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Abstract. The spatio-temporal coherence in data plays an important
role in echocardiographic segmentation. While learning offline dynamical
priors from databases has received considerable attention, these priors
may not be suitable for post-infarct patients and children with congen-
ital heart disease. This paper presents a dynamical appearance model
(DAM) driven by individual inherent data coherence. It employs multi-
scale sparse representation of local appearance, learns online multiscale
appearance dictionaries as the image sequence is segmented sequentially,
and integrates a spectrum of complementary multiscale appearance infor-
mation including intensity, multiscale local appearance, and dynamical
shape predictions. It overcomes the limitations of database-driven sta-
tistical models and applies to a broader range of subjects. Results on
26 4D canine echocardiographic images acquired from both healthy and
post-infarct subjects show that our method significantly improves seg-
mentation accuracy and robustness compared to a conventional intensity
model and our previous single-scale sparse representation method.

1 Introduction

Segmentation of the left ventricle from 4D echocardiography plays an essential
role in quantitative cardiac functional analysis. Due to gross image inhomo-
geneities, artifacts, and poor contrast between regions of interest, robust and
accurate automatic segmentation of the left ventricle, especially the epicardial
border, is very challenging in echocardiography. The inherent spatio-temporal
coherence of echocardiographic data provides important constraints that can
be exploited to guide cardiac border estimation and has motivated a spatio-
temporal view point of echocardiographic segmentation.
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Following the seminal work of Cootes et al. [1] on statistical shape/appearance
modeling, a number of spatio-temporal statistical models (e.g., [2–6]) have been
proposed for learning dynamical priors offline from databases. While these mod-
els have advantages in different aspects, the problem of forming a database that
can handle a wide range of normal and abnormal heart images is still open to
our knowledge. The assumption that different subjects have similar shape or
motion pattern or their clinical images have similar appearance may not hold
for routine clinical images, especially for disease cases, due to natural subject-to-
subject tissue property variations and operator-to-operator variation in acquisi-
tion [7]. For example, for post-infarct patients, the positions, sizes and shapes
of infarcts and thereby the overall heart motion can be highly variable across
the population. It is very hard to build a reliable database accounting for all
these variations, while such individual uniqueness is essentially desired informa-
tion in some important applications like motion-based functional analysis. In
addition, the tremendous cost of building reliable databases compromises the
attractiveness of the database-driven methods.

Exploiting individual data coherence through online learning overcomes these
limitations. It is particularly attractive when a database is inapplicable, unavail-
able, or defective. To this end, a model is indispensable for reliably uncovering
the inherent spatio-temporal structure of individual 4D data. Sparse representa-
tion is a powerful mathematical framework for studying high-dimensional data.
We proposed a 2D single-scale sparse-representation-based segmentation method
in [8]. It shows the feasibility of analyzing 2D+t echocardiographic images via
sparse representation and online dictionary learning. However, it is difficult to
directly apply this method to 4D data. An important limitation is that it uti-
lizes only a single scale of appearance information and requires careful tuning
of scale parameters. This compromises segmentation accuracy and robustness.
This paper generalizes our previous work [8] and introduces a new 3D dynami-
cal appearance model (DAM) that leverages a full spectrum of complementary
multiscale appearance information including intensity, multiscale local appear-
ance, and shape. It employs multiscale sparse representation of high-dimensional
local appearance, encodes appearance patterns with multiscale appearance dic-
tionaries, and dynamically updates the dictionaries as the frames are segmented
sequentially. The online multiscale dictionary learning process is supervised in
a boosting framework to seek optimal weighting of multiscale information and
generate dictionaries that are both generative and discriminative. Sparse cod-
ing w.r.t. the predictive dictionaries produces a local appearance discriminant.
We also include intensity and a dynamical shape prediction to complete the
appearance spectrum that we incorporate into a MAP framework.

2 Methods

2.1 Multiscale Sparse Representation

Let Ω denote the 3D image domain. We describe the multiscale local appearance
at a pixel u ∈ Ω in frame It with a series of appearance vectors yk

t (u) ∈ IRn
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at different appearance scales k = 1, ..., J . yk
t (u) is constructed by concatenat-

ing orderly the pixels within a block centered at u. Complementary multiscale
appearance information is extracted using a fixed block size at different levels
of Gaussian pyramid. Modeled with sparse representation, an appearance vector
y ∈ IRn can be represented as a sparse linear combination of the atoms from
an appearance dictionary D ∈ IRn×K which encodes the typical patterns of a
corresponding appearance class. That is, y ≈ Dx. Given y, D, and a sparsity
factor T0, the sparse representation x can be solved by sparse coding:

min
x

‖y −Dx‖22 s.t. ‖x‖0 ≤ T0. (1)

A shape st in It is represented by a level set function Φt(u). We define Φ+
t (u) =

