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Abstract. The detection of connected components in graphs is a well-
known problem arising in a large number of applications including data
mining, analysis of social networks, image analysis and a lot of other
related problems. In spite of the existing very efficient serial algorithms,
this problem remains a subject of research due to increasing data
amounts produced by modern information systems which cannot be
handled by single workstations. Only highly parallelized approaches on
multi-core-servers or computer clusters are able to deal with these large-
scale data sets. In this work we present a solution for this problem for
distributed memory architectures, and provide an implementation for
the well-known MapReduce framework developed by Google. Our al-
gorithm CC-MR significantly outperforms the existing approaches for
the MapReduce framework in terms of the number of necessary itera-
tions, communication costs and execution runtime, as we show in our
experimental evaluation on synthetic and real-world data. Furthermore,
we present a technique for accelerating our implementation for datasets
with very heterogeneous component sizes as they often appear in real
data sets.

1 Introduction

Web and social graphs, chemical compounds, protein and co-author networks,
XML databases - graph structures are a very natural way for representing com-
plex data and therefore appear almost everywhere in data processing. Knowledge
extraction from these data often relies (at least as a preprocessing step) on the
problem of finding connected components within these graphs. The horizon of
applications is very broad and ranges from analysis of coherent cliques in so-
cial networks, density based clustering, image segmentation, where in some way
connected parts of the image have to be retrieved, data base queries and many
more. Thus, it is not surprising that this problem has a long research history,
and different efficient algorithms were developed for its solution. Nevertheless,
modern information systems produce more and more increasing data sets whose
processing is not manageable on single workstations any more. Social networks
like Facebook process networks with more then 750 million users1 where each

1 http://www.facebook.com/press/info.php?statistics, state Sep. 2011.
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node is connected to 130 other nodes on average. The analysis of such enormous
data volumes requires highly scalable parallelized algorithms. In this paper, we
present a highly scalable algorithm for MapReduce [4], which is a programming
model for the development of parallel algorithms developed by Google Inc. in
2004. Since then it experienced a fast spread out and nowadays its open-source
implementation Hadoop2 is used in companies like Yahoo! Inc. or Facebook Inc..

In MapReduce, the data is given as a list of records that are represented as
(key, value) pairs. Basically, a MapReduce program consists of two phases: The
first phase is the “Map” phase, in which the records are arbitrarily distributed
to different computing nodes (called “mappers”) and each record is processed
separately, independent of the other data items. In the second phase, called “Re-
duce” phase, records having the same key are grouped together and processed in
the same computing node (“reducer”). Thus, the reducers combine information
of different records having the same key and aggregate the intermediate results
of the mappers. By using this framework, programmers may concentrate on the
data flow which is implemented by map jobs and reduce jobs. They do not have
to take care of low-level parallelization and synchronization tasks as in classic
parallel programming.

On top of this new programming model, Hadoop and other implementations of
the MapReduce framework show a lot of non-functional advantages: First, they
are scalable to clusters of many computing nodes, which are easily expanded by
new nodes. Moreover, they show a high fault-tolerance: If one of the computing
nodes fails during the execution of the program, the work of the other nodes is
not affected or discarded, instead just the records that were currently processed
on the failing node have to be processed again by another node.

In this paper, we propose an algorithm for finding connected components
which is based on the MapReduce programming model and is implemented using
Hadoop. Thus, our approach can make use of the aforementioned advantages of
Hadoop such as high scalability and fault-tolerance.

The main contributions of our paper are:

– We present the parallelized algorithm CC-MR for the efficient detection of
connected components in a graph using the MapReduce framework.

– We evaluate the performance of our algorithm compared to state-of-the-art
approaches using synthetic and real-world datasets.

– We develop a technique to improve the load balancing of CC-MR for graphs
with heterogeneous component sizes.

2 Fundamentals

In this section we give a short formal problem definition for the finding of con-
nected components in Section 2.1. In Section 2.2 we introduce the MapReduce
framework, which is used for the implementation of our algorithms.

2 http://hadoop.apache.org/

http://hadoop.apache.org/
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2.1 Connected Components

Let G = (V,E) be an undirected graph without self loops, with V being a set of
vertices and E = {(v, u), (u, v)}, u, v ∈ V a set of edges. Intuitively, a connected
component in G is a maximal subgraph S = (V S , ES) in which for any two
vertices v, u ∈ V S there exists an undirected path in G with v as start and u as
end vertex. The term “maximal subgraph” means that for any additional vertex
w ∈ V \ V S there is no path from any v ∈ V S to w.

