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Abstract. Learning from complex data is becoming increasingly impor-
tant, and graph kernels have recently evolved into a rapidly developing
branch of learning on structured data. However, previously proposed ker-
nels rely on having discrete node label information. In this paper, we ex-
plore the power of continuous node-level features for propagation-based
graph kernels. Specifically, propagation kernels exploit node label distri-
butions from propagation schemes like label propagation, which naturally
enables the construction of graph kernels for partially labeled graphs. In
order to efficiently extract graph features from continuous node label dis-
tributions, and in general from continuous vector-valued node attributes,
we utilize randomized techniques, which easily allow for deriving simi-
larity measures based on propagated information. We show that propa-
gation kernels utilizing locality-sensitive hashing reduce the runtime of
existing graph kernels by several orders of magnitude. We evaluate the
performance of various propagation kernels on real-world bioinformatics
and image benchmark datasets.

1 Introduction

For attribute-valued data, sophisticated kernel approaches for classification and
regression have been widely and successfully studied. Nowadays, however, the
bulk of information, such as available on the world wide web, is complex and
highly structured. Structured data is commonly represented by graphs, which
capture relations among entities, but also naturally model the structure of whole
objects. Real-world examples are proteins or molecules in bioinformatics, image
scenes in computer vision, text documents in natural language processing, and
object and scene models in robotics, to name but a few. Learning in such domains
and in turn developing meaningful kernels to take the structure of these data
into account is becoming more and more important.

In addition to the structural properties of data entities, we often have access
to vast quantities of additional, possibly continuous related information, for in-
stance meta-data for images or text documents. Incorporating such information
consistently is difficult and incomplete data and missing information constitute
major challenges for learning. Unfortunately, existing graph kernels [4,6,10,18,19]
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rely on having discrete node labels and, besides, can only handle graphs with
full node label information in a principled manner. In this paper, we propose
the family of propagation kernels which leverage the power of continuous label
distributions.

Triggered by previously introduced kernels on probabilistic models [8, 21],
propagation kernels exploit distributions from propagation schemes like label
propagation (lp) and enhance existing graph kernel frameworks to handle con-
tinuous, vector-valued node attributes. In particular, we define kernel inputs, i.e.
graph features, that are counts of similar node label distributions on the respec-
tive graphs. This generalization additionally enables us to define graph kernels
for partially labeled graphs in a natural way. Unfortunately, comparing all distri-
butions of node labels among all graphs in the database scales as O(n2), where n
is the total number of nodes, and aggregating all distributions on node labels in
one graph to a single vector leads to significant information loss. Hence, in order
to efficiently determine the similarity among node label distributions and in gen-
eral to be able to deal with continuous, vector-valued node attributes, we leverage
randomization techniques from the theoretical computer science community. We
define locality-sensitive hash (lsh) functions to create distance-preserving sig-
natures for each node label distribution. These functions provide a randomized
algorithm that allow us to efficiently compute the distribution-based count fea-
tures for our kernels in O(n). We are able to show that the hash values can
preserve both the total variation and the Hellinger metrics. Therefore, our lsh
enables us to efficiently retrieve similar distributions based on these distance
measures for probability distributions.

To summarize, the main contribution of our work is the introduction of a fam-
ily of fast graph kernels based on propagating node labels. Specifically, we intro-
duce locality-sensitive hash functions to efficiently compute the count features
based on the similarity of node label distributions. Furthermore, we show that
applying randomized techniques reduces the running time of existing graph ker-
nels, namely kernels based on the Weisfeiler–Lehman test of isomorphism [18],
by several orders of magnitude and we propose propagation kernels utilizing
locality-sensitive hashing that are even more efficient.

We proceed as follows. We start off by touching upon related work. After in-
troducing the family of propagation kernels and giving several examples thereof,
we will describe locality-sensitive hashing for handling vector-valued node la-
bel distributions. Before concluding, we present experimental results for graph
classification tasks on state-of-the-art image datasets, and commonly used bioin-
formatics benchmark datasets.

2 Related Work

Propagation kernels are related to three lines of research. First of all, they are
deeply connected to several graph kernels developed within the graph mining
community. Graph kernels can be categorized mainly into four classes: graph
kernels based on walks [4, 10, 22] and paths [2], graph kernels based on limited-
size subgraphs [7,19], graph kernels based on subtree patterns [13,16], and graph
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kernels based on structure propagation [18]. Whereas the efficient kernel compu-
tation such as [22] are able to compare unlabeled graphs efficiently, Shervashidze
et al. [19] specifically consider efficient comparisons of large, labeled graphs. The
Weisfeiler–Lehman (wl) subtree kernel, one instance of the family of wl-kernels
introduced, essentially computes count features for each graph based on the sig-
natures arising from iterative multi-set label determination and compression
steps. In every kernel iteration, these features are then the inputs to a base
kernel and the wl-kernel is the sum of those base kernels over the iterations.
The challenge of comparing large, partially labeled graphs—as considered by the
propagation kernels introduced in the present paper—remains to a large extent
unsolved. One could mark unlabeled nodes with a unique symbol and propagate
this symbol using the Weisfeiler–Lehman kernels [18]. However, this neglects any
label proportion information due to the diffusion process of labels on the graph.
Likewise, one could just propagate labels across the graph and then run the
wl-kernel. This, however, is also likely to neglect label proportion information.
Indeed, after label propagation converges, we may ignore the label proportions
of a node. Before convergence, however, we shall be concerned with informa-
tion encoded in intermediate label proportions at nodes. Moreover, a two-stage
approach may run many unnecessary label propagation iterations.

Second, propagation kernels are deeply connected to several recent lifted
message-passing approaches [1, 11, 15, 20] to probabilistic inference. They have
rendered many of these large, previously intractable problems quickly solvable
by exploiting the induced redundancies. Specifically, they automatically group
nodes and potentials of the graphical model into supernodes and superpotentials
if they have identical computation trees (i.e., the tree-structured “unrolling” of
the graphical model computations rooted at the nodes). Then, they run modified
message-passing approaches on this lifted (compressed) network. It is actually
easy to see that the color-passing approach in [11] for computing the lifted net-
work is as a form of the 1-dimensional Weisfeiler–Lehman algorithm as also
employed by the wl-kernels [18]. However, there is a subtle difference. For lifted
inference, symmetries among random variables easily break when variables be-
come correlated by virtue of sharing asymmetrically observed evidence, that is
labels of nodes are observed. Consequently, color-passing provides a lifted model
that is not far from propositionalized, therefore canceling the benefits of lifted
inference. For graph kernels, this is exactly what we want. The correlations help
us to distinguish different graphs. This insight was the seed that grew into the
idea of propagation kernels.

Finally, propagation kernels make another contact point, namely between wl-
kernels and kernels that accommodate probability distributions [8,9,12,14]. How-
ever, whereas the latter ones essentially build kernels based on the outcome of
probabilistic inference after convergence, propagation kernels intuitively count
common sub-distributions induced after each iteration of running inference in
two graphs. In doing so, they are able to take structure information into account.
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3 Propagation Kernels

In the following, we introduce the general family of propagation kernels and
present several instances based on propagating label information. The main in-
sight here is, that the intermediate node label distributions, e.g., the iterative
distribution updates of a label propagation scheme, capture label and structure
information of the graphs. Hence, we design kernel inputs, i.e. graph features,
based on the counts of similar distributions among the respective graphs’ nodes.
Further, we show that propagation kernels generalize existing structure propa-
gating wl-kernels, especially the wl-subtree kernel [18].

3.1 General Definition

Here we will define a similarity measure K : X ×X → R among graph instances
G(i) ∈ X , in particular, let K be a positive semidefinite covariance function. Let
G

(i)
t = (V (i), E(i), L

(i)
t ) with t = [0, .., T ] be a sequence of graphs in X , where

V (i) is the set of nodes and E(i) is the set of edges. Further, each node in V (i)

is endowed with one of k true labels and each graph has ni nodes. L(i)
t ∈ R

ni×k

represents the label distributions1 for all nodes in V (i) which are iteratively
updated. Note that we do not assume that the node labels have to be given for
all nodes. Propagation kernels can naturally be computed for partially labeled
graphs as the features are only built upon the node label distributions, which
can be initialized uniformly for unknown node labels. Observed node labels are
represented by a trivial delta distribution.

Propagation kernels are defined by applying the following iterative procedure
T + 1 times, beginning with an initial set of graphs {G(i)

0 } with label distribu-
tions initialized as above.