Φt(u)+ψ1 and Φ−
t (u) = Φt(u)−ψ2. The regions of interest are two band regions

Ω1
t = {u ∈ Ω : Φ−

t (u) < 0, Φt(u) ≥ 0}, and Ω2
t = {u ∈ Ω : Φ+

t (u) > 0, Φt(u) <
0}. We define Ω∗

t = {u ∈ Ω : Φ+
t−1(u) + ζ1 ≥ 0, Φ−

t−1(u) − ζ2 ≤ 0}. The con-
stants are chosen such that st ∈ Ω∗

t . Suppose {D1
t ,D

2
t}k are two dictionaries

adapted to appearance classes Ω1
t and Ω2

t respectively at scale k. They exclu-
sively span, in terms of sparse representation, the subspaces of the respective
classes. Reconstruction residues are defined as

{Rc
t(u)}k = ||yk

t (u)− {Dc
t x̂

c
t(u)}k||2 (2)

∀u ∈ Ω∗
t , k ∈ {1, ..., J}, and c ∈ {1, 2}, where x̂c

t is the sparse representation of
yk
t w.r.t. Dc

t . It is logical to expect that {R1
t (u)}k > {R2

t (u)}k when u ∈ Ω2
t ,

and {R1
t (u)}k < {R2

t (u)}k when u ∈ Ω1
t . Combining the multiscale information,

we introduce a local appearance discriminant

Rt(u) = 1Ω∗
t
(u)

J∑

k=1

(log
1

βk
)sgn({R2

t (u)}k − {R1
t (u)}k), (3)

∀u ∈ Ω, where βk’s are the weighting parameters of the J appearance scales.

2.2 Online Multiscale Dictionary Learning

To obtain the discriminant Rt, {D1
t ,D

2
t}k and βk need to be learned. Leveraging

the inherent spatio-temporal coherence of individual data, we introduce an on-
line multiscale appearance dictionary learning process supervised in a boosting
framework. We interlace the processes of dictionary learning and segmentation as
illustrated in Fig. 1. Similar to the database-driven dynamical shape models [3–
5], we also assume a segmented first frame for initialization. It can be achieved by
some automatic method with expert correction or purely manual segmentation.
We dynamically update the multiscale appearance dictionaries each time a new
frame is segmented. For t > 2, {D1

t ,D
2
t}k are well initialized with {D1

t−1,D
2
t−1}k

and updated with only a few iterations. {D1
2,D

2
2}k are initialized with training

samples. To reduce propagation error, we divide a sequence into two subse-
quences to perform bidirectional segmentation like [8]. The proposed dictionary
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Fig. 1. Dynamical dictionary update interlaced with sequential segmentation

learning algorithm following the structure of the AdaBoost [9] is detailed in Algo-
rithm 1. J dictionary pairs {D1

t ,D
2
t}k and weighting parameters βk are learned

from two classes of appearance samples {Y1
t−1}k = {yk

t−1(u) : u ∈ Ω1
t−1} and

{Y2
t−1}k = {yk

t−1(u) : u ∈ Ω2
t−1}, k = 1, ..., J . The K-SVD [10] algorithm is

invoked to enforce the reconstructive property of the dictionaries. The boost-
ing supervision strengthens the discriminative property of the dictionaries and
optimizes the weighting of multiscale information.

2.3 MAP Estimation

We estimate the shape Φt in frame It given the knowledge of Φ̂1:t−1 and I1:t.
Different from the single-scale method in [8], we integrate a spectrum of comple-
mentary multiscale appearance information including intensity, the multiscale
local appearance discriminant, and a dynamical shape prediction Φ∗

t . Since Φt−1

and Φt−2 are both spatially and temporally close, we assume a constant evo-
lution speed during [t − 2, t]. Within the band domain Ω1

t ∪ Ω2
t we introduce

an approximate shape prediction Φ∗
t = Φ̂t−1 + G(Φ̂t−1 − Φ̂t−2) to regularize

the shape estimation. Here G(∗) denotes Gaussian smoothing operation used to
preserve the smoothness of level set function. The segmentation is estimated by
maximizing the posterior probability:

Φ̂t = argmaxΦt p(Φ̂1:t−1, I1:t−1, It|Φt)p(Φt)
≈ argmaxΦt p(Φ

∗
t , Rt, It|Φt)p(Φt)

≈ argmaxΦt p(Φ
∗
t |Φt)p(Rt|Φt)p(It|Φt)p(Φt).