In this work we present a solution for finding all connected components inside
the graph G. The algorithm can as well be applied to directed graphs, in this
case the result is the set of all weak connected components in the graph.

2.2 MapReduce

MapReduce is a programming model for processing web-scale datasets presented
by Deam and Ghemawat at Google [4]. The main idea of this model is to divide
data processing into two steps: map and reduce. The map phase is responsible
for processing given (key,value) pairs stored on the distributed file system and
generating intermediate (key,value) pairs. In the reduce phase, intermediate pairs
with the same key are collected, processed at once, and the results are stored
back to the distributed file system.

In the MapReduce model, communication between different computing nodes
only takes place during a single communication phase, when the intermediate
pairs from the map nodes are transferred to the reduce nodes. Apart from this,
no further communication takes place. Neither do the individual mappers nor
the individual reducers communicate with each other. This loose coupling of
the computational nodes enables the framework to perform the calculations in
a highly distributed and fault-tolerant way. Since all computational nodes pro-
cess the data independently from each other, the only limitation for the number
of parallel reducer-jobs is the number of unique intermediate key values. Addi-
tionally, since the single jobs do not depend on the results of other jobs, the
failure of hardware can be easily managed by restarting the same job on another
computational node. This high fault-tolerance and the loose coupling of compu-
tational nodes suits perfectly for usage of this model on commodity hardware
like personal PCs connected to a cluster over a network. However, this limited
communication also poses a challenge for the development of algorithms, which
have to be designed such that the data in different mappers/reducers can be
processed completely independently. Especially, the results computed by differ-
ent reducers can not be combined in a MapReduce job. Thus, many problems
cannot be solved using a single MapReduce job, but have to be solved by a
chain of MapReduce jobs, such that the result records of one iteration can be
re-distributed to the reducers and thus combined in the next iteration.

3 Related Work

The detection of connected components in a graph is a fundamental and
well-known problem. In the past, different approaches for finding connected
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components were introduced. The diversity of the proposed techniques ranges
from simple linear time techniques using breadth-first search / depth-first search
to efficient logarithmic algorithms. Though, due to the fast growing data sizes
(just think of social network graphs of Facebook or Google+), even these effi-
cient algorithms cannot deal with such big graphs. Thus, approaches to paral-
lelize the detection of this components have already been developed for several
decades: Hirschberg et al. [6] present an algorithm which uses n2 processors
(where n = |V | denotes the number of vertices in the graph) and having a time
complexity of O(log2 n). Chin et al. [2] present a modified version of this algo-

rithms which achieves the same time bound with only n
⌈

n
log2 n

⌉
processors. A

parallel algorithm with a time bound of O(log n) is presented by Shiloach and
Vishkin [11]. Greiner [5] presents an overview of several parallel algorithms for
connected components.

All of the aforementioned approaches assume that all computing processors
have access to a shared memory and, thus, can access the same data. In contrast,
the MapReduce model relies on distributing the data as well as the computation
between the computing nodes and, thus, reduce the required communication be-
tween the computing nodes. There also exist some approaches that are based on
a “distributed memory” model, i.e they consider the cost of communication be-
tween the computing nodes, e.g., the approach proposed in [1] which is an exten-
sion of the algorithm of [8]. In their distributed memory model, every computing
node is able to access the memory of other computing nodes, which, however,
leads to certain communication costs. In contrast, the MapReduce model only
allows for special communication flows. E.g., communication between different
reducers in a MapReduce job is not possible. Thus, for computing connected
components using MapReduce, special types of algorithms are necessary.

Recently, a few approaches for the detection of connected components using
the MapReduce model were proposed. Wu et al. [12] present an algorithm for
detecting connected components based on Label Propagation. PEGASUS [7] is
a graph mining system based on MapReduce and also contains an algorithm for
the detection of connected components. In this system, graph mining operations
are represented as repeated matrix-vector multiplications. In [9] the problem is
solved by finding a minimum spanning tree of the graph. For that, edges which
certainly do not belong to any MST are iteratively removed until the subgraphs
are small enough to be processed by a single machine. Two further algorithms
were proposed in [10]. These aims at minimizing the number of iterations and
communication per step. The authors provide probable bounds which are loga-
rithmic in the largest component size but claim that in practice the number of
iterations for one of the algorithms is at most 2 log d (d=diameter of the graph).

