R]

[1−C2,b]
2

(12)

where C1,b, C2,b (functions of r1, r2, b) are defined in (2). Wb > 1 means b-bit
minwise hashing is more accurate than SRP at the same storage; see Figure 15.
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Fig. 15. Wb, b = 4, 2, 1, as defined in (12). r1 and r2 are defined in (2). Because Wb > 1
in most cases (sometimes significantly so), we know that b-bit minwise hashing is more
accurate than 1-bit random projections at the same storage cost.
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B The Derivation of (10)

∫ 1

0

Pb,k,L(tR)dt =
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0
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