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Abstract. In this paper a novel groupwise registration algorithm is pro-
posed for the unbiased registration of a large number of densely sampled
point clouds. The method fits an evolving mean shape to each of the
example point clouds thereby minimizing the total deformation. The
registration algorithm alternates between a computationally expensive,
but parallelizable, deformation step of the mean shape to each example
shape and a very inexpensive step updating the mean shape.

The algorithm is evaluated by comparing it to a state of the art regis-
tration algorithm [5]. Bone surfaces of wrists, segmented from CT data
with a voxel size of 0.3×0.3×0.3mm3, serve as an example test set. The
negligible bias and registration error of about 0.12 mm for the proposed
algorithm are similar to those in [5]. However, current point cloud reg-
istration algorithms usually have computational and memory costs that
increase quadratically with the number of point clouds, whereas the pro-
posed algorithm has linearly increasing costs, allowing the registration
of a much larger number of shapes: 48 versus 8, on the hardware used.

1 Introduction

Groupwise registration is a recurring problem in many medical applications.
Two prominent applications are atlas building and the construction of statis-
tical shape models (SSM). Such registrations should be unbiased in the sense
that the outcome must not depend on the selection of a target or on the order
in which the samples are processed. Furthermore, it is often desirable to reg-
ister a large number of samples, such that the atlas or SSM generalizes well.
However, depending on chosen similarity criteria and allowable transformations
the groupwise registration problem may become intractable, both in terms of
computational expense as well as memory requirements.

Group-wise registration algorithms are available both for voxel-based regis-
trations, e.g. [3] as for point cloud registrations, e.g. [2]. The most important
methodological difference between voxel-based and point cloud registrations is
in the correspondence measure, e.g. intensity based vs. distance based. In [6]
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it is proposed to approximate the point clouds with Gaussian kernels and to
(densely) sample the space with clouds on a grid, effectively transforming the
point cloud registration problem into an intensity registration problem. However,
using the L2 divergence and Gaussian kernels to estimate the density function
such a sampling can be avoided and the divergence can be computed efficiently
in closed form [5]. Unfortunately, the computational and memory costs of the
solution proposed in [5] grow quadratically with the number of registered shapes.

In this work we propose a solution to the groupwise point cloud registration
problem that has a computational complexity that increases linearly with the
number of point clouds to be registered. In this algorithm (I) the computational
and memory costs grow linearly with the number of clouds, and (II) the algo-
rithm is trivially parallellizable. This allows the unbiased registration of a very
large number of point clouds on regular hardware and permits GRID computing.
The registration problem is solved by independently evolving copies of a mean
cloud that has minimal deformation with respect to each of the point clouds.
This solution differs from common approaches where all example point clouds
are deformed to the evolving mean [3,6,5] and has the advantage that an implicit
point correspondence is present between all registered shapes, without the need
for an image grid as in [3,6] This implicit correspondence allows the computa-
tionally inexpensive mean shape update. Both the accuracy and efficiency of the
proposed method are compared to a state-of-the-art method [5] by applying the
registration to three sets of 48 wrist bones (See Figure 3).

2 Methods

The registration algorithm that is proposed in this paper establishes correspon-
dence between N point clouds Ci, i = 1, . . . , N and an evolving mean cloud M
with nm points. The numbers of points ni in all clouds Ci do not need to be the
same. For each cloud Ci, a deformed copy of M that approximates Ci is denoted
as Mi. The algorithm to evolve clouds M and Mi, i = 1, . . . , N consists of five
steps, outlined below. The first three steps are illustrated in Figure 1. After es-
timating an initial cloud M (step 1), the non-rigid registration in step 2 is the
computationally most expensive step. Due to the splitting up of the procedure
in a registration (step 2) and update of the mean shape (step 3), step 2 can be
performed separately for each cloud Ci and is therefore trivially parallelizable.

Step 1: Estimate an Initial Mean Cloud M . In this work an initial coarse
alignment of the point clouds Ci is assumed. Furthermore, the initial mean cloud
M is assumed to come from a surface with the same topology as the clouds Ci.
In this work the surfaces sampled by Ci are available and the initial estimate of
M is obtained by sampling the 0-level of the average signed distance transforms
of the surfaces.