In [3] another connected components algorithm based on MapReduce is pre-
sented. As this algorithm is the most similar one to our approach, it will be
introduced in the following. In this algorithm, nodes are assigned to so-called
zones, where each zone is identified by the vertex with the smallest ID contained
in this zone. Initially, each node defines an own zone. The zones are then merged
iteratively until finally each zone corresponds to a connected component of the
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graph: In each iteration, each edge is tested whether it connects nodes from
different zones. Subsequently the algorithm finds for each zone z the zone zmin

with the smallest ID that is connected to z and adds all vertices of z to zmin.
A drawback of this algorithm is that for each iteration, three MapReduce jobs

have to be executed and in each iteration all edges of the original graph have to
be processed.
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Fig. 1. Example for the algorithm from [3]

In Fig. 1 we show the processing of this algorithm for a simple example graph
consisting of just one component. The numbers inside the vertices are the IDs
of the vertices, the numbers beside the vertices denote the number of the zone
a vertex is currently assigned to. The vertices that are already assigned to the
“final” zone 0 are encircled. Initially, each vertex is assigned to its own zone.
In the first iteration, the algorithm determines the edges that connect vertices
from different zones, i.e. the zones 0 and 1. Then, i.e. for zone 1 the algorithm
detects that the smallest zone connected to it is zone 0, i.e. the vertex 1 is now
assigned to zone 0. Similarly, the vertex 2 is assigned to zone 1 etc.. In the second
iteration, the same processing is done, i.e. vertex 2 is added to zone 1, vertex 3
(former zone 2) is added to zone 1 etc. Overall, the algorithm needs 8 iterations to
detect the component. This example shows another drawback of the algorithm:
Although in the first iteration e.g. the connection between zone 1 and zone 0 and
the connection between zone 1 and zone 2 are detected, this information is not
used in the second iteration. Using this information, we could e.g. directly add
the vertex 3 from zone 2 to zone 0, as we know they are connected via zone 1
and thus have to belong to the same connected component. By neglecting these
information, the algorithm needs a large number of iterations.

The basic idea of our new algorithm is to use this kind of information from
previous iterations by adding additional edges (“shortcuts”) in the graph such
that fewer iterations are needed to find the final components. In our experimental
section we compare our approach to the approaches from [3] and [7].

4 Algorithm

In this section we present our CC-MR-algorithm for detecting components in
large-scale graphs using the MapRecuce framework. In subsection 4.1 we describe
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our solution. For better understanding, we show in section 4.2 the processing of
CC-MR on the example from section 3. Section 4.3 provides a formal proof of
the correctness of CC-MR.

The basic idea of our algorithm is to iteratively alter growing local parts of
the graph until each connected component is presented by a star-like subgraph,
where all nodes are connected to the node having the smallest ID. For that,
in each iteration, we add and delete edges such that vertices with larger IDs
are assigned to the reachable vertex with smallest ID. Applying an intelligent
strategy to use the information from previous iterations, our algorithm needs
significantly less iterations than existing approaches.

4.1 CC-MR Algorithm

Basically there are two states for a (sub)component S: either it is already max-
imal or there are still further subcomponents which S can be merged with. The
main question of every algorithm for finding connected components is, therefore,
how to efficiently recognize those two states and how to react on them. I.e., if a
component is already maximal, no further step should be performed, and in the
second case the merging or some other equivalent action should be done with as
little effort as possible. When dealing with parallel algorithms the question of
balanced distribution of the calculations arises. Considering a distributed mem-
ory programming model like MapReduce additionally complicates the problem
since an efficient information flow between independent computational nodes has
to be established.

We propose a solution to handle the aforementioned states locally for every
graph vertex in such a way that after at most linearly many iterations (experi-
ments often show a logarithmic behavior for big graphs) in terms of the diameter
of the largest component the solution is found. Pushing down the problem to the
single vertices of the graph enables a very scalable processing in the MapReduce
framework. Additionally, by using techniques for prevention of duplicated data,
which often appears in distributed memory models, CC-MR-algorithm signifi-
cantly outperforms the state-of-the art approaches as e.g. [3].