(4)

The shape regularization is given by p(Φ∗
t |Φt)p(Φt) ∝ exp{−γ ∫Ω1

t∪Ω2
t
(Φt −

Φ∗
t )

2du} exp{−μ ∫
Ω
δ(Φt)|∇Φt|du}. We assume i.i.d. normal distribution of Rt:

p(Rt|Φt) ∝ ∏
u∈Ω1

t
exp{−[Rt(u)−c1]

2

2ω2
1

}∏u∈Ω2
t
exp{−[Rt(u)−c2]

2

2ω2
2

}, and i.i.d. Ray-

leigh density of It: p(It|Φt) =
∏

u∈Ω1
t

It(u)

σ2
1

exp{−It(u)2

2σ2
1

}∏u∈Ω2
t

It(u)

σ2
2

exp{−It(u)2

2σ2
2

}.
Since intensity is not helpful for epicardial discrimination, p(It|Φt) is dropped in
the epicardial case. The overall segmentation energy functional is given by:

E(Θ,Φt) =
∫
Ω1

t
I2t /2σ

2
1 + log(σ2

1/It)du+
∫
Ω2

t
I2t /2σ

2
2 + log(σ2

2/It)du

+
∫
Ω1

t
(Rt − c1)

2/2ω2
1du+

∫
Ω2

t
(Rt − c2)

2/2ω2
2du

+γ
∫
Ω1

t∪Ω2
t
(Φt − Φ∗

t )
2du+ μ

∫
Ω δ(Φt)|∇Φt|du,

(5)
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where Θ = [c1, c2, ω1, ω2, σ1, σ2]. We minimize the energy functional as follows:
(a) Initialize Φ0

t with Φt−1, τ = 0; (b) Compute the maximum likelihood estimate
of Θ(Φτ

t ); (c) Update Φ
τ+1
t by gradient descent; (d) Reinitialize Φτ+1

t after every
few iterations; (e) Stop if ‖Φτ+1

t − Φτ
t ‖2 < ξ, otherwise, τ = τ + 1, go to (b).

Algorithm 1. Multiscale Appearance Dictionary Learning

Input: appearance samples {Y1
t−1}k = {yk

1,i}M1
i=1 and {Y2

t−1}k = {yk
2,j}M2

j=1, initial

dictionaries {D1
t−1,D

2
t−1}k, k = 1, ..., J , w1

1 = {w1
1,i}M1

i=1 = 1,w1
2 = {w1

2,j}M2
j=1 = 1.

Output: dictionary pairs {D1
t ,D

2
t}k, weighting parameters βk, k = 1, ..., J .

For k = 1, ..., J:

– Resampling: Draw sample sets Ỹk
1 from {Y1

t−1}k and Ỹk
2 from {Y2

t−1}k based

on distributions pk
1 = {pk1,i}M1

i=1 =
wk

1
∑M1

i=1 wk
1,i

and pk
2 = {pk2,j}M2

j=1 =
wk

2
∑M2

j=1 wk
2,j

.

– Dictionary Learning: Apply the K-SVD to learn {D1
t ,D

2
t}k from Ỹk

1andỸ
k
2 :

min
Dc

t ,X
‖Ỹk

c −Dc
tX‖22 s.t. ∀i, ‖xi‖0 ≤ T0; c ∈ {1, 2}. (6)

– Sparse Coding: ∀y ∈ {Y1
t−1,Y

2
t−1}k, solve the sparse representations

w.r.t. {D1
t}k, and{D2

t}k using the OMP [11], and get residues R(y,D1
t )k and

R(y,D2
t )k.

– Classification: Make a hypothesis hk : y ∈ {Y1
t−1,Y

2
t−1}k → {0, 1}:

hk(y) = Heaviside(R(y,D2
t )k − R(y,D1

t )k). Calculate the error of hk: εk =∑M1
i=1 p

k
1,i|hk(y

k
1,i)− 1|+∑M2

j=1 p
k
2,jhk(y

k
2,j). Set βk = εk/(1− εk).

– Weight Update: wk+1
1,i = wk

1,iβ
1−|hk(yk

1,i)−1|
k , wk+1

2,j = wk
2,jβ

1−hk(yk
2,j)

k .

3 Experiments and Results

We acquired 26 3D canine echocardiographic sequences from both healthy and
post-infarct subjects using a Phillips iE33 ultrasound imaging system with a
frame rate of ∼ 40 Hz. Each sequence spanned a cardiac cycle. The sequential
segmentation was initialized with a manual tracing of the first frame. Both endo-
cardial and epicardial borders were segmented throughout the sequences. Fig. 2
shows typical segmentation examples by our method. 100 frames were randomly
drawn from ∼ 700 frames for manual segmentation and quality assessment. We
evaluated automatic results against expert manual tracings using the following
segmentation quality metrics: Hausdorff Distance (HD), Mean Absolute Distance
(MAD), Dice coefficient (DICE), and Percentage of True Positives (PTP).

Benefit from the Dynamical Appearance Model.When the dynamical ap-
pearance components are turned off, our model reduces to a conventional ultra-
sound intensity model: the Rayleigh model [12]. Comparison with the Rayleigh
method clearly shows the added value of the proposed DAM. Since the Rayleigh
method is generally sensitive to initial contours, we initialized its segmentation
of each frame with the first frame manual tracing. Fig. 3(a) compares typical
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Fig. 2. Typical segmentations by our method (red,purple) and manual tracings (green)

segmentation examples by the Rayleigh method and our method. We observed
that the Rayleigh method was easily trapped by misleading intensity informa-
tion (e.g., image inhomogeneities and artifacts), while our approach produced
accurate segmentations. Fig. 2 qualitatively shows the capability of the DAM in
estimating reliably 3D left ventricular borders throughout the whole cardiac cy-
cle. The Rayleigh method did not generate acceptable segmentation sequences in
the experiment. Table 1 demonstrates that the DAM significantly outperformed
the Rayleigh model. Better means (higher DICE and PTP, and lower MAD
and HD) and lower standard deviations show the remarkable improvement of
segmentation accuracy and robustness achieved by employing the DAM.

Table 1. Sample means and standard deviations of segmentation quality measures

expressed as mean±std DICE (%) PTP (%) MAD (mm) HD (mm)

Rayleigh [12] 74.9 ± 18.8 83.1 ± 16.3 2.01 ± 1.22 9.17 ± 3.37
Endocardial DAM 93.6 ± 2.49 94.9 ± 2.34 0.57 ± 0.14 2.95 ± 0.62

SSDM [5] —— 95.9 ± 1.24 1.41 ± 0.40 2.53 ± 0.75

Rayleigh [12] 74.1 ± 17.4 82.5 ± 12.0 2.80 ± 1.55 16.9 ± 9.30
Epicardial DAM 97.1 ± 0.93 97.6 ± 0.86 0.60 ± 0.19 3.03 ± 0.76

SSDM [5] —— 94.5 ± 1.74 1.74 ± 0.39 2.79 ± 0.97

Advantages over Single-scale Sparse Representation. We compared our
DAM to the single-scale sparse representation model (SSR) in [8]. The SSR was
extended to 3D and performed at 5 appearance scales ranging from low scale
3.5× 3.5× 3.5mm3 to high scale 15.5× 15.5× 15.5mm3, while the DAM utilized

Fig. 3. Segmentation examples. (a) Manual (Green), DAM (Red), Rayleigh (Blue). (b)
Manual (Green), DAM (Red), SSR (Blue).
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multiscale appearance information. Fig. 3(b) presents end-systolic segmentation
examples showing that the use of DAM resulted in lower propagation error and
higher segmentation accuracy compared to the SSR. Fig. 4 presents the quanti-
tative results of the comparison study. We observed that the performance of the
SSR varied with the scale, which implies its sensitivity to the appearance scale.
The SSR required scale tuning to get better results. The DAM achieved the best
results in almost all the metrics for both endocardial and epicardial segmenta-
tions, which demonstrates the advantages of DAM over SSR. By summarizing
complementary multiscale appearance information, the DAM consistently pro-
duced accurate segmentations without careful parameter tuning.

Fig. 4. Means and 95% confidence intervals obtained by the SSR (blue, scales 1, ..., 5)
and the DAM (yellow, 6) in endocardial (top row) and epicardial (bottom row) cases.

Comparison with Database-Driven Dynamical Models.Table 1 compares
the HD, MAD and PTP achieved by our model and that by a state-of-the-art
database-driven dynamical shape model SSDM reported in [5]. The database-free
DAM achieved comparable results with the SSDM, and outperformed the SSDM
in segmenting epicardial borders. It is worth noticing that the DAM does not
require more human interaction at the segmentation stage than the database-
driven dynamical models such as [3–5] which also need manual tracings of the
first or first few frames for initialization.

4 Discussion and Conclusion

We have proposed a 3D dynamical appearance model that exploits the inherent
spatio-temporal coherence of individual echocardiographic data. It employs mul-
tiscale sparse representation, online multiscale appearance dictionary learning,
and a spectrum of complementary multiscale appearance information includ-
ing intensity, multiscale local appearance, and shape. Our method resulted in
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significantly improved accuracy and robustness of left ventricular segmentation
compared to a standard intensity method and our previous single-scale sparse
representation method. The DAM achieved comparable results with a state-of-
the-art database-driven statistical dynamical model SSDM. Since the DAM is
database-free, it overcomes the limitations introduced by the use of databases.
The DAM can be applied to the cases (e.g., the post-infarct subjects in this
study) where it is inappropriate to apply database-based a priori motion or shape
knowledge. Even when the priors are effective, the DAM can be a good choice for
complementing the database and relaxing the reliance of statistical models (e.g.,
[2–6]) on database quality. Future work includes extensions to human data, other
modalities, and an integrated online and offline learning framework to exploit
their complementarity.
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