Step 1: count common node label distributions. First, we generate feature
vectors φ(G

(i)
t ) for each graph by counting common label distributions induced

over the nodes among the respective graphs. Therefore, each node in each graph
is placed into one of a number of “bins,” each one collecting similar label distri-
butions, and these vectors count the nodes in each bin for each graph. The exact
details of this procedure are given below, in Section 3.2 and Section 4.
Step 2: calculate current kernel contribution. Given these vectors, for each
pair of graphs G(i) and G(j), we calculate

k(G
(i)
t , G

(j)
t ) = 〈φ(G(i)

t ), φ(G
(j)
t )〉, (1)

where 〈·, ·〉 is an arbitrary base kernel. This value will be an additive contribution
to the final kernel value between these graphs.
Step 3: propagate node label distributions. Finally, we apply an iterative
update scheme for the node label distributions

L
(i)
t → L

(i)
t+1, (2)

1 Note that L(i) could also involve continuous, vector-valued node attributes, however,
in this paper we focus on label distributions.



382 M. Neumann et al.

Algorithm 1. The general propagation kernel computation.

given iterations T , initial label distributions L
(i)
0 , base kernel k(·, ·)

K ← 0
for t← 0 . . . T do

for all graphs G(i) do
φ(G

(i)
t )← 0

for j ← 1 . . . ni do
φ(G

(i)
t )← φ(G

(i)
t ) + f(�

(i)
t,j) � count node label distributions, Eq. (4)

end for
L

(i)
t → L

(i)
t+1 � update label distribution, Eq. (2)

end for
K ← K + k(Φ,Φ) � Φ is N × k′′ matrix of φ vectors

end for

e.g. label propagation. These new label distributions replace those in the current
set of graphs, and we continue with Step 1. The exact choice for this update
results in different propagation kernels; examples are provided in Section 3.3.

Finally, the T -iteration propagation kernel between two graphs G(i) and G(j)

is defined as

KT (G
(i), G(j)) =

T∑

t=0

k(G
(i)
t , G

(j)
t ). (3)

The propagation kernel computation is summarized in Algorithm 1 and an
illustrative example for t = 0 and t = 1 for two graphs is shown in Figure 1.

3.2 Distribution-Based Graph Features

The main ingredient of propagation kernels is the way distribution-based graph
features are generated. Let �(i)t,j be the j-th row of L(i)

t and L =
⋃N

i

⋃ni

j {�(i)t,j} be
the set of all uniquely occurring label distributions on the nodes of all graphs.
The family of propagation kernels is characterized by generating graph features
by counting node-level features on that graph. This will be captured by a function
f mapping from the space of distributions R

k into the space of standard basis
vectors Ek′ = {e1, ..., ek′} with k′ = |L| ≤ n, where n is the number of nodes for
all graphs n =

∑N
i=1 ni. We now define

φ(G
(i)
t ) =

ni∑

j=1

f(�
(i)
t,j). (4)

As the node label distributions �
(i)
t,j are k−dimensional continuous vectors the

cardinality of L might in fact be equal to the total number of nodes n in the
whole graph database. This, however, means that our derived features are not
meaningful as, in this case, we never get the same count feature for any two
similarly distributed nodes and the kernel value for any two graphs as defined



Efficient Graph Kernels by Randomization 383

0

0

1

bin 1 bin 2 bin 3

G
(1)
0

1

0

1

0

bin 1 bin 2 bin 3

G
(2)
0

φ(G
(1)
0 ) = [2, 1, 3]� φ(G

(2)
0 ) = [2, 2, 2]�

〈φ(G(1)
0 ), φ(G

(2)
0 )〉 = 12

(a) Initial label distributions and base kernel value for t = 0
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Fig. 1. Propagation Kernel Propagation kernel computations for two graphs G
(1)
t

and G
(2)
t with binary node labels using one iteration of label propagation, Eq.(6),

as distribution update. Node label distributions are decoded by color, white means
�
(i)
0,j = [1, 0] and dark red stands for �

(i)
0,j = [0, 1], the initial distributions for unlabeled

nodes (light red) are �
(i)
0,j = [1/2, 1/2]. Panel (a) shows the initial distributions, bins, and

respective kernel computation and panel (b) depicts distributions, bins, features and
linear base kernel for t = 1.

in Eq. (1) is always zero. To ensure the acquisition of meaningful features we
leverage quantization [5]. Hence, the mapping f is replaced by q : Rk → Ek′ ,
where q is a quantization function such that k′ � |L| ≤ n. Note, that deriving
a quantization function for distributions involves considering distance metrics
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for distributions such as Hellinger or total variation (tv) distance. We are not
defining the quantization function here but instead give an efficient solution by
locality-sensitive hashing [3] in Section 4 and also show that we can construct
quantization functions which are Hellinger and tv distance preserving.

3.3 Instances of Propagation Kernels

So far, we defined the general family of propagation kernels. Specific choices of
label update schemes, cf. Eq. (2), result in different instances of the propaga-
tion kernel family. In particular, we introduce the diffusion graph kernel, the
label propagation kernel, the belief propagation kernel, and structure propagation
kernels as for instance the wl-subtree kernel.

Diffusion Graph Kernel: For the diffusion graph kernels we use the following
update for the node label distributions L(i)

t → L
(i)
t+1. Given the adjacency matrix

A(i) of graph G(i) label diffusion on each node is defined as

L
(i)
t+1 ← T (i) L

(i)
t , (5)

where T (i) is the transition matrix, i.e., the row-normalized adjacency matrix
T (i) = (D(i))−1A(i), where D(i) is the diagonal degree matrix with D

(i)
aa =∑

b A
(i)
ab .

Label Propagation Kernel: The label distribution update for the label prop-
agation kernel differs in the fact, that before each iteration of label diffusion
the labels of the originally labeled nodes are pushed back [25]. Let L

(i)
0 =[

L
(i)
0,[labeled], L

(i)
0,[unlabeled]

]�
be the original labels of graph G(i), where the distri-

butions in L
(i)
0,[labeled] represent hard labels and L

(i)
0,[unlabeled] are initialized by a

uniform label distribution, i.e., each entry is 1/k. Then the label propagation is
defined by

L
(i)
t,[labeled] ← L

(i)
0,[labeled],

L
(i)
t+1 ← T (i) L

(i)
t . (6)

Note, that we can choose other step sizes for the label propagation update scheme
as one. This means that we run several iterations of label propagation for each
distribution update. This can be beneficial for settings with partially labeled
graphs. Further, other update schemes, such as “label spreading” [24], can be
used in a similar manner resulting in a label spreading kernel.

Belief Propagation Kernel: Triggered by the idea of defining the similarity of
graphical models, like conditional random field (CRF) representations of images
or different groundings of a Markov logic network (MLN) [17], we can also use
belief propagation [23] to get the node-level feature update in Eq. (2). To define
the belief propagation kernel, we simply use marginal probabilities instead of
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label distributions. Due to space limitations, we do not provide any more details
here and leave comprehensive derivations and experiments for future work.

Structure Propagation Kernel — The wl-subtree Kernel: The wl graph
kernels for labeled graphs are currently state-of-the-art considering both predic-
tion performance and runtime [18]. Therefore, we briefly introduce one instance,
the wl-subtree kernel, and give its definition within our proposed framework of
propagation kernels. Given two graphs G(i) and G(j), the subtree pattern kernel
counts all pairs of matching substructures in subtrees rooted at all nodes of G(i)

and G(j) respectively. The runtime complexity of this approach for N graphs is
O(n2T 4d) [16], where d is the maximum node degree in all graphs. The idea of
using the 1-dimensional Weisfeiler–Lehman test of isomorphism is to overcome
the poor ability to scale to large, labeled graphs, as it scales linearly on the
number of edges of the graphs and the length of the considered graph sequence.
Hence, the wl-subtree kernel on N graphs with T iterations can be computed in
O(Tm+NTn) [18], where m is the total number of edges in all graphs and n is
the total number of nodes. Given two graphs G(i) and G(j), the algorithm works
as follows. First, a signature is generated for each node in each graph by con-
catenating its label with a sorted multiset of its neighboring nodes. Then each
node is assigned a new label such that nodes with the same signature are labeled
the same. This means a hard label update in Eq. (2). Indeed, the wl-subtree
kernel can be defined analogously to Eq. (3). The sequence of graphs {G(i)

t } is
given by hard labels reflecting the signatures for the respective subtree pattern
and the features are represented by

φwl(G
(i)
t ) =

ni∑

j=1

g(�
(i)
t,j), (7)

where �
(i)
t,j ∈ {e1, ..., ek′′} with k′′ ≤ n being the number of different subtree

patterns and g : i 	→ ei. That means, �(i)t,j represents a hard signature for every
node j and g maps each signature to one standard basis vector. Indeed, this view
opens up the possibility to handle probabilistic subtree patterns in the setting of
wl-kernels for partially labeled graphs, which, in turn, is a compelling direction
to enhance the power of wl-kernels.