Let G = (V,E) be an undirected graph where V is a set of vertices with IDs
from Z and E = {(vsource, vdest) ∈ V 2} is a set of edges. The algorithm’s basic
idea is simple: independently check for each vertex v and its adjacent vertices
adj(v) whether v has the smallest ID or not. If yes (locallyMaxState), assign
all u ∈ adj(v) to v and stop the processing of v, since the component of v is
already locally maximal. Otherwise (mergeState), there is a vertex u ∈ adj(v)
with u < v; then connect v and adj(v) to u. This corresponds to assigning
(merging) the component of v to the component of u. By iteratively performing
these steps each component is finally transformed to a star-like subgraph where
the vertex having the smallest ID is the center. The overall algorithm stops as
far as the mergeState situation does not occur any more.

In the following, we present an efficient implementation based on a simple
concept of forward and backward edges. We call an edge v → u a forward edge,
if v < u, and a backward edge, if v > u, where the comparison of vertices means
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the comparison of their IDs. Both types of edges are represented by a tuple
(v, u) which we represent by (key, value) pairs in the MapReduce framework.
The semantic of the forward edge (v, u) is that vertex u belongs to the component
of the vertex v. The backward edge can be regarded as a “bridge” between the
component of vertex u and the component of a vertex w which has a connection
to v as shown in Fig. 2. The backward edge between vertices v and u enables
the reducer of v to connect u and w in a single iteration of the algorithm.

w v u
...
...

...

...
...
...

Fig. 2. The backward edge (v, u) connects components of w and u in the reducer of v

These concepts will become clearer from the explanation of the algorithm.

Listing 1.1. Reducer implementation.

1newIterationNeeded = false // global variable
2void reduce(int vsource, Iterator<int> values)
3 isLocMaxState = false
4 vfirst = values.next(); // take first element
5 if ( vsource < Vfirst )
6 isLocMaxState = true
7 emit(vsource, vfirst)
8 vdestold = vfirst
9 while ( values.hasNext() )

10 vdest = values.next()
11 if ( vdest == vdestold ) continue // remove duplicates
12 if ( isLocMaxState ) // locMaxCase
13 emit( vsource, vdest ) // only fwd. edge
14 else // cases stdMergeCase, optimizedMergeCase
15 emit( vfirst, vdest ) // fwd. edge and
16 emit( vdest, vfirst ) // backwd. edge
17 newIterationNeeded = true
18 vdestold = vdest
19 // stdMergeCase
20 if ( vsource < vdest && !isLocMaxState )
21 emit( vsource, vfirst ) // backwd. edge

As described earlier, a MapReduce job consists of a map and a reduce phase.
In our case, the mapper is a so-called identity mapper which simply passes
all read data to the reducer without performing any changes. The pseudo-code
for the reduce phase is given in listing 1.1. The emitted edges (vsource, vdest) are
automatically grouped by their vsource values and then sorted in ascendent order
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Fig. 3. Three cases of the algorithm. vsource strings marks the node under consideration
in the considered reducer. Bold highlighted nodes are adjacent nodes of vsource.

of their vdest-values. Technically we use the secondary sort method of Hadoop
to establish the desired sorting. The main part of the algorithm is located in
the reducer (listing 1.1), where both aforementioned cases are handled. Tuples
having the same key arrive as a data stream and are processed one after another
in the ‘while’ loop. After the elimination of duplicate entries in the line 11, three
cases are distinguished:

– locMaxCase: lines 5–7 and 12–13
– optimizedMergeCase: lines 15–18
– stdMergeCase: lines 15–18 and 20 – 21

locMaxCase corresponds to the locallyMaxState, i.e., it deals with the situation
when a local maximal component with root vsource is already found and there-
fore all adjacent nodes vdest ∈ adj(vsource) have to be assigned to vsource. This
assignment is performed by emitting forward edges vsource → vdest in the lines 7
and 13. Fig. 3(b) depicts the processing of the case locMaxCase by showing the
changes of the original graph structure from Fig. 3(a). Nodes marked by vsource
are the nodes which are considered in single reducer with all its adjacent nodes,
which for their part are highlighted by bold circles. The dimmed circles show the
remaining vertices of the graph which are not regarded during the computation
of the node vsource. Dashed arrows represent the newly created edges inside the
reducer. In this example the reducer of the node 0 emits therefore two edges
0 → 3 and 0 → 7. Cases stdMergeCase and optimizedMergeCase on their
part deal with the merge state (mergeState), where optimizedMergeCase is a
special case of stdMergeCase which reduces duplicate edges, as will be shown
later. Both cases arise, if the condition vsource > vfirst holds, which means that
at least one of the adjacent nodes vdest ∈ adj(vsource) has a smaller ID than
vsource. Due to the fact that the vertices are sorted in order of their IDs, vfirst
has the smallest value. Since the main aim of the algorithm is to assign all ver-
tices with larger IDs to the vertex with smallest ID, this implies that all vertices
in adj(vsource) except for vfirst itself are assigned to vfirst, i.e., for each of this
vertices a forward edge vfirst → vdest (line 15) is emitted. Please note that this
is not the case for the edge vfirst → vsource, since this edge will be emitted
in the reducer of the vertex vfirst. Therefore, in the example of stdMergeCase
in Fig. 3(c) the edges 0 → 3 and 0 → 9 are emitted.
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Fig. 4. Example for CC-MR