Step 2: Register M to Each Cloud Ci. Following many recent registra-
tion methods, shapes, initially represented as point clouds, are modeled using a
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(a) Step 1 (b) Step 2 (c) Step 3

Fig. 1. Schematic representation of the registration algorithm. Step 1: (a) Three point
clouds C1,2,3 (solid contours) and initial estimate of mean shape M (dashed contours).
Step 2: (b) Copies M1,2,3 of M have been registered to C1,2,3. For one point corre-
spondences are denoted by arrows. Step 3: (c) New estimate of shape M , with minimal
deformation with respect to clouds M1,2,3.

mixture of Gaussians. In this work, all Gaussian kernels are isotropic and have
the same size, determined by parameter σ. The density Di of each cloud at
coordinates x is therefore described by

Di (x) =
1

ni (2π)
d/2

σd

ni∑

j=1

exp
(
− (x− pij)

T
(x− pij)�2σ2

)
(1)

where ni is the number of points in cloud Ci, d is the spatial dimensionality of
the cloud points and pij are the coordinates of a point indexed by j in cloud Ci.

As in [5] the L2 divergence is used as a distance measure between two density
functions. For two clouds Mi and Ci with density functions Dm and Dc, this
measure is defined as

fL2 (Mi, Ci) =

ˆ
Rd

(
D2

m − 2DmDc +D2
c

)
dx (2)

where Rd is the spatial domain in which the point-clouds reside. The L2 diver-
gence is a member of the family of Density Power Divergences [5], which also
contains the well-known Kullback-Leibler (KL) divergence. The L2 divergence
is symmetric and (2) can be evaluated in closed form for Gaussian density func-
tions, using the identity:

ˆ
Rd

G (x|μ1, Σ1)G (x|μ2, Σ2) dx = G (0|μ1 − μ2, Σ1 +Σ2) (3)

where G (x|μ1, Σ1) and G (x|μ2, Σ2) are (multivariate) Gaussian density func-
tions with means μ1 and μ2 and covariance matrices Σ1 and Σ2, respectively.

In this work the similarity between Mi and Ci is maximized through the
minimization of (2). To this end M is transformed (into Mi) with a thin-plate-
spline (TPS) transform [1] with nφ control points pφ

l , l = 1, . . . , nφ. For cloud Ci
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the optimally deformed mean cloud is given by Mi = ΦΘi +M where Φ is the
nm × nφ matrix that contains the radial basis functions of the TPS transform
and Θi is the nφ × d matrix that contains the transformation coefficients. The
transformation is regularized with the costs for the deformation of Mi

fstress (Θi,M) = tr
(
ΘT

i Φ
TΦΘi

)
(4)

where tr stands for the matrix trace. This regularization prevents large deforma-
tions from M and thereby preserves shape similarity and meaningful point-point
correspondence between the clouds Mi. fstress is a function of M because matrix
Φ is a function of M . For all clouds combined, the function to be optimized is
defined as the sum

F (Θ1, . . . , ΘN ,M) =

N∑

i=1

[fL2 (Mi, Ci) + λfstress (Θi,M)] ≡ FL2 + λFstress (5)

where λ is a regularization weight and fL2 (Mi, Ci) is a function of M and Θi,
because Mi is a function of M and Θi. This function can be minimized directly
using iterative methods, such as a quasi-Newton optimization. However, this is
a costly optimization, due to the large number of parameters (nφ · d · N) and
the necessary update of matrix Φ as a function of M . However, by keeping M
constant, the cost functions within the sum have no shared optimization variables
and can be minimized separately. This the key novelty of our work and of crucial
importance to subsequence parallelization.

To account for misalignments, fL2 will also include rigid transformations for
all clouds Ci. Because the clouds Mi do not deform (only move) with respect to
M and fstress can be kept as in (4).

Step 3: Update the Current Estimate of M by Computing the Mean
of Mi. Keeping M constant during the minimization of (5) prohibits finding
the global minimum of (5). Therefore M needs to be updated separately. With
Mi constant, M only affects the term that describes the total deformation costs
Fstress =

∑N
i=1 tr

(
ΘT

i Φ
TΦΘi

)
. From ΦΘi = Mi −M follows that

Fstress =
N∑

i=1

tr
(
(Mi −M)T (Mi −M)

)
=

N∑

i=1

nm∑

j=1

∥∥pmi

j − pm
j

∥∥2

where pmi

j and pm
j are the points with index j in cloud Mi and M , respectively.

Therefore, Fstress is minimal when pm
j is the mean of pmi

j , i = 1, . . . , N , thus
the optimal estimate of the mean shape is given by M ← 1

N

∑N
i=1 Mi. This inex-

pensive step takes care of the coupling of the clouds. Note that this simple mean
computation is only possible because of the implicit correspondence between
all deformed mean shapes, which is particular for the proposed algorithm.Θi is
updated using a linear least-squares estimate.

Step 4: Test for Convergence. If converged, continue, otherwise go to step 2.
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Step 5: Transform Ci to the Mean Cloud Using the Correspondence
between Mi and M . One should note that minimizing F

(
Θ̃1, . . . , Θ̃N ,M

)

as in (5) results in sets of corresponding points Mi. However, the much denser
clouds Ci have not deformed and, thus, are not registered to M (See Figure
1c). To do so, all point clouds Ci are rigidly transformed using ri and ti and
deformed towards M by computing the inverse TPS transforms Ci = ΦC

i Θi+ Ĉi

where the matrix with TPS basis functions ΦC
i and the deformed point cloud

Ĉi have to be estimated for a given set of transformation parameters Θi. This
can be done using an iterative procedure. For an accurate registration, all clouds
Ĉi represent a surface of the same shape. These registered surfaces can then be
used for a dense correspondence estimate between the clouds Ci.

3 Experiments

The experiments in this section evaluate both the accuracy and the precision
of the proposed registration algorithm and compare these to the registration
method in [5]. The chosen application is the registration of wrist bones to estab-
lish a dense correspondence of points on the bone surfaces of different individuals.
Specifically, the focus is on the scaphoid, lunate and hamate bones (See Figure
3). The 3 × 48 bone surfaces are represented as triangulated surfaces with ver-
tices Vi at a sampling density of approximately 0.14 vertices/mm2 (voxel size
0.3× 0.3× 0.3 mm3), typically yielding 1.8× 104 (SD 3.4× 103) points per bone
surface. The bones are coarsely aligned by ensuring the same scan orientations
and by translating the centers of gravity of each bone to the origin. Optimal
parameter settings (See Section 2) were experimentally determined for this data
as σ = 0.6 mm, nm = 1000, λ = 10−6 and nφ = 600. Each bone is represented
by a point cloud Ci with a subset of nm vertices of Vi.

In all experiments the registration accuracy Eacc and precision Eprec are eval-
uated on the transformed bone surfaces i.e. after the vertices Vi are deformed
towards M as in Step 5. This allows comparable results for different sample
densities. The resulting clouds are denoted as V̂i. Eacc is defined as the average
(over shapes) norm of the average (over points) signed point-to-plane distance
between all pairs of clouds V̂i and V̂j , evaluated on points that are not in Ci

(thus not used for the registration). Eprec is the average absolute point-to-plane
distance between all pairs of clouds V̂i and V̂j , again using points not in Ci. Eacc

reflects the presence of a bias, while Eprec reflects the remaining matching error.

3.1 Robustness to Initial Mean Cloud Estimate

The initial estimate of M has a strong influence on Fstress during the first
iterations. The robustness of the algorithm was tested by using four different
initial estimates of M : (I) Points drawn randomly from the 0-level set of the
average signed distance transform (SDT) as in Section 2, Step 1. (II) Points
drawn randomly from all clouds to be registered (rand). (III) Points drawn
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Fig. 2. (a) Registration accuracy and precision for four initial estimates of the mean
shape M : (I) SDT (II) rand, (III) sph, (IV) one. For ‘sph’ and ‘one’ also the results
of a multiscale registration are shown (msph, mone). (b) Registration precision for the
proposed algorithm and (c) for the algorithm from [5] for increasing γ and N . (a-c)
The errorbars denote standard deviations.

randomly from a sphere with radius equal to the mean standard deviation of
the point cloud coordinates (sph). (IV) One of the point clouds (one). For each
of these initial point clouds a random selection of N = 3 three clouds were
registered, repeated with 10 drawings for each of the 3 bone types.

The registration accuracies Eacc and precisions Eprec in Figure 2a show that
initializing M by taking points from the SDT gives the most accurate results,
closely followed by a random selection of points from the non-registered point
clouds. With a sphere or a single shape the registration algorithm often converged
in local minima due to a lack of overlap between the kernels of M and the kernels
of C1, C2 and C3 for the current, small, choice of σ = 0.6 mm. A multiscale
approach where σ decreases from σ = 3 to σ = 0.6 mm solves this as depicted
by the last two results of Figure 2a.