4 Locality-Sensitive Hashing for Propagation Kernels

We now describe our quantization approach for implementing propagation ker-
nels on graphs with node label distributions. We take our inspiration from
locality-sensitive hashing [3], which seeks for quantization functions on metric
spaces where points “close enough” to each other in that space are “probably”
assigned to the same bin. In our case, we will consider each node label vector
as being an element of the space of discrete probability distributions on k items
equipped with an appropriate probability metric.

We will begin with a formal definition. Let X be a metric space with metric
d : X × X → R, and let Y = {1, 2, . . . , k′}. Let θ > 0 be a threshold, c > 1 be
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an approximation factor, and p1, p2 ∈ (0, 1) be the given success probabilities.
A set of functions H from X to Y is called a (θ, cθ, p1, p2)-locality sensitive hash
(lsh) if for any function h ∈ H chosen uniformly at random, and for any two
points x, x′ ∈ X , we have that

− if d(x, x′) < θ, then Pr(h(x) = h(x′)) > p1, and
− if d(x, x′) > cθ, then Pr(h(x) = h(x′)) < p2.

It is known that we can construct lsh families for Lp spaces with p ∈ (0, 2] [3]. Let
V be a real-valued random variable. V is called p-stable if for any {x1, x2, . . . , xd},
xi ∈ R and independently sampled v1, v2, . . . , vd, we have

∑
xivi ∼ ‖x‖pV . Ex-

plicit p-stable distributions are known for some p; for example, the standard
Cauchy distribution is 1-stable, and the standard normal distribution is 2-stable.
Given the ability to sample from a p-stable distribution V , we may define a lsh
H on R

d with the Lp metric [3]. An element h of H is specified by three param-
eters: a width w ∈ R

+, a d-dimensional vector v whose entries are independent
samples of V , and b ∈ [0, w] drawn from U [0, w], and defined as

h(x;w,v, b) =

⌊
v�x+ b

w

⌋
. (8)

We may now consider h(·) to be a function mapping our label distributions to
integer-valued bins, where similar distributions end up in the same bin. If we
number the non-empty integer bins occupied by all the nodes in all graphs from
1 to k′′, then we may define the function f in Eq. (4) by f(·) = u ◦ h(·), where
u : N → Ek′′ . To decrease the probability of collision it is common to choose
more than one random vector v. For propagation kernels, however, we only
use one hyperplane, as we effectively have T hyperplanes for the whole kernel
computation and the probability of a hash conflict is reduced over the iterations.

The intuition behind the expression in Eq. (8) is that p-stability implies that
two vectors that are close under the Lp norm will be close after taking the dot
product with v; specifically, (v�x − v�x′) is distributed as ‖x− x′‖pV . In our
applications, we are concerned with the space of discrete probability distributions
on k elements, endowed with a probability metric d. Here we specifically consider
the total variation (tv) and Hellinger (h) distances:

dtv(p, q) = 1/2
∑

i

|pi − qi|, dh(p, q) =

(
1/2

∑

i

(√
pi −√qi

)2
)1/2

.

The total variation distance is simply half the L1 metric, and the Hellinger
distance is a scaled version of the L2 metric after applying the map p 	→ √p. We
may therefore create a locality-sensitive hash family for dtv by direct application
of Eq. (8), and create a locality-sensitive hash family for dh by applying Eq. (8)
after applying the square root map to our label distributions. These are the
quantization schemes applied in our experiments.
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5 Empirical Evaluation

Our intention here is to investigate the power of propagation kernels for graph
classification. Specifically, we investigate the two following questions:

(Q1) Do propagation kernels utilizing continuous distribution-based features
arising from propagating label information perform competitively as state-of-
the-art graph kernels for graph classification?
(Q2) Does randomization, in particular locality-sensitive hashing techniques,
improve efficiency over state-of-the-art graph kernels?
To this aim, we implemented propagation kernels in Matlab and considered the
following experimental protocol.

5.1 Experimental Protocol

We compare classification accuracy and runtime for several different instances of
propagation kernels: the diffusion graph kernel and the label propagation kernel
with Hellinger distance and total variation distance, and a structure propaga-
tion kernel, namely the wl-subtree kernel. We choose the wl-subtree kernel for
comparisons as it is currently the most accurate and efficient graph kernel and
additionally report several results for other graph kernels from [18].

We consider two general settings, graph classification for fully and for partially
labeled graphs. The latter is a reasonable situation when dealing with semantic
images as fully labeled data is costly or even impossible to acquire. Note, that for
partially labeled datasets we use the label propagation kernel, whereas for fully
labeled graphs this does not make sense because of the push back of original
labels. Here, we choose the diffusion graph kernel.

The classification performance is evaluated by running C-SVM classifications
using libSVM,2 where the cost parameter is learned by cross-validation on the
training set. We compute all kernels for T = 0, ..., 10 and report the average of
the best accuracies from 10 re-runs of a 10-fold cross-validation. For all runtime
experiments all kernels are as well computed for T = 10 and all experiments
were conducted on an Apple Mac Pro workstation with two 2.26 GHz quad-core
Intel Xeon “Gainestown” processors (model E5520) and 28 GB of RAM. We used
a linear base kernel for all methods and the bin width parameter for lsh was set
to w = 10−5. All results were fairly insensitive to the exact choice of w.

5.2 Datasets

We considered two real-world benchmark datasets.

Bioinformatics Benchmark Data: We ran experiments on the following
benchmark datasets: mutag, enzymes, nci1, nci109, and d&d. mutag con-
tains 188 sets of mutagenic aromatic and heteroaromatic nitro compounds, the
label refers to their mutagenic effect on the Gram-negative bacterium Salmonella

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 2. Graph Based Scene Classification In semantic scene classification the orig-
inal images (a) are represented by graphs of superpixels (b). Each superpixel node has
an attached semantic label (c) (here: b = building, c = car, and v = void). Each graph
represents the semantic scene of an image and similar scenes are classified according
to a kernel capturing label and structure information.

typhimurium. enzymes has 6 EC top-level classes. It is a dataset of protein ter-
tiary structures belonging to 600 enzymes from the BRENDA enzyme database.
nci1 and nci109 are anti-cancer screens, in particular for cell lung cancer and
ovarian cancer cell lines, respectively. d&d consists of 1178 protein structures,
with the nodes in each graph represent amino acids and two nodes forming an
edge if they are less than 6 Ångstroms separated. For a more comprehensive
introduction and references, see [18].

Image Benchmark Data: The two real-world image datasets MSRC 9-class
and MSRC 21-class3 are state-of-the-art datasets in semantic image processing.
Each image is represented by a conditional Markov random field graph, as illus-
trated in Figure 2. The nodes of each graph are derived by oversegmenting the
images using the quick shift algorithm4 with an average of 40 superpixels per
graph. Hence, each node represents one superpixel and the semantic (ground-
truth) node labels are derived by taking the mode ground-truth label of all pixels
in the corresponding segment. Note, that the number of nodes varies from graph
to graph. msrc9 consists of 221 images, and a total of 8969 nodes. The node
labels consist of nine classes building, grass, tree, cow, sky, aeroplane, face, car,
bicycle and a label void to handle objects that do not fall into one of these classes.
Each image can be classified into one out of eight classes. From the MSRC 21-
class dataset, which is a more comprehensive and complex image dataset, we
derived two datasets for our experiments. msrc21 consists of 565 images with
24 109 labeled superpixels of 21 classes: building, grass, tree, cow, sheep, sky,
airplane, water, face, car, bicycle, flower, sign, bird, book, chair, road, cat, dog,
body, boat, and void. For the second dataset, msrc21c, we extracted a subset of
the most challenging scenes by removing all images having fewer than four dif-
ferent class labels. The resulting dataset consists of 209 graphs and 8 626 nodes
in total. For both datasets based on the MSRC 21-class data each image can be
classified as one out of 20 classes.
3 http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
4 http://www.vlfeat.org/overview/quickshift.html

http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
http://www.vlfeat.org/overview/quickshift.html
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Table 1. Average accuracy (and standard deviation) on the image datasets for diffusion
graph kernel Kdiff using Hellinger distance (+h) resp. total variation distance (+tv),
and for the WL-subtree kernel Kwl. Bold indicates best result.

dataset

method msrc9 msrc21 msrc21c

Kdiff+h 91.6 (0.5) 83.6 (0.8) 88.7 (0.7)
Kdiff+tv 91.6 (0.5) 83.6 (0.8) 88.7 (0.7)
Kwl 92.1 (0.8) 82.2 (1.1) 88.5 (0.4)

Table 2. Average accuracy (and standard deviation) on the bioinformatics benchmark
datasets for diffusion graph kernel Kdiff using Hellinger distance (+h) resp. total vari-
ation distance (+tv), and for the WL-subtree kernel Kwl. Bold indicates best result.
Results for random walk kernel and Ramon–Gärtner kernel are taken from [18] to pro-
vide a broader overview of state-of-the-art graph kernel performances; however, please
note that we did not re-run the experiments and hence they have most likely been
produced using different random folds.

dataset

method mutag enzymes nci1 nci109 d&d

Kdiff+h 87.7 (1.3) 47.1 (1.2) 84.4 (0.2) 84.0 (0.3) 79.2 (0.4)
Kdiff+tv 87.5 (1.3) 47.0 (1.1) 84.2 (0.3) 83.6 (0.3) 79.3 (0.3)
Kwl 87.0 (1.0) 53.1 (1.3) 82.2 (0.2) 82.5 (0.2) 80.0 (0.4)

random walk [22] 80.7 (0.4) 21.7 (0.9) 64.3 (0.3) 63.5 (0.2) 71.7 (0.5)
Ramon–Gärtner [16] 85.7 (0.5) 13.4 (0.9) 61.9 (0.3) 61.7 (0.2) 57.2 (0.1)

Table 3. Average accuracy (and standard deviation) on 10 different sets of partially
labeled images for label propagation kernel using tv distance (Klp+tv), and for the
WL-subtree kernel with unlabeled nodes treated as additional label Kwl and with hard
labels derived from converged LP (lp +Kwl).

labels missing

dataset method 20% 40% 60% 80%

Klp+tv 90.0 (1.2) 88.7 (1.0) 86.6 (1.3) 80.4 (1.8)
msrc9 lp+Kwl 90.0 (0.6) 87.9 (1.9) 83.2 (2.0) 77.9 (3.1)

Kwl 89.2 (1.5) 88.1 (1.5) 85.7 (1.9) 78.5 (2.7)

Klp+tv 86.9 (0.8) 84.7 (1.0) 79.5 (0.9) 69.3 (1.1)
msrc21 lp+Kwl 85.8 (0.6) 81.5 (0.8) 74.5 (1.0) 64.0 (1.2)

Kwl 85.4 (1.3) 81.9 (1.2) 76.0 (0.8) 63.7 (1.3)
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5.3 Experimental Results

Under our experimental protocol, propagation kernels gave the following results.

(Q1) Predictive Performance: The predictive performances for fully labeled
graphs are summarized in Tables 1 and 2. On msrc21, msrc21c, mutag, nci1,
and nci109, propagation kernels reached the highest accuracy. Only on en-
zymes, did Kwl perform considerably better than propagation kernels. For the
remaining datasets, the predictive performance is comparable. The Ramon–
Gärtner and random-walk kernels were less competitive to the propagation ker-
nels. To assess the predictive performance of propagation kernels on partially la-
beled graphs, we ran the following experiments 10 times. We randomly removed
20–80% of the labels in msrc9, msrc21, and msrc21c and computed cross-
validation accuracies and standard deviations. Because the wl-subtree kernel
was not designed for partially labeled graphs, we compare the label propagation
kernel to two variants: one where we treat unlabeled nodes as an additional la-
bel “u” (Kwl) and another where we use hard labels derived from running label
propagation until convergence (lp+Kwl). The results for the first two datasets
are shown in Table 3. The results for msrc21c showed the same behavior and
hence were omitted. For larger fractions of missing labels Klp+tv obviously out-
performs the baseline methods and surprisingly running label propagation until
convergence and then the wl-subtree kernel gives poorer results than Kwl. How-
ever, label propagation might be beneficial for larger amounts of missing labels.
In general, the results on all experiments clearly show that question (Q1) can
be answered affirmatively.

(Q2) Running Time: The runtime results are summarized in Table 4. Empiri-
cally, we observe that propagation kernels can be orders of magnitude faster then
existing graph kernels. They can easily scale to graphs with thousands of nodes.
On d&d, Kdiff+tv was computed at least twice as fast as any other method.
On enzymes, Kdiff+tv takes less then a second, whereas all other methods take
several seconds. Compared to Kwl(ref), it is two orders of magnitude faster.
Comparing the runtimes of Kwl(lsh) and Kwl(ref), we clearly see that leverag-
ing randomization significantly outperforms the non-randomized approach. We
also compared the runtime of propagation kernels using label propagation to
the wl-subtree kernel on the msrc21 dataset with partially labeled graphs. We
again compare Klp+tv with Kwl(lsh) and lp+Kwl(lsh). The results are summa-
rized in Figure 3. Kwl(ref) is over 36 times slower than Klp+tv. These results
again confirm that propagation kernels have attractive scalability properties for
large datasets. The lp+Kwl approach wastes computation time while running
lp to convergence before it can even begin calculating the kernel. The inter-
mediate label distributions obtained during the convergence process are already
extremely powerful for classification and allow one to save computation time.
These results clearly answer question (Q2) affirmatively.

To summarize, propagation kernels turned out to be competitive in terms of
predictive accuracy and speed on all datasets, often by orders of magnitude.
Thus, questions (Q1) and (Q2) can be answered affirmatively.
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Table 4. Runtime in seconds for T = 10 on the bioinformatics datasets for the dif-
fusion graph kernel (Kdiff+tv) using tv distance, and for the WL-subtree kernel for
a implementation leveraging randomization (Kwl(lsh)) and the standard implementa-
tion (Kwl(ref)) presented in [18]. Bold indicates best result. Results for wl-edge kernel
(Kwl-edge) and graphlet count kernel are taken from [18] to provide a broader overview
of state-of-the-art graph kernel performances.

dataset

method mutag enzymes nci1 nci109 d&d total

Kdiff+tv 0.12 s 0.89 s 116 s 133 s 55 s 376 s
Kwl(lsh) 0.03 s 1.6 s 185 s 189 s 117 s 493 s
Kwl(ref) 4.7 s 29 s 216 s 216 s 511 s 977 s

Kwl-edge [18] 3 s 11 s 65 s 58 s 3 days 3 days
graphlet count [19] 3 s 5 s 87 s 87 s 23 hours 23 hours
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Fig. 3. Runtime for Partially Labeled msrc21 Average time in seconds over 10
different instances of the msrc21 dataset with 50% labeled nodes for kernel iterations
T from 0 to 10. We compare the WL-subtree kernel with unlabeled nodes treated as ad-
ditional label (Kwl(lsh)), and with hard labels derived from converged lp distributions
(lp +Kwl(lsh)), and the label propagation kernel with tv distance (Klp+tv). Kwl(ref)

required 36s for T = 10 and is not included.

6 Conclusions and Future Work

Probabilistic models provide a principled way of spreading information and even
treating missing information within graphs. Known labels can be used to prop-
agate information through the graph in order to label all nodes. On the other
hand, discriminative methods such as support vector machines enable us to con-
struct flexible decision boundaries and often result in classification performance
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superior to that of the model based approaches. In this paper, we developed a
natural way of combining both frameworks for the construction of graph kernels,
called propagation kernels. Intuitively, propagation kernels count common sub-
distributions induced in each iteration of running inference in two graphs. For
counting the continuous information — the distributional information computed
for each node — efficiently, they leverage the randomized technique of locality-
sensitive hashing. As our experimental results demonstrate, propagation kernels
are competitive in terms of accuracy with state-of-the-art kernels on several clas-
sification benchmark datasets, even reaching the highest accuracy level on five
out of eight datasets. Moreover, in terms of runtime, propagation kernels out-
perform other graph kernels, even the recently developed efficient wl-kernels.

Propagation kernels provide several interesting avenues for future work. While
we have used classification to guide the development of propagation kernels, the
results are directly applicable to regression, clustering, and ranking, among other
tasks. Employing message-based probabilistic inference schemes such as (loopy)
belief propagation directly paves the way to deal with more general structures
then just graphs; we are currently investigating Markov logic networks [17].
By considering the computation trees—the tree-structured unrolling of a given
graph rooted at the nodes—one may even realize within-network relational clas-
sification using propagation kernels.
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