In addition to the forward edges, the algorithm emits backward edges vdest →
vfirst (line 16), i.e., edges 3 → 0 and 9 → 0 in the example. These edges form
“bridges” or “shortcuts” between components and are needed due to the fact
that vdest (nodes 3, 9) could be connected to some other vertex w with even
smaller ID than 0 such that at some point of time node 0 could have to be
connected to w. If there were no backward edge vdest → vfirst then there would
not be any reducer which would be able to merge 0 and w.

Because of the same arguments, the backward edge vsource → vfirst should
be actually emitted too. This indeed happens in the case when vsource is smaller
than one of its adjacent vertices (lines 20 and 21). If vsource has the biggest
ID among all its adjacent nodes (optimizedMergeCase), then this edge can be
omitted due to the fact that all adjacent nodes of vsource are already reassigned
to the vertex with smallest ID and therefore vsource will never deal as a bridge
node between two components. In Fig. 3(d) case optimizedMergeCase is depicted.

The identity mapper and the reducer from Listing 1.1 form one iteration
of the CC-MR-algorithm. These jobs have to be iterated as long as there are
subcomponents which can be merged. In order to recognize this case, we have to
check whether in the last iteration a backward edge was emitted. If this is the case
then there are still subcomponents which could be merged and a new iteration
has to be started. Otherwise, all components are maximal and the algorithm can
stop. The information whether backward edges were created or not is indicated
by the global variable newIterationNeeded, which can be implemented as a global
counter in Hadoop. Setting the value of this variable to e.g. value 1 indicates the
boolean value ‘true’ and value 0 indicates ‘false’. This variable is set to true if
either case stdMergeCase or case optimizedMergeCase holds (line 17).

4.2 Example for the Processing of CC-MR

In Fig. 4 we show the processing of CC-MR using the same example that was
used in section 3 for the algorithm from [3]. For each iteration, we show the
edges that the algorithm emits in this iteration. The vertices that are already
connected to the vertex with the smallest ID 0 are marked in the graph for each
iteration. In table 1, the output of the single iterations is shown as lists of edges.
For each iteration, the all edges that are emitted in this iteration are shown,
sorted by their key vertices. Some edges occur repeatedly in the same iteration.
This is due to the fact that the same edge can be generated by different reducers.
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Table 1. Edges generated by CC-MR for the example graph

iter. 0 1 2 3 4 5 6 7 8
0 0-1 1-0 2-1 3-2 4-3 5-4 6-5 7-6 8-7

1-2 2-3 3-4 4-5 5-6 6-7 7-8
1 0-1 1-0 2-0 3-1 4-2 5-3 6-4 7-5 8-6

0-2 1-3 2-1 3-2 4-3 5-4 6-5 7-6
2-4 3-5 4-6 5-7 6-8

2 0-1 (2x) 1-0 2-0 3-0 4-0 5-1 6-2 7-3 8-4
0-2 1-0 2-1 3-1 4-2 5-3 6-4
0-3 1-2 2-3 3-2 4-3 5-4 6-5
0-4 1-5 2-6 3-4 4-5 5-6

3-7 4-8
3 0-1 (3x) 1-0 2-0 3-0 4-0 5-0 6-0 7-0 8-0

0-2 (4x) 1-0 2-0 3-0 4-0 5-0 6-1
0-3 (3x) 1-0 2-0 3-0 4-1 5-1
0-4 (2x) 1-3 2-0 3-1 4-2 5-2
0-5 (2x) 1-4 2-4
0-6 1-6 2-5
0-7
0-8

iter. 0 1 2 3 4 5 6 7 8
4 0-1 (5x) 1-0 2-0 3-0 4-0 5-0 6-0

0-2 (3x) 1-0 2-0 4-0
0-3 (2x) 1-0 2-0
0-4 (3x) 1-0
0-5 (2x) 1-0
0-6 (2x)
0-7
0-8

5 0-1
0-2
0-3
0-4
0-5
0-6
0-7
0-8

In the initial graph, for each edge (u, v) ∈ E both directions, i. e. (u, v) and
(v, u) are given. In the first iteration, the reducers mostly insert “two-hop” edges,
e.g. the reducer for the vertex 3 connects the vertices 2 and 4. In the second
iteration, for example, the reducer for the vertex 2 inserts an edge between the
vertices 0 and 4 and the reducer of the vertex 6 inserts an edge between 4 and 8.
Thus, vertices are already connected to each other that had a shortest path of 4 in
the initial graph. In the third iteration, finally all vertices have direct connections
to the node 0. However, to obtain a star graph for this compoment and thus to
detect that the final component as already been found, the algorithm still has
to delete all edges (v, w) with v, w �= 0. This is done in iteration 4. Though the
resulting graph is already the desired star graph, some vertices (i.e. vertex 3) still
have backward edges, which are finally removed in a fifth iteration (not depicted
here). Overall, our algorithm needs 5 iterations for this example. In comparison,
the algorithm from [3] needed 8 iterations in the same example.

4.3 Proof of Correctness

In this section we present a proof for the correctness of CC-MR, i.e. we show that
CC-MR correctly detects the connected components of the graph. As presented
in the previous section, the idea of our algorithm is to add and delete edges in
the graph such that the resulting graph consists of one star graph per component
where the center of each star graph is the vertex with the smallest ID from the
corresponding component. Thus, in each iteration we have a different set of edges
in the graph. Let Ei denote the set of edges that exist after iteration i.

To prove that the resulting graphs of the algorithm really correspond to the
connected components, we prove two different steps:

1. An edge (v1, v2) is emitted in iteration i ⇒ There has already been a path
between v1 and v2 in iteration i− 1.
(We never add edges between vertices that were not in the same component
before.)
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2. There exists a path between v1 and v2 in iteration i − 1 ⇒ there exists a
path between them in iteration i.

(We do not disconnect components that existed before).

Steps 1 and 2 together show that although the algorithm adds and removes
edges in the graph, the (weak) connected components do never change during the
algorithm. Please note that as our input graph is undirected, the connectedness
of the components does not depend on the directions of the edges, even though
CC-MR sometimes only adds one direction of an edge for optimization reasons.
Thus, for the paths we construct in our proof the directions of the edges are
neglected. In the following we present the proofs for the single steps:

1. In CC-MR, edges are only added in the reducers. Thus, to add an edge
(v1, v2) ∈ Ei, the vertices v1 and v2 have to occur together in the re-
ducer of some vertex vsource. Therefore, for each vj , j ∈ {1, 2} : vj =
vsource or (vsource, vj) ∈ Ei−1. Thus, there existed a path between v1 and v2
in the iteration i− 1.

2. It suffices to show: There exists an edge (v1, v2) ∈ Ei−1 ⇒ there exists a path
between them in iteration i (Because a path between some vertices u and w
in Ei−1 can be reconstructed in Ei by replacing each edge (v1, v2) ∈ Ei−1

on the path by its corresponding path in Ei):

Case 1: v1 < v2 (i.e. (v1, v2) is a forward edge):

(v1, v2) is processed in the reducer of vsource = v1. Now we can look at the
three different cases that can occur in the reducer:

– locMaxCase: (v1, v2) is emitted again.

– stdMergeCase: We emit edges (vfirst, v2), (v2, vfirst) and (v1, vfirst),
thus there still exists a path between v1 and v2.

– optimizedMergeCase: Not possible because v1 < v2.

Case 2: v1 > v2 (i.e. (v1, v2) is a backward edge):

For this case, we can show that in some iteration ix ≤ i − 1 also the corre-
sponding forward edge (v2, v1) was emitted:

For the backward edge (v1, v2) ∈ Ei−1, there are two possible scenarios where
(v1, v2) can have been emitted:

– (v1, v2) ∈ Ei−1 can have been emitted by the reducer of v1 in the case
stdMergeCase. In this case, the edge has already existed in the previous
iteration , i.e. (v1, v2) ∈ Ei−2, else the vertex v2 would not be processed
in the reducer of v1.

– (v1, v2) ∈ Ei−1 can have been emitted by the reducer of a vertex vsource
with vsource �= v1 and vsource �= v2 in the case stdMergeCase or opti-
mizedMergeCase. In this case, also the forward edge (v2, v1) has been
emitted.

– i− 1 = 0, i.e. the edge (v1, v2) already existed in the initial graph. Then,
by definition of the original (undirected) graph, also the forward edge
(v2, v1) existed.
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Thus, we know that for each backward edge (v1, v2), the corresponding for-
ward edge (v2, v1) exists or has existed in an earlier iteration. In case 1 it was
already shown that the path between v2 and v1 is preserved in the following
iterations. ��

4.4 Dealing with Large Components

In CC-MR a single reducer processes a complete component, which can result
in high workloads of a single reducer for very large components. Now we briefly
present a solution which distributes the calculations for large components over
multiple reducers and that way balances the workload. Consider the example in
Fig. 5, in which vertex 7 is a center of a component with too many elements.
Assume that we have this information from a previous iteration and we want
to distribute the computations on three reducers. For that, in the map-phase

71...
7

1... 7
7

Reducer 1

Reducer 2

Reducer 3

MAP

Fig. 5. Example for workload balancing for big components

each forward edge (7, x) is augmented by a hash value to ((7, hash(x)), x) which
is then used in the partitioner in order to distribute edges (7, ·) to different
reducers. In the example a small circle represents such a vertex x, which is then
sent to one of the three reducers. For backward edges (in the example (7, 1)), a
set of edges {((7, hash(i)), 1)|i = 1, 2, 3} is produced, which guarantees that each
vertex 7 in each of the three reducers has a backward edge to 1 and can reassign
its neighbors to 1 in the reduce phase. All other edges whose source vertices do
not have too many neighbors are not augmented by a hash value and therefore
are processed as in the original algorithm.

The reduce-phase remains as in the original algorithm, with the difference that
for each vertex the number of neighbors in Ei is determined and for vertices
with too many neighbors the value is stored in the distributed cache for the
next iteration. This simple strategy produces almost no additional overhead
but achieves a very good balancing of the workload as will be shown in the
experiments.

5 Experiments

In this section we present the experimental evaluation of the CC-MR approach,
comparing it to the approach from [3] (denoted as ‘GT’ here) and to the approach
from the Pegasus system [7]. All experiments were performed on a cluster running
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Fig. 6. Performance for varying component diameters

Hadoop 0.20.2 and consisting of 14 nodes with 8 cores each that are connected
via a 1 Gbit network. Each of the nodes has 16 Gb RAM. For each experiment
the number of distance computations and the runtime is measured3.

5.1 Scalability on Synthetic Data

In this section we evaluate CC-MR with respect to different properties of the
input graphs. Therefore, we use synthetic datasets such that in each experiment,
one property of the generated graphs changes while the others remain stable.

Performance for Varying Component Diameters. In this experiment we
vary the diameter of the connected components in our synthetic datasets. Each
dataset consists of one million vertices and is divided into 1000 connected com-
ponents with 1000 vertices each. The diameter of the generated components is
varied from 10 to 30 in this experiment.

In Fig. 6(a), the runtime of the algorithms is depicted. For all algorithms the
runtime increases for higher diameters. However, the runtime of CC-MR is al-
ways significantly lower (at least a factor of two) than that of GT and Pegasus
and scales better for increasing diameters. In Fig. 6(c) we show the number of
iterations needed by the algorithms to find the connected components. As ex-
pected, for higher diameters the number of iterations increases for all algorithms.
For CC-MR, the number of iterations is always lower than for GT and Pegasus.
In Fig. 6(b), we depict for each algorithm the number of input records (summed
over all iterations) that are processed, i.e. the number of records that are com-
municated between the iterations. For all algorithms, this number increases with
increasing diameter. The number of records for CC-MR is significantly lower (at
least by a factor of two) than that of GT and Pegasus, due to the fact that they
perform more iterations than CC-MR and GT needs to perform 3 MapReduce
jobs per iteration.

Performance for Varying Component Sizes. In this experiment we vary
the number of vertices per component in the generated graphs and examine its
influence on the runtime and the number generated records in reducers. The cre-
ated datasets consist of 1000 components with 15, 150, 1500 and 15000 edges and

3 The source code of the CC-MR-algorithm and the used datasets can be found at:
http://dme.rwth-aachen.de/en/ccmr

http://dme.rwth-aachen.de/en/ccmr
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10, 100, 1000, 10000 vertices, respectively. The figures 7(a), 7(b) and 7(c) depict
the results for the runtime (in sec.), the number of records, and the iteration
number respectively. As expected, all of these values increase with growing size
of the components. The runtime of the CC-MR algorithm remains smaller (up
to a factor of 2) then the runtimes of GT and Pegasus for each component size.

Performance for Varying Numbers of Components. This experiment
shows the dependency between the number of components in a graph, the run-
time, the number of input records and the number of iterations. The synthetic
datasets consist of 10, 100, 1000, 10000 components each with 1000 vertices and
1500 edges. The figures 8(a), 8(b) and 8(c) depict the runtime, the processed
number of input records and the number of iterations. Similar to previous re-
sults, CC-MR has a much lower runtime and produces in the worst case (10
components) 15% and in the best case (10000 components) over 55% less input
records compared to the other approaches. Furthermore, CC-MR outperforms
both competitors in terms of the number of performed iterations.

5.2 Real-world Data

We use three real-world datasets to evaluate CC-MR: a web graph (Web-google)
and two collaboration networks (IMDB, DBLP). The Web-google dataset can be
found at snap.stanford.edu/data/web-Google.html and consists of 875713
nodes, 5105039 edges and 2746 connected components. In this web graph, the
vertices represent web pages and the edges represent hyperlinks between them.

snap.stanford.edu/data/web-Google.html
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Table 2. Results of CC-MR, GT and PEGASUS

CC-MR GT PEGASUS
web-google imdbdblpweb-google imdbdblpweb-google imdbdblp

Runtime (sec.) 535 1055 472 3567 3033 4385 4847 2834 3693

#iters 8 6 7 10 6 12 16 6 15

#input rec. (·106) 29 179 27 102 564 210 292 299 108
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In the IMDB dataset (176540 nodes; 19992184 edges; 16 comps.), actors are
represented by vertices, edges between actors indicate that the actors worked
together in some movie. The data was extracted from the IMDB movie database
(imdb.com). In the DBLP dataset (generated using the data from dblp.org,
553797 nodes; 1677487 edges; 24725 comps.) each vertex corresponds to an au-
thor, while each edge represents a collaboration between two authors.

The results of the comparison are given in Table 2. CC-MR clearly outper-
forms GT and PEGASUS in terms of the number of iterations as well as in the
runtime and the communication (i.e the number of input records).

Figure 9 depicts the scalability results of the evaluated algorithms. The CC-
MR-algorithm shows a speedup more than twice as high compared with compet-
ing approaches. As Figure 10 shows, the reduce time of our approach decreases
very fast with growing number of reducers. The moderate overall speedup of 4.7
with 80 reducers puts down to the fact that the map phase does not depend on
the number of used reducers and therefore the speedup of calculations is lim-
ited by I/O speed. The significant communication reduction of our approach is
therefore a very big advantage in comparison to the competing approaches.

5.3 Load Balancing for Large Components

Fig. 11 shows the load balancing properties of our large component extension (cf.
Section 4.4) on the IMDB dataset using 20 reducers and threshold for the max-
imal size of a component set to 1% of the number of edges in an iteration. This
dataset contains 16 components, 15 small ones and one, Cmax, containing more
than 99% of the vertices. In the first three iterations both algorithms perform
similarly well and distribute the workload almost evenly among all reducers.
In iteration 4, however, the reducer Rmax of the CC-MR responsible for Cmax

imdb.com
dblp.org
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already processes about 50% of all edges remaining in the iteration, as more and
more vertices are assigned to Cmax. This trend goes on until in the last iteration
almost all vertices of the graph are processed by Rmax. In contrast, our extended
algorithm is able to balance the workload after each iteration when a disbalance
occurs, as it is the case in the iterations 3 and 5.

6 Conclusion

In this paper, we propose the parallel algorithm CC-MR for the detection of the
connected components of a graph. The algorithm is built on top of the MapRe-
duce programming model. CC-MR effectively manipulates the graph structure
to reduce the number of needed iterations and thus to find the connected com-
ponents more quickly. Furthermore, we propose an extension to CC-MR to deal
with heterogeneous component sizes. Apart from the description of the algo-
rithm, we also provide a proof for the correctness of CC-MR. The performance
of CC-MR is evaluated on synthetic and real-world data in the experimental
section. The experiments show that CC-MR constantly outperforms the state-
of-the-art approaches.
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