3.2 Robustness to Initial Shape Alignment

When more shapes are present, rotated over a random angle, it is more likely
that a shape that has a rotation ‘in between’ improves the convergence of the
algorithm. Therefore N previously aligned shapes were rotated around randomly
distributed rotation axes, with angles randomly sampled from [−γ, γ], for differ-
ent values of N and γ. The initial M was obtained as in Section 2, step 1. The
clouds were registered using both the proposed algorithm and the algorithm in
[5]. The experiment was repeated 30 times for each combination of the following
settings: N ∈ {3, 6, 9} randomly selected shapes (10 selections for each of the
three bone types) and γ ∈ {20, 40, 60} degrees.

Eacc for the proposed method and the method from [5] were all in the order of
10−4 mm, except at γ = 60◦. Here Eacc was approximately 0.07 mm for N = 3
shapes. In the latter case, both algorithms converged in a local minimum with
large shape deformations. Eprec is shown in Figure 2b for the proposed method
and in Figure 2c for the method in [5]. For γ = 0◦, 20◦ both methods perform
equally well. For γ = 40◦, 60◦ the proposed method is more precise than the
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Fig. 3. Bone surfaces and intersections after registration of N = 48 (a) scaphoids, (b)
lunates and (c) hamates. The white lines on the surfaces show the locations of the
contours. (d) Average registration times (and standard deviations) in minutes for the
registration of N ∈ {6, 12, . . . , 48} shapes, for the proposed method parallel on three
cores and single-threaded and the method in [5] for nm = 1000 (top) and nm = 100
(bottom).

method of [5]. We hypothesize that the method of [5] is slightly more susceptible
to local minima, due to the larger number of concurrently optimized parameters.
Furthermore, an increase in N decreases the registration error for large angles
γ. This is mainly due to the denser sampling of poses between −γ and γ. For [5]
experiments with 9 shapes did not succeed due to a lack of computer memory.

3.3 Feasibility of Large Data Set Registration

To investigate the feasibility of registering large datasets, an increasing number
of randomly selected sets of bones were registered: N ∈ {6, 12, . . . , 48}. Regis-
trations were performed for each type of bone and for three different shape set
selections. Experiments were performed on a computer with an Intel Xeon pro-
cessor at 2.67GHz with 6.0 GB of RAM memory. The method was implemented
in MATLAB R2010b, from The Mathworks, Inc.

Example registration results are shown in Figure 3 for N = 48 bones. For the
scaphoid and lunate, all contours are aligned. For the hamate, however, small
misalignments can be observed on the left and right of the protrusion of the
bone (see arrows). This is due to the large shape variations of the protrusion,
combined with the TPS interpolation of the shape surfaces. For correspondence
estimates between the surfaces, however, these small misalignments do not form
a problem. For 12 shapes and more, the registration accuracy Eacc and precision
Eprec do not depend on the number of shapes and are Eacc ≈ 0.00 mm and
Eprec ≈ 0.12 mm, with negligible standard deviations.
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Figure 3d shows that the registration time increases linearly with an increasing
number of shapes, using the proposed method, while it increases approximately
quadratically using the method proposed in [5]. For nm = 1000, registering
more than 8 shapes, using the method of [5] was not possible, as the data did
not fit in the availabe RAM. Therefore also results for nm = 100 are shown.
The parallelization of the registration using three cores shortens the registration
time with approximately a factor 2.8, an efficient parallelization.

4 Discussion

In this paper, a method was presented for the non-rigid registration of a large
number of shapes, whose surfaces are represented by point clouds. Experiments
showed that the proposed algorithm indeed can register large numbers of point
clouds with high accuracy and precision with modest hardware demands. The
registration time increases linearly with the number of shapes N . Furthermore,
the registration accuracies and precisions are similar to the method of [5], which
itself was compared favorably to other state of the art methods, e.g. [6].

Although, as in [2] both algorithms evolve a mean cloud that is only mildy
constrained, the proposed method does not suffer from the instabilities in [2].
This is because the proposed method by definition does not need the assump-
tion that the ‘forward’ and ‘backward’ thin-plate spline transform are exactly
the same and because of an improved similarity measure. Interesting follow-up
research is if current based methods, e.g. [4] also allow group-wise registration
with a closed-form mean estimate as in step 3.

As shown in Figure 3, a much denser correspondence than the nm = 1000
points used for registration can easily be obtained from the registered surfaces.
Furthermore, taking the linear increase of registration times into account, com-
bined with the parallelization of the non-rigid registration step, one could register
almost 600 surfaces in a day. Note that such a dataset is not easily obtained